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Deep Convolutional Networks in System Identification
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Abstract— Recent developments within deep learning are
relevant for nonlinear system identification problems. In this
paper, we establish connections between the deep learning
and the system identification communities. It has recently
been shown that convolutional architectures are at least as
capable as recurrent architectures when it comes to sequence
modeling tasks. Inspired by these results we explore the explicit
relationships between the recently proposed temporal convo-
lutional network (TCN) and two classic system identification
model structures; Volterra series and block-oriented models.
We end the paper with an experimental study where we provide
results on two real-world problems, the well-known Silverbox
dataset and a newer dataset originating from ground vibration
experiments on an F-16 fighter aircraft.

I. INTRODUCTION

Deep learning has, over the past decade, had a massive
impact on several branches of science and engineering, in-
cluding for example computer vision [1], speech recognition
[2] and natural language processing [3]. While the basic
model class—neural networks—has been around for more
than 70 years [4], there has been quite a few interesting
and highly relevant technical developments within the deep
learning community that has, to the best of our knowledge,
not yet been fully exploited within the system identification
community. Just to mention a few of these developments we
have; new regularization methods [5], [6], [7], new architec-
tures [8], [9], [10], improved optimization algorithms [11],
[12], [13], new insights w.r.t. activation functions [14], [15],
[16]. Moreover, the capability to significantly increase the
depth [8], [9], [10] in the models has further improved the
performance. Most of the existing model architectures have
been made easily available through high quality open source
frameworks [17], [18], allowing deep learning to be easily
implemented, trained, and deployed.

The deep learning developments that are most relevant for
system identification are probably the ones that can be found
under the name of sequence learning. Recurrent models, such
as recurrent neural networks (RNN) and its extensions which
include the long short-term memory (LSTM) [19] and the
gated recurrent units (GRU) [20], have been the standard
choice for sequence learning. In the neighbouring area of
computer vision, the use of the so-called convolutional neural
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networks (CNNs) [21] has had a very strong impact on
tasks such as image classification [22], segmentation [23]
and object detection [24]. Interestingly, it has recently [25]
been shown that the CNN architecture is highly useful
also for sequence learning tasks. More specifically, the so-
called temporal CNN (TCN) can match or even outperform
the older recurrent architectures in language and music
modelling [25], [26], [27], text-to-speech conversion [26],
machine translation [28], [29] and other sequential tasks [25].
We will, for this reason, focus this paper on making use of
TCNs for nonlinear system identification.

Neural networks have enjoyed a long and fruitful history
[30], [31], [32] also within the system identification commu-
nity, where they remain a popular choice when it comes to
modeling of nonlinear dynamical systems [33], [34], [35],
[36], [37].

We are writing this paper to reinforce the bridge between
the system identification and the deep learning communities
since we believe that there is a lot to be gained from doing
this. We will describe the new TCN model from a system
identification point of view (Section [[I). Additionally, we will
show that there are indeed interesting connections between
the deep TCN structure and the Volterra series and the block-
oriented model structures commonly used within system
identification (Section [[I). Perhaps most importantly, we will
provide experimental results on two real-world problems (the
Silverbox [38] and the F-16 [39] datasets) and on a toy
problem (Section [[V)).

II. NEURAL NETWORKS FOR TEMPORAL MODELING

The neural network is a universal function approxima-
tor [40] with a sequential model structure of the form:

§ = g0 (LD, (1a)
20 =gWED) =1, L-1, (1b)
20 — 4 (1)

where x, 2, denotes the input, the hidden variables and
the output, respectively. The transformation within each layer
is of the form g\ (2) = (W 24-b(1) consisting of a linear
transformation W) z + b followed by a scalar nonlinear
mapping, o, that acts element-wise. In the final (output) layer
t}(le)nonlinearity is usually omitted, i.e. g/ (2) = W)z +
b,

The neural network parameters {W® b(}E  are usu-
ally referred to as the weights W) and the bias terms
b and they are estimated by minimizing the predic-
tion error + Z,ivzl |l 4[k] — y[K]||? for some training dataset
{a[k], ylk] 1

To train deep neural networks with many hidden layers
(large L) have been proved to be a notoriously hard opti-
mization problem. The challenges includes the risk of getting



stuck in bad local minimas, exploding and/or vanishing gra-
dients, and dealing with large-scale datasets. It is only over
the past decade that these challenges have been addressed,
with improved hardware and algorithms, to the extent that
training truly deep neural networks has become feasible. We
will very briefly review some of these developments below.
Additional information can be found in Appendix A.

A. Temporal Convolutional Network

As the name suggests, the temporal convolutional network
(TCN) is based on convolutions [25]. The use of TCNs
within a system identification setting can in fact be inter-
preted as using the nonlinear ARX model as the basic model
component:

glk +1] = g(«[k], ... z[k — (n = 1)), 2)

with x[k] = (ulk], y[k]). We will proceed with this inter-
pretation, where would correspond to a one-layer TCN
model.

A full TCN can be understood as a sequential construction
of several nonlinear ARX models stacked on top of each
other:

gk + 1] = g (Z2ED [R]), (3a)
2Ok = g®(ZzWDIk]), 1=1,...,L—1, (3b)
ZO[k] = x[k], (3c)
where:
ZED ] = (z(l_l) (K], 2D k—dy], . .., 2D [k—(n—l)dl}).

The number of layers L, the size of each intermediate
layer 2(V[k], and the model order n, are all design choices
determined by the user. This will also determine the number
of parameters included in the model.

For each layer, we optionally introduce a dilation factor d;.
With d; = 1 we recover the standard nonlinear ARX model
in each layer. With d; > 1 the corresponding output of that
layer can represent a wider range of past time instances. The
effective memory of that layer will be (n — 1)d;. Typically
the dilation factor is chosen to increase exponentially with
the number of layers, for example d; = 2(=1) see Fig.
If we assume that we have the same number of parameters
in each layer, the memory will increase exponentially, not
only with the number of layers, but also with the number
of parameters in the model. This is a very attractive but yet
uncommon property for system identification models present
in the literature.

Each layer in a TCN can also be seen as dilated causal con-
volution where n would be the kernel size and dim(z()[k])
the number of channels in layer /. These convolutions can be
efficiently implemented in a vectorized manner where many
computations are reused across the different time steps k.
Analogously to what is done in convolutional neural net-
works we use zero-padding for z()[k] where k < 1. We refer
to [25] for a presentation of TCN based on convolutions.

B. Residual Blocks

A residual block is a combination of possibly several
layers together with a skip connection

L+p) — ]:(Z(l)) + 20, 4)

where the skip connection adds the value from the input of
the block to its output. The purpose of the residual block is to
let the layers learn deviations from the identity map rather
than the whole transformation. This property is beneficial,
especially in deep networks where we want the information
to gradually change from the input to the output as we
proceed through the layers. There is also some evidence that
this makes it easier to train deeper neural networks [10].

We employ residual blocks in our models by following
the model structure in [25]. Each block consist of one skip
connection and two linear mappings, each of them followed
by batch normalization [13], activation function and dropout
regularization [6]. See Fig. for a visual description and
Appendix A for a brief explanation of batch normalization
and regularization methods. For both mappings a common
dilation factor is used and hence the whole block can be seen
as one of the layers g(!)(2) in the TCN model (3). Note that
the skip connection only passes z(l’l)[k] to the next layer
and not the whole Z(l_l)[k‘; for each time instance k. In
cases where 2!~V [k] and z(V [k] are of different dimensions,
a linear mapping is used between them. The coefficients of
this linear mapping are also learned during training.

IIT. CONNECTIONS TO SYSTEM IDENTIFICATION

This section describes equivalences between the basic
TCN architecture (i.e. without dilated convolutions and skip
connections) and models in the system identification com-
munity, namely Volterra series and block-oriented models.
The discussion is limited to the nonlinear FIR case (where
2 = u) instead of the more general NARX case (z = (u, y))
considered in (2)), and to single input single output systems.

A. Connection with Volterra series

A Volterra series [41] can be considered as a Taylor series
with memory. It is essentially a polynomial in (delayed)
inputs w[k], u[k — 1], . ... Alternatively, a Volterra series can
be considered as a nonlinear generalization of the impulse
response hq[7]. The output of a Volterra series is obtained
using higher-order convolutions of the input with the Volterra
kernels hg[71,...,74] ford = 0,1,..., D. These kernels are
the polynomial coefficients in the Taylor series.

The basic TCN architecture is essentially the same as the
time delay neural network (TDNN) in [42], except for the
zero padding [25] and the use of ReLU activations instead
of sigmoids. The TDNN has been shown to be equivalent
to an infinite-degree (D — o0) Volterra series in [43].
This connection is made explicit in [43] by showing how
to compute the Volterra kernels from the estimated network
weights W. The key ingredient is to use a Taylor series
expansion of the activation functions o either around zero
(the bias term b is then considered part of the activation
function) or alternatively around the bias values if the Taylor
series around zero does not converge for example.
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Fig. 1: Tllustration of the temporal convolution network (TCN) with residual blocks. (a) Temporal convolutional network
with dilated causal convolutions with dilation factor d; = 1, do = 2 and ds = 4 and kernel size n = 3. (b) A TCN residual
block. Each block consists of two dense layers and an identity (or linear) map on the skip connection. As illustrated in (a) by
connection with the same color, neural network weights are shared within the same layer and invariant to time translations.
This reflects the hypothesis we are modeling a time invariant system.

B. Connection with block-oriented models

Block-oriented models [44], [45] combine linear time-
invariant (LTT) subsystems (or blocks) and nonlinear static
(i.e. memoryless) blocks. For example, a Wiener model
consists of the cascade of an LTI block and a nonlinear static
block. For a Hammerstein model, the order is reversed: it is
a nonlinear block followed by an LTI block. Generalizations
of these simple structures are obtained by putting more
blocks in series (as in [46] for Hammerstein systems) or
in parallel branches (as in [47] for Wiener-Hammerstein
systems) and/or to consider multivariate nonlinear blocks.

A multi-layer basic TCN can be considered as cascading
parallel Wiener models, one for each hidden layer, that have
multivariate nonlinear blocks consisting of the activation
functions (including the bias). The linear output layer cor-
responds to adding FIR filters at the end of each parallel
branch. The layers can be squeezed together to form less
but larger layers (cf. squeezing together the sandwich model
discussed in [48]). This is so since the dynamics consist of
time delays and time delays can be placed before or after
a static nonlinear function without changing the resulting
output (¢~ o (z[k]) = (g~ 2[k]) = o(z[k — 1])). The TCN
model could be squeezed down to a parallel Wiener model.

C. Conclusion

The basic TCN architecture is equivalent to Volterra series
and parallel Wiener models. They are thus all universal
approximators for time-invariant systems with fading mem-
ory [49]. This equivalence does not mean that all these
model structures can be trained with equal ease and will
perform equally well in all identification tasks. For example,
a Volterra series uses polynomial basis functions, whereas
TDNNSs use sigmoids and TCNs use ReLLU activation func-
tions. Depending on the system at hand, one basis function
might be better suited than another to avoid bad local minima
and/or to obtain both an accurate and sparse representation.

IV. NUMERICAL RESULTS

We now present the performance of the TCN model
on three system identification problems. We compare this

model with the classical NARX Multilayer Perceptron (MLP)
network with two layers and with the Long Short-Term
Memory (LSTM) network. When available, results from
other papers on the same problem are also presented.

We make a distinction between training, validation and
test datasets. The training dataset is used for estimating the
parameters. The performance in the validation data is used as
the early stopping criteria for the optimization algorithm and
for choosing the best hyper-parameters (i.e. neural network
number of layers, number of hidden nodes, optimization
parameter, and so on). The test data allows us to assess the
model performance on unseen data. Since the major goal
of the first example is to compare different hyper-parameter
choices we do not use a fest set.

In all the cases, the neural network parameters are esti-
mated by minimizing the mean square error using the Adam
optimizer [11] with default parameters and an initial learning
rate of Ir = 0.001. The learning rate is reduced whenever the
validation loss does not improve for 10 consecutive epochs.

We use the Root Mean Square Error

(RMSE = \/% Sy I9k] = ylk]12)  as  metric  for
comparing the different methods in the validation and
test data. Throughout the text we will make clear when
the predicted output g is computed through the free-run
simulation of the model and when it is computed through
the one-step-ahead prediction.

The code for reproducing the examples is available at
https://github.com/antonior92/sysid-neuralnet. Additional in-
formation about the hyperparameters and training time can
be found in Appendix B.

A. Example 1: Nonlinear toy problem

The nonlinear system [31]:

vk = (0.8—05e v F1 )y [k — 1) —
(0.3 + 0.9¢ ¥ =1y [ — 2] + ulk — 1] +
0.2k — 2] + 0.1ulk — ulk — 2] + o[k],
ylk] = y'k] +wlk], (5)


https://github.com/antonior92/sysid-neuralnet

was simulated and the generated dataset was used to build
neural network models. Fig. [2] shows the validation results
for a model obtained for a training and validation set gener-
ated with white Gaussian process noise v and measurement
noise w. In this section, we repeat this same experiment for
different neural network architectures, with different noise
levels and different training set sizes N.

—— true value
simulated value
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0 20 40 60 80 100
k

Fig. 2: (Example 1) Displays 100 samples of the free-run
simulation TCN model vs the simulation of the true system.
The kernel size for the causal convolutions is 2, the dropout
rate is 0, it has 5 convolutional layers and a dilation rate
of 1. The training set has 20 batches of 100 samples and was
generated with (3) for v and w white Gaussian noise with
standard deviations ¢, = 0.3 and o,, = 0.3. The validation
set has 2 batches of 100 samples. For both, the input u is
randomly generated with a standard Gaussian distribution,
each randomly generated value held for 5 samples.

The best results for each neural network architecture on the
validation set are compared in Table|l} It is interesting to see
that when few samples (N = 500) are available for training,
the TCN performs the best among the different architectures.
On the other hand, when there is more data (N = 8 000) the
other architectures gives the best performance.

Fig. [3] shows how different hyper-parameter choices im-
pact the performance of the TCN. We note that standard deep
learning techniques such as dropout, batch normalization
and weight normalization did not improve performance. The
use of dropout actually hurts the model performance on the
validation set. Furthermore, increasing the depth of the neural
network does not actually improve its performance and the
TCN yields better results in the training set without the use
of dilations, which makes sense considering that this model
does not require a long memory since the data were generated
by a system of order 2.

B. Example 2: Silverbox

The Silverbox is an electronic circuit that mimics the
input/output behavior of a mass-spring-damper with a cubic
hardening spring. A benchmark dataset is available through
(381

The training and validation input consists of 10 realiza-
tions of a random-phase multisine. Since the process noise
and measurement noise is almost nonexistent in this system,

'Data available for download at:
http://www.nonlinearbenchmark.org/#Silverbox;

we use all the multisine realizations for training data, simply
training until convergence.

The test input consists of 40400 samples of a Gaussian
noise with a linearly increasing amplitude. This leads to the
variance of the test output being larger than the variance seen
in the training and validation dataset in the last third of the
test data, hence the model needs to extrapolate in this region.
Fig. [] visualizes this extrapolation problem and Table
shows the RMSE only in the region where no extrapolation
is needed. The corresponding RMSE for the full dataset is
presented in Table Similarly to Section we found
that the TCN did not benefit from the standard deep learning
techniques such as dropout and batch normalization. We
also see that the LSTM outperforms the MLP and the TCN
suggesting the Silverbox data is large enough to benefit of
the increased complexity of the LSTM.

C. Example 3: F-16 ground vibration test

The F-16 vibration test was conducted on a real F-16
fighter equipped with dummy ordnances and accelerometers
to measure the structural dynamics of the interface between
the aircraft and the ordnance. A shaker mounted on the
wing was used to generate multisine inputs to measure this
dynamics. We used the multisine realizations with random
frequency grid with 49.0 N RMS amplitude [39] for training,
validating and testing the modelEI

We trained the TCN, MLP and LSTM networks for all the
same configurations used in Example 1. The analysis of the
different architecture choices for the TCN in the validation
set again reveals that common deep learning techniques such
as dropout, batch normalization, weight normalization or the
use of dilations do not improve performance. The major
difference here is that the use of a deeper neural network
actually outperforms shallow neural networks (Fig. [3).

The best results for each neural network architecture are
compared in Table [[V| for free-run simulation and one-step-
ahead prediction. The results are averaged over the 3 outputs.
The TCN performs similar to the LSTM and the MLP.

An earlier attempt on this dataset with a polynomial
nonlinear state-space (PNLSS) model is reported in [63]. Due
to the large amount of data and the large model order, the
complexity of the PNLSS model had to be reduced and the
optimization had to be focused in a limited frequency band
(4.7 to 11 Hz). That PNLSS model only slightly improved
on a linear model. Compared to that, the LSTM, MLP, and
TCN perform better, also in the frequency band 4.7 to 11 Hz.
This can be observed in Fig. [6] which compare the errors of
these models with the noise floor and the total distortion level
(= noise + nonlinear distortions), computed using the robust
method [64]. Around the main resonance at 7.3 Hz (the wing-
torsion mode [39]), the errors of the neural networks are
significantly smaller than the total distortion level, indicating
that the models do capture significant nonlinear behavior.
Similar results are obtained in free-run simulation (not shown
here). In contrast to the PNLSS models, the neural networks
did not have to be reduced in complexity. Due to the mini-
batch gradient descent, it is possible to train complex models
on large amounts of data.

2Data available for download at:
http://www.nonlinearbenchmark.org/#F16
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TABLE I: (Example 1) One-step-ahead RMSE on the validation set for the models (MLP, LSTM and TCN) trained on
datasets generated with: different noise levels (o) and lengths (/). The standard deviation of both the process noise v and
the measurement noise w is denoted by o. We report only the best results among all hyper-parameters and architecture

choices we have tried out for each entry.

N=500 N=2000 N=8 000
o ‘ LSTM  MLP TCN ‘ LSTM MLP TCN ‘ LSTM MLP TCN
0.0 0.362 0.270 0.254 | 0.245 0.204 0.196 0.165 0.154 0.159
0.3 | 0.712 0.645 0.607 | 0.602 0.586 0.558 | 0.549 0.561 0.551
0.6 1.183 1.160 1.094 1.105 1.070  1.066 1.038 1.052 1.043
11 ¢ 11 11 { 11 ¢ :
10 . . 10 1.0 ' ; 1.0 ' :
! ' : ! '
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Fig. 3: (Example 1) Box plots showing how different design choices affect the performance of the TCN for noise standard
deviation o = 0.3 and training data length N = 2000. On the y-axis the one-step-ahead RMSE on the validation set is
displayed, and on the z-axis we have: in (a) the presence or absence of dilations; in (b) the dropout rate {0.0, 0.3, 0.5, 0.8};
in (c) the number of residual blocks {1, 2, 4, 8}; and, in (d) if batch norm, weight norm or nothing is used for normalizing
the output of each convolutional layer. The variation in performance for the box plot quartiles is achieved through the
variation for all the other hyper-parameters not fixed by the hyper-parameter choice indicated on the z-axis.

TABLE 1II: (Example 2) Free-run simulation results for
the Silverbox example on part of the test data (avoiding
extrapolation).

RMSE (mV)  Which samples  Approach Reference
0.7 first 25000 Local Linear State Space  [50]

0.24 first 30 000 NLSS with sigmoids [51]

1.9 400 to 30000 Wiener-Schetzen [52]

0.31 first 25 000 LSTM this paper
0.58 first 30 000 LSTM this paper
0.75 first 25000 MLP this paper
0.95 first 30000 MLP this paper
0.75 first 25000 TCN this paper
1.16 first 30 000 TCN this paper

TABLE III: (Example 2) Free-run simulation results for
the Silverbox example on the full test data. (*Computed from
FIT=92.2886%).

RMSE (mV)  Approach Reference
0.96 Physical block-oriented 53
0.38 Physical block-oriented 54
0.30 Nonlinear ARX 55
0.32 LSSVM with NARX 56
1.3 Local Linear State Space 50
0.26 PNLSS 57
13.7 Best Linear Approximation 57
0.35 Poly-LFR 58
0.34 NLSS with sigmoids 51
0.27 PWL-LSSVM with PWL-NARX  [59
7.8 MLP-ANN 60
4.08* Piece-wise affine LFR 61
9.1 Extended fuzzy logic 62
9.2 Wiener-Schetzen 52
3.98 LSTM this paper
4.08 MLP this paper
4.88 TCN this paper
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Fig. 4: (Example 2) The true output and the prediction error
of the TCN model in free-run simulation for the Silverbox
data. The model needs to extrapolate approximately outside
the region +£0.2 marked by the dashed lines.

V. CONCLUSION AND FUTURE WORK

In this paper we applied recent deep learning methods
to standard system identification benchmarks. Our initial
results indicate that these models have potential to provide
good results in system identification problems, even if this
requires us to rethink how to train and regularize these
models. Indeed, methods which are used in traditional deep
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Fig. 5: (Example 3) Box plot showing how different depths
of the neural network affects the performance of the TCN.
Should be interpreted in the same way as Fig. El

TABLE IV: (Example 3) RMSE for free-run simulation and
one-step-ahead prediction for the F16 example averaged over

the 3 outputs. The average RMS value of the 3 outputs is
1.0046.

Mode LSTM MLP TCN
Free-run simulation 0.74 0.48 0.63
One-step-ahead prediction  0.023 0.045 0.034

learning settings do not always improve the performance.
For example, dropout did not yield better results in any
of the problems. Neither did the long memory offered by
the dilation factor in TCNs offer any improvement, which
is most likely due to the fact that these problems have a
relatively short and exponentially decaying memory, as most
dynamical systems do. Other findings are that TCNs work
well also for small datasets and that LSTMs did show a
good overall performance despite being very rarely applied
to system identification problems.

Causal convolutions are effectively similar to NARX mod-
els and share statistical properties with this class of models.
Hence, they are also expected to be biased for settings where
the noise is not white. This could justify the limitations

Output 3 - spectrum and one step ahead errors
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Fig. 6: (Example 3) In one-step-ahead prediction mode, all
tested model structures perform similar. The error is close
to the noise floor around the main resonance at 7.3 Hz.
(plot only at excited frequencies in [4.7,11] Hz; true output
spectrum in black, noise distortion in grey dash-dotted line,
total distortion (= noise + nonlinear distortions) in grey
dotted line, error LSTM in green, error MLP in blue, and
error TCN in red)

of TCNs observed in our experiments. Extending TCNs to
handle situations where the data is contaminated with non-
white noise seems to be a promising direction in improving
the performance of these models. Furthermore, both LSTMs
and the dilated TCNs are designed to work well for data
with long memory dependencies. Therefore it would be
interesting to apply these models to system identification
problems where such long term memory is actually needed,
e.g. switched systems, or to study if the long-term memory
can be translated into accurate long-term predictions, which
could have interesting applications in a model predictive
control setting.
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APPENDIX
A. Neural networks common practices

1) Regularization: Similar to other approaches within sys-
tem identification, L2- and L1-regularization are commonly
used to reduce the flexibility of a model and hence avoid
overfitting. A number of other regularization techniques have
also appeared more specialized to neural networks. One of
them is the dropout [6] which is a technique where a random
subset of the hidden units in each layer is set to zero during
training. New random subsets are drawn and set to zero in
each optimization step which effectively means that a random
subnetwork is trained during each iteration.

Data augmentation is very common in classification prob-
lems and it can also be interpreted as a regularization tech-
nique. It is used to artificially increase the training dataset
by utilizing the fact that the class is invariant under some
transformation of the input (e.g. translation for image) or in
the presence of some low intensity noise (e.g. salt pepper
noise for images).

Finally, early stopping is a pragmatic approach in which,
as the name suggests, the optimization algorithm is inter-
rupted before convergence. The stopping point is chosen as
the point where a validation error is minimized. Hence, it
avoids overfitting and can as such also be interpreted as a
regularization technique.

2) Batch Normalization: Before training a neural net-
work, the inputs are commonly normalized by subtracting the
mean and dividing by the variance. The purpose of this is to
avoid early saturation of the activation function and assuring
that values in the proceeding layers are within the same
dynamic range. In deep networks it is beneficial to not only
normalize the input layer, but also the intermediate hidden
layers. This idea is exploited in batch normalization [13]
which, in addition to this normalization, introduces scaling
parameters y and a shift 3 to be learned during training. The
output of the layer is then:

2Ok = vz (k] + 8. 6)

where zZ()[E] is normalized version of layer [ output. The
parameters v and [ will be trained jointly with all other
parameters of the network. Batch normalization has become
very popular in deep learning models.

An alternative to batch normalization is weight normal-
ization which is, essentially, a reparametrization of the
weight matrix, decoupling the magnitude and direction of
the weights [65].

3) Optimization Algorithms: Neural networks are trained
using gradient-based optimization methods. At each iteration
only a random subset of the training data is used to com-
pute the gradient and update the parameters. This is called
mini-batch gradient descent and is a crucial component for
efficient training of a neural network when the dataset is
large.

Multiple extensions to mini-batch gradient descent have
been proposed to make the learning more efficient. Mo-
mentum [66] applies a first order low-pass filter to the
stochastic gradients to compensate for the noise introduced
by the random sub-sampling. RMSprop [67] uses a low-
passed version of the squared gradients to scale the learning

rate in the different dimensions. One of the most popular
optimization method today is referred to as Adam [11] which
basically amounts to using RMSprop with momentum.

B. Hyperparameter search and training time

All examples run with hardware acceleration provided by
a single graphical processing unit (GPU). We run different
experiments in machines with different configurations so the
times are not directly comparable. Some of these machines
have a NVIDIA Titan V and others a NVIDIA GTX 1080TI.

A in depth analysis of the training time is beyond the
scope of this paper. The idea is to provide some basic notion
of how much time is needed to run the neural network
and the computational cost of doing hyperparameter search.
For example 2, we provide the total time needed to do the
hyperparameter search. It should be noticed, however, that
grid search is an inefficient procedure. We choose to use it
in order to study the effect of hyperparameters, rather than
because of its efficiency. And, for example 3, we provide
the total time for training the neural network with the best
possible configuration.

1) Nonlinear toy problem: We used grid search for finding
the hyperparameters. In each possible training configuration,
we have trained the TCN for all possible combinations of:
number of hidden layers in {16, 32, 64, 128, 256}; dropout
rate in {0.0, 0.3, 0.5, 0.8}; number of residual blocks in
{1, 2, 4, 8}; for the kernel size in {2, 4, 8, 16}; for the
presence or absence of dilations; and, for the use of batch
norm, weight norm or nothing after each convolutional layer.
We have trained the MLP for all combination of: number
of hidden layers in {16, 32, 64, 128, 256}; model order n
in {2, 4, 8, 16, 32, 64, 128}; activation function in {ReLU,
sigmoid}. Finally, we trained the LSTM for all combinations
of: number of hidden layers in {16, 32, 64, 128}; number of
stacked LSTM layers in {1, 2, 3}; dropout rate in {0.0, 0.3,
0.5, 0.8}. The best hyperparameters for each configuration
are described in Table For the TCN, it is better (in
all configurations) to use no dilation, no normalization and
kernel size equals to 2, hence these hyperparameters are
omitted from the table.

2) Silverbox: Some hyperparameters were just experi-
enced with manually to find good values and did not effect
the results in any major fashion. For LSTM and MLP,
dropout was disabled this way.

For the TCN, the kernel size was set to 2 after initial
experimentation. The number of layers (range {2,3}), the
number of hidden units (range {4,8,16,32}) and dropout
(range {0,0.05,0.1,0.2}) were optimized using grid search.
Similarly to the other experiments dropout yielded no gain
and the best network had 2 layers with 8 units per layer. Total
time consumption for this optimization and hyper parameter
search was 33 hours.

The MLP was implemented as a single hidden layer neural
network with ReLLU as activation function. The model order
(range {1, 2,4, 8,16, 32,64}) and the number of hidden units
(range {4, 8, 16, 32,64, 128, 256}) were optimized using grid
search and the best hyper parameters were 4 and 32 re-
spectively. Total time consumption for this optimization and
hyperparameter search was 7 hours.



TABLE V: (Example 1) Best model hyperparameters for: different noise levels (o) and lengths (/V). The standard deviation
of both the process noise v and the measurement noise w is denoted by o.

(a) TCN: The hyperparameters are the dropout rate (drop.), the number of layers (n. layers and the
number of hidden layers (h. size).

N=500 N=2000 N=8 000
o | drop. n.layers h.size | drop. n.layers h.size | drop. n.layers h. size
0.0 0.0 2 256 0.0 2 64 0.0 4 32
0.3 0.3 8 128 0.0 2 128 0.0 8 16
0.6 0.0 8 256 0.0 1 64 0.0 8 16

(b) MLP: The hyperparameters are the activation function (activ. fun.), the number of hidden
layers (h. size) and the model order n.

N=500 N=2000 N=8 000
o | activ. fun. h.size n | activ. fun. h.size n | activ. fun. h.size n
0.0 relu 128 2 relu 128 3 relu 256 3
0.3 relu 256 2 sigmoid 64 3 relu 128 3
0.6 relu 256 2 sigmoid 128 4 relu 128 3

(c) LSTM: The hyperparameters are the dropout rate (drop.), the number of hidden layers (h. size) and
the number of stacked layers (n. layers).

N=500 N=2000 N=8 000
o | drop. h.size n.layers | drop. h.size n.layers | drop. h.size n. layers
0.0 0.0 128 2 0.0 32 1 0.0 32 2
0.3 0.3 128 2 0.0 64 3 0.0 64 2
0.6 0.0 128 3 0.0 128 3 0.3 64 2

In the LSTM case, the hyperparameters for batch size
(range {1,2,4,8,16,32}) and the number hidden units
(range {4, 16, 36,64}) were optimized using grid search and
the best hyper parameters were 8 and 36 respectively. Total
time consumption for this optimization and hyperparameter
search was 40 hours.

3) F-16 ground vibration test: Again, we used grid search
for finding the hyperparameters. In each possible training
configuration, we have trained the TCN for all possible
combinations of: number of hidden layers in {16, 32, 64,
128}; dropout rate in {0.0, 0.3, 0.5, 0.8}; number of residual
blocks in {1, 2, 4, 8}; for the kernel size in {2, 4, 8, 16};
for the presence or absence of dilations; and, for the use of
batch norm, weight norm or nothing after each convolutional
layer. The best result in this case, is to use batch norm, no
dilation, kernel size equals to 8, dropout rate equals to 0.3,
and 8 layers. Training the network with this configuration
took approximately 40 minutes.

We have trained the MLP for all combination of: number
of hidden layers in {16, 32, 64, 128, 256}; model order n
in {2, 4, 8, 16, 32, 64, 128}; activation function in {ReLU,
sigmoid}. Use sigmoid, model order equals to 64 and 256
hidden units yields the best results. Training the network with
this configuration took 4 minutes. Training the network with
this configuration took approximately 5 minutes.

Finally, we trained the LSTM for all combinations of:
number of hidden layers in {16, 32, 64, 128}; number
of stacked LSTM layers in {1, 2}; dropout rate in {0.0,
0.3, 0.5, 0.8}. The best configuration is 2 stacked LSTM
layers, dropout rate equals to 0 and hidden size equals
to 128. Training the network with this configuration took
approximately 50 minutes.
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