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Abstract— In this paper, we discuss the controllability of a
family of linear time-invariant (LTI) networks defined on a
signed graph. In this direction, we introduce the notion of
positive and negative signed zero forcing sets for the control-
lability analysis of positive and negative eigenvalues of system
matrices with the same sign pattern. A sufficient combinatorial
condition that ensures the strong structural controllability of
signed networks is then proposed. Moreover, an upper bound on
the maximum multiplicity of positive and negative eigenvalues
associated with a signed graph is provided.

I. INTRODUCTION

Thanks to the ubiquity and wide recent applications of
networks, there has been a surge of interest in studying
networked dynamical systems and their control. One of the
fundamental problems pertinent to the control of networks
is their controllability [1]. In most cases, the exact value
of the entries of system matrices, that is, the connection
weights of a network, is unknown or highly uncertain.
Accordingly, finding alternative means of system analysis
based on topological features of the underlying graph is of
importance; these features are also instrumental in network
design problems [2], [3]. There are different works in the
literature, adopting diverse points of view towards control-
lability analysis of networks. In some works, controllability
of a particular dynamics, e.g., Laplacian dynamics, has been
considered [1], [4], [5], while in other works, instead of a
specific dynamics, a family of dynamical networks all of
which are defined on the same structure, has been studied.
The second approach leads to structural controllability anal-
ysis for networked systems of interest in this work.

In the structural controllability framework, the network
is viewed in terms of the zero-nonzero pattern of system
matrices. In this direction, strong structural controllability
results provide conditions ensuring the controllability for
all systems with the same zero-nonzero pattern [6]. In the
systems and control literature, different interpretations of
strong structural controllability have been presented in terms
of spanning cycle [7], constrained t-matchings [8], and zero
forcing sets [9]–[14].

Signed networks have recently attracted a lot of attention
in the systems community; the controllability of this class
of networks with a particular Laplacian dynamics has also
been examined in a few works [15], [16]. In fact, signed
networks can be representative of a wide range of scenarios
of practical interest, such as social networks and fault tolerant
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networks [17], [18]. In a signed network, the graph admits
both positive and negative edges that indicate respectively,
cooperative or adversarial interactions among the nodes. As
such, by considering a sign pattern instead of a zero-nonzero
pattern, not only can we capture the network structure,
but also define a more restrictive family of networks that
represents distinct qualitative features.

The notion of sign controllability, which is strong struc-
tural controllability of networks with the same sign pattern,
was first introduced in [19] and examined for the special case
of single-input systems with all nonzero entries as positive.
These results were later extended to the multi-input case in
[20], where signed networks are examined in the context
of the so-called strict linear control systems with some
restrictive properties; for example, the diagonal entries of the
system matrices should be nonzero and have the same sign.
In [20], sufficient algebraic conditions for sign controllability
of a network as well as necessary and sufficient conditions
for the sign controllability of strict linear control systems
have been presented; however, recognition of these algebraic
conditions was proven to be NP-hard. More recently, in [21],
sign controllability of another family of networks has been
analyzed, and an algebraic condition has been provided for
systems whose sign pattern admits only real eigenvalues.
However, the verification of these conditions is also NP-hard.

The notion of zero forcing game, played on a graph to
change the color of the nodes based on a coloring rule, was
defined in [22] for the minimum rank problem. Later, other
variants of the zero forcing sets were introduced in [23].
For example, in [24], in order to study the minimum rank
problem for symmetric matrices with the same sign pattern
(with an undirected graph), a signed zero forcing set was
defined. In this paper, we introduce the new notion of positive
and negative signed zero forcing sets for a directed signed
graph that can be utilized in providing an upper bound on
the maximum geometric multiplicity of positive and negative
eigenvalues of matrices with the same sign pattern.

As the main contribution of this work, using the notion
of signed zero forcing sets, strong structural controllability
conditions for the zero, positive, and negative eigenvalues
of matrices with the same sign pattern are provided. Fur-
thermore, we present a sufficient condition for the strong
structural controllability of signed networks, whose sign
patterns admits only real eigenvalues. However, there is no
restriction on the sign of diagonal entries, and we allow the
self-loops of the signed networks not to have any specified
signs. In [25], a complete characterization of such networks
has been provided. For example, one can mention undirected
networks with symmetric pattern matrices. A few examples

ar
X

iv
:1

90
8.

05
73

2v
3 

 [
m

at
h.

O
C

] 
 1

0 
O

ct
 2

01
9



are used throughout the paper to better illustrate the results.

II. PRELIMINARIES

We denote the set of real numbers by R. For a vector
v, vi is its ith entry; for a matrix M , Mij is the entry in
row i and column j. A subvector vX is comprised of vi, for
i ∈ X , ordered lexiographically. We denote the transpose of
the matrix M by MT . The n× n identity matrix is denoted
by In, and its jth column is designated by ej . We designate
by |S| the cardinality of the set S. The sign function sign(.) :
R→ {+,−, 0} returns the sign of a nonzero scalar, and we
have sign(a) = 0 if and only if a = 0. We also define the
sign inversion function as inv(+) = − and inv(−) = +.

A zero-nonzero pattern P ∈ {×, 0, ?}n×n is a matrix
whose off-diagonal entries can be zero or nonzero, respec-
tively denoted by 0 or ×, and the diagonals are chosen from
the set {×, 0, ?}. The zero-nonzero pattern of a matrix A is a
matrix P such that for i 6= j, Pij = 0 if and only if Aij = 0.
Note that if Pii =?, Aii can be both zero or nonzero.

A sign pattern Ps ∈ {+,−, 0, ?}n×n is a matrix whose
off-diagonal entries are from the set {+,−, 0}, and the
diagonals belongs to {+,−, 0, ?} . The sign pattern of a
matrix A is some Ps such that for i 6= j, (Ps)ij = sign(Aij);
also, (Ps)ii = sign(Aii) whenever (Ps)ii 6=?. If (Ps)ii =?,
Aii can be zero or a nonzero with a positive or negative sign.

A graph is denoted by G = (V,E, P ), where V =
{1, . . . , n} is the vertex set and E ⊆ V × V is the edge set
of the graph. We write (i, j) ∈ E when there is an edge from
the node i to the node j. P is a zero-nonzero pattern such
that (i, j) ∈ E whenever Pji 6= 0. Note that in our setup, a
graph G can contain self-loops as (i, i) for some i ∈ V (G);
if we have Pii =? for some 1 ≤ i ≤ n, we assign a label ?
to the self-loop (i, i) ∈ E, implying that (i, i) can appear or
not appear in G. For (i, j) ∈ E, node j (resp., node i) is an
out-neighbor (resp., in-neighbor) of node i (resp., node j).
We denote by Nout(i) the set of out-neighbors of node i. An
undirected graph is a graph such that (i, j) ∈ E(G) if and
only if (j, i) ∈ E(G); in this case, we write {i, j} ∈ E(G),
and node j is referred to as the neighbor of node i. The
matrix P is symmetric for an undirected graph.

A signed graph Gs is denoted by Gs = (V,E, Ps), where
Ps is an n × n sign pattern such that (i, j) ∈ E whenever
(Ps)ji 6= 0. Then, to every edge (i, j) ∈ E, where i 6=
j, we can assign a label + or −, that indicates whether
the weight of the connection between the nodes i and j is
positive or negative. Moreover, a self-loop (i, i), i ∈ V , can
be labeled with +, −, or ?. This implies that the self-loop
of node i has a weight that can be positive, negative, or
unspecified (including zero value). We can also define an
undirected signed graph associated with a symmetric Ps.

A looped graph is obtained from a graph by putting a
self-loop on every node v ∈ V that does not have a self-
loop itself. Before precisely defining a looped graph, let us
consider the indices s and r chosen respectively from the sets
{×,+,−, 0, ?} and {+,−}. Now, we let the sign equations
as ? + s =?, 0 + s = s, r + inv(r) =?, r + r = r, and
× + × =?. One can verify theses equations by considering

different scalars with the same pattern denoted by some s ∈
{×,+,−, 0, ?} and checking the pattern of the result. For
example, by adding two positive (resp., negative) numbers,
a positive (resp., negative) number is obtained, leading to
r + r = r. On the other hand, by adding a positive and
a negative number, the result may be positive, negative, or
zero, implying that r+inv(r) =?. Now, let D(×), D(+), and
D(−) be n × n diagonal pattern matrices whose diagonals
are respectively, ×, +, and −. Using the sign equations, for
a given zero-nonzero pattern P and a sign pattern Ps, let
us define P× = P + D(×), P+

s = Ps + D(+), and P−s =
Ps + D(−). Then, for a graph G = (V,E, P ), we define
the looped graph G× = (V,E, P×). Moreover, for a signed
graph Gs = (V,E, Ps), one has the positive looped graph
G+

s = (V,E, P+
s ) and the negative looped graph G−s =

(V,E, P−s ).
Example 1: For the zero-nonzero pattern P and the sign

pattern Ps defined as

P =

? 0 ×
0 × 0
0 × 0

 , Ps =


? − 0 0
0 − + 0
0 0 + 0
0 0 + 0

 ,
the graphs G and Gs in Figs. 1 (a) and 2 (a) can be
represented. Also, the looped graph G× is shown in Fig.
1 (b), and the positive and the negative looped graphs G+

s

and G−s are respectively, depicted in Figs. 2 (b) and (c).

Fig. 1. a) Graph G, b) looped graph G×.

Fig. 2. a) Graph Gs, b) positive looped graph G+
s , c) negative looped

graph G−s .

For a (undirected) graph G = (V,E, P ), the qualitative
class, denoted by Q(G), is defined as the set of all (sym-
metric) matrices in Rn×n whose zero-nonzero pattern is P .
Similarly, for a (undirected) signed graph Gs = (V,E, Ps),
the qualitative class Qs(Gs), is the set of all (symmetric)
matrices in Rn×n whose sign pattern is Ps.

We denote by Λ(A) the set of eigenvalues of the matrix
A. For an eigenvalue λ ∈ Λ(A), the dimension of the
subspace SA(λ) = {ν ∈ Rn|νTA = λνT } is called the
geometric multiplicity of λ and is denoted by ψA(λ). For



some M ⊆ Λ(A), we also define the maximum geomet-
ric multiplicity of eigenvalues of A belonging to M as
ΨM(A) = max{ψA(λ)|λ ∈M}.
A. Problem Formulation

Given is an LTI network with the following dynamics

ẋ = Ax+Bu, (1)

where x ∈ Rn is the state vector of the nodes, and u ∈ Rm

is the control input; we refer to matrices A ∈ Rn×n and
B ∈ Rn×m respectively, as the system and input matrices.
We let A ∈ Qs(Gs) for some signed graph Gs = (V,E, Ps);
moreover, B is defined as B = [ej1 , . . . , ejm ], where nodes
jk, k = 1, . . . ,m, are called control nodes, and VC =
{j1, . . . , jm} is the set of control nodes.

If with a suitable choice of the input, we can transfer the
state of the nodes from any initial state to any final state
within a finite time, then we say that the network with the
pair (A,B) is controllable. As controllability is preserved
under a similarity transformation, when the LTI system (1) is
uncontrollable, there exists a nonsingular matrix T ∈ Rn×n

such that for some q < n,

T−1AT =

[
Â11 Â12

0 Â22

]
, T−1B =

[
B̂1

0

]
, (2)

where (Â11, B̂1) is controllable, with Â11 ∈ Rq×q , B̂1 ∈
Rq×m. When λ ∈ Λ(A) and λ /∈ Λ(Â22), it is called a
controllable eigenvalue of the system (1). On the other hand,
we define λ as an uncontrollable eigenvalue if λ /∈ Λ(Â11).
In this case, the input of the system cannot have any influence
on λ. We can use the Popov-Belevitch-Hautus (PBH) test for
checking the controllability of eigenvalues.

Proposition 1 ([26]): The eigenvalue λ of A in a system
with dynamics (1) is controllable if and only if for all
nonzero w for which wTA = λwT , wTB 6= 0.

An eigenvalue λ is called strongly structurally controllable
if it is a controllable eigenvalue for all A ∈ Qs(Gs)
for which λ ∈ Λ(A). Along the way, a signed network
with dynamics (1) which is defined on a signed graph
Gs = (V,E, Ps) is strongly structurally controllable if every
λ ∈ Λ(A) (for all A ∈ Qs(Gs)) is controllable. With a
slight abuse of notation, in this case, we say that (Gs, VC) is
controllable. Also, given a graph G = (V,E, P ), we say that
(G,VC) is controllable if every λ ∈ Λ(A) (for all A ∈ Q(G))
is controllable.

Our focus is on the combinatorial characterizations of
strong structural controllability of positive, negative, and zero
eigenvalues of a network, and then we provide a sufficient
condition for strong structural controllability of signed net-
works whose sign patterns admits only real eigenvalues [25].

III. ZERO FORCING GAMES

In this section, we first review the classical coloring rule
and zero forcing sets for a graph G [27]. Then the notions
of signing and coloring rule and signed zero forcing sets
introduced in [24] are presented. Finally, the new notions of
positive and negative signed zero forcing sets are discussed.
The following definitions can be utilized for undirected
graphs by interpreting out-neighbors simply as neighbors.

A. Classical Zero Forcing Sets

Consider a graph G = (V,E, P ), and assume that some
of its nodes are black, while the other nodes are white. The
classical coloring rule is defined as follows.

Classical coloring rule: Let v ∈ V be either white with
Pvv 6=? or black. If v has only one white out-neighbor u,
change the color of u to black.

Next, we define classical and strong zero forcing sets.
Definition 1: Assume that Z ⊂ V is the set of initially

black nodes in the graph G = (V,E, P ). The set Z is a
classical zero forcing set of G if by repetitively applying the
classical coloring rule in G, all the nodes become black.

Definition 2: Consider the looped graph G× =
(V,E, P×) associated with the graph G = (V,E, P ).
We refer to a set Z ⊂ V as a strong zero forcing set of G
if by repetitively applying the classical coloring rule in G×,
all of its nodes become black.

Example 2: Consider the graph G in Fig. 3 (a) with the
initial set of black nodes Z = {2, 4, 5}. First, node 2 forces
its only one white out-neighbor node 3 to be black, and then
node 1 is forced by node 3 to be black. Since all nodes can
be finally black through the successive application of the
classical coloring rule, Z is a classical zero forcing set of G.
In addition, the looped graph G× of the graph G in Fig. 4
(a) is depicted in Fig. 4 (b). By performing the same chain
of forces, one can see that Z is a classical zero forcing set
of G×, or equivalently, it is a strong zero forcing set of G.

Fig. 3. An example for the classical coloring rule.

Fig. 4. a) Graph G, b) the associated looped graph G×.

B. Signed Zero Forcing Sets

Signed zero forcing game is indeed a signing and coloring
game played on the nodes of a signed graph. In the first part
of this game, we assume that some nodes of the signed graph
Gs = (V,E, Ps) are colored black, and others are white.
Recall that a signed graph is a graph whose edges are labeled
with the positive or negative sign. By doing this game, we
aim to also assign the nodes of the graph a sign. For a node
u ∈ V , let m(u) denote its sign. If a node is assigned zero,
its color is changed to black. Otherwise, if u is white and is
marked with + or −, we have m(u) = + or m(u) = −. If



a node is not marked, and its sign is undetermined, then we
write m(u) = ∗. Thus, the goal of the game is to blacken
the nodes and find the sign of white nodes when possible.

Note that before starting the game, we only have some
black nodes in the graph, and none of the nodes are marked
with a sign. In this step, we can simply take one white node
and mark it with + and proceed based on the coloring rule.

Before stating the game rule, let us introduce some new
notation. The letter s is an index taking values from {+,−}.
If s = +, inv(s) = −, and vice versa. For a node v ∈ V ,
let W (v) = {u ∈ Nout(v) : u is white}. Then, W (v) is
the set of all white out-neighbors of the node v. Now, define
W+(v) = {u ∈ W (v) : m(u) = (Ps)uv} and W−(v) =
{u ∈ W (v) : m(u) = inv((Ps)uv)}. Accordingly, W+(v)
(resp., W−(v)) is the set of any white out-neighbor of the
node v which is marked, and its sign is the same as (resp.,
the opposite of) the sign of the edge connecting v to it. Also,
let W∗(v) = {u ∈ W (v) : m(u) = ∗}. Then, W∗(v) is the
set of white out-neighbors of v that has not yet been marked.

Now, consider a signed graph Gs with all nodes colored
either black or white, and some node of Gs may be marked
with + or −. The rule of the game is stated as follows.

Signing and coloring rule: Let v ∈ V be either a black
node or a white node with (Ps)vv 6=? (then if v is white, it
has either no self-loops or a self-loop labeled with + or −).

1) If v has exactly one white out-neighbor u (i.e. W (v) =
{u}), then the color of u is changed to black (note that
u and v may be the same).

2) If either W+(v) = W (v) or W−(v) = W (v), then all
nodes in W (v) become black.

3) If all white out-neighbors of v except one node w are
marked such that Ws(v) 6= ∅, Winv(s)(v) = ∅, and
W∗(v) = {w}, then the unmarked node w is marked
with Pwv.inv(s).

4) If there is no white node in Gs that is marked, and
u ∈ V is white, then u is marked with +.

Note that the first clause of the rule is the same as the
classical coloring rule.

In what follows, for a signed graph, the definitions of a
signed zero forcing set, a positive signed zero forcing set,
and a negative signed zero forcing set are proposed.

Definition 3: Let Z ⊂ V be a set of initially black nodes
in the signed graph Gs. Apply the signing and coloring rules
as many times as possible. The derived set of colored nodes
of Z, denoted by Dc(Z), is defined as the final set of black
nodes in Gs. Also, the derived set of marked nodes Dm(Z) is
the set of any node v with m(v) = +or− at the termination
of the game. For an initial set of black nodes Z, if Dc(Z) =
V , then Z is called a signed zero forcing set of Gs.

Definition 4: For a signed graph Gs = (V,E, Ps), con-
sider the negative (resp., positive) looped graph G−s =
(V,E, P−s ) (resp., G+

s = (V,E, P+
s )), and let Z ⊂ V be

the set of initially black nodes. Now, perform the signing
and coloring rule in G−s (resp., G+

s ) as many times as
possible. The set of all nodes of Gs that eventually become
black in G−s (resp., G+

s ) at the final stage of the game is
called the positive (resp., negative) derived set of colored

nodes of Z and is denoted by D+
c (Z) (resp., D−c (Z)). Also,

we denote the set of marked nodes at the termination of
the game by D+

m(Z) (resp., D−m(Z)) and refer to it as the
positive (resp., negative) derived set of marked nodes of Z.
Now, given an initial set of black nodes Z, if D+

c (Z) = V
(resp., D−c (Z) = V ), Z is called a positive signed zero
forcing set (resp., negative signed zero forcing set) of Gs.
The cardinality of a positive (resp., negative) signed zero
forcing set of Gs is called the positive (resp., negative) signed
zero forcing number, and is denoted by Z+

s (resp., Z−s ).
Example 3: Consider the signed graph Gs shown in Fig.

5 (a) where the nodes 4 and 5 are initially colored black.
The different steps of applying the signing and coloring rule
are shown in this figure. As shown in Fig. 5 (b), the 4th
clause of the rule is applied, and node 1 is marked with +.
Then, in Fig. 5 (c), we apply the 3rd clause of the rule for
node 4 and mark its unmarked out-neighbor (node 2) with
−. Next, the 2nd clause of the rule is performed for node
5, forcing nodes 1 and 2 to become black. Finally, the 1st
clause of the rule is applied for node 2, and it forces its white
out-neighbor to be black. Thus, since all nodes of the graph
are finally black, the set {4, 5} is a signed zero forcing set
of Gs. Moreover, in Figs. 6 (a) and (b), the negative looped

Fig. 5. An example of the signing and coloring rule.

graph G−s and the positive looped graph G+
s are respectively

shown and through the application of a similar sequence of
clauses of signing and coloring rule, we see that set {4, 5}
is a signed zero forcing set of G−s and G+

s , and thus it is
both a positive and a negative signed zero forcing set of Gs.

Fig. 6. a) Negative looped graph G−s , b) positive looped graph G+
s

(associated with Gs in Fig. 5).

IV. STRONG STRUCTURAL CONTROLLABILITY

In this section, we derive combinatorial conditions, ensur-
ing strong structural controllability of a signed network.



The next theorem provides a necessary and sufficient
condition for controllability of (G,VC) in terms of classical
zero forcing sets, where G = (V,E, P ).

Theorem 1 ([10]): Given a network with dynamics (1),
defined on the graph G, (G,VC) is controllable if and only
if VC is both a classical and a strong zero forcing set of G.

Example 4: For a network with dynamics (1) with the
graph G in Fig. 3 (a), if VC = {2, 4, 5}, (G,VC) is
controllable, since we have shown that VC is both a classical
and a strong zero forcing set of G. Note that set V ′C = {4, 5}
cannot render the network strongly structurally controllable.
This is due to the fact that although V ′C is a classical zero
forcing set of G, it is not a strong zero forcing set. Indeed, for
this network, the minimum number of control nodes ensuring
the controllability of (G,VC) is 3.

Now, we consider a signed network and characterize the
controllability of its positive, negative, and zero eigenvalues
in terms of the corresponding signed zero forcing sets.
However, for the sake of brevity, we prove the results only
for the positive eigenvalues; the proofs for the other cases
are analogous.

Lemma 1: Let Gs be a signed graph with a set of initially
black nodes Z . Let A ∈ Qs(Gs), and ν ∈ Rn be a left
eigenvector of A associated with λ > 0. If νi = 0 for all
i ∈ Z, then νi = 0 for all i ∈ D+

c (Z). Moreover, if for some
nodes i ∈ D+

m(Z) with νi 6= 0, one has m(i) = sign(νi),
then for any k ∈ D+

m(Z) with νk 6= 0, m(k) = sign(νk).
Proof. Assume that the signed zero forcing game on the

graph G+
s can be performed in K step, at which only one of

the clauses of the signing and coloring rule can be applied.
In the first step, the nodes of Z are colored black. Let Cj and
Mj be respectively, the set of black nodes and marked nodes
after the step j. Assume that νZ = 0. Note that for j = 1,
Cj = Z and Mj = ∅. Also, CK = D+

c (Z) and MK =
D+

m(Z). We claim that the theorem is not only true for CK

and MK , but also for any Cj and Mj that 1 ≤ j ≤ K. The
proof follows by a strong induction on j. It is clear that for
j = 1, the claim is true. Now, assuming that the result holds
for some j ≥ 1, let us show its validity for j + 1. Consider
the ith column of the matrix equation νTA = λνT , that is,∑

k∈Nout(i)
νkAki = λνi. This equation implies that

νi(Aii − λ) +
∑

k∈Nout(i)\{i}

νkAki = 0, (3)

where λ > 0. Thus, if sign(Aii) ≤ 0, we have sign(Aii −
λ) ≤ 0, and otherwise sign(Aii−λ) can be positive, negative,
or zero. Then, it can be represented in the graph by a self-
loop for node i labeled with − or ?. Accordingly, we assume
that for any node v ∈ V , v ∈ Nout(v). Then, the matrix A
is replaced with a matrix A+ ∈ P+

s . Now, assume that the
first clause is applied in step j + 1. In other words, there
is a node v for which (Ps)vv 6=? if it is white, and it has
only one white out-neighbor u. Then, Cj+1 = Cj ∪ {u}.
Also, equation (3) leads to νuA

+
uv = 0, and as such, we

have νu = 0, which shows the validity of the claim in this
case. Regarding the 4th clause of the rule, note that when no
white node is marked, we can arbitrarily mark some white

node u with +; this follows from the fact that ν and −ν
are both the eigenvectors, and any of which can be chosen
in this case. For the 2nd clause of the rule, equation (3)
simplifies to

∑
u∈W+(v) νuA

+
uv = 0. Now, analogous to the

proof of Theorem 3.2 in [24], we claim that all summands
on the right hand side of this equation have the same sign.
Indeed, based on the definition, for all u ∈ W+(v), we
have m(u)A+

uv > 0. Moreover, according to the hypothesis
of induction and without loss of generality, let us assume
that for any u ∈ W+(v), m(u) = sign(νu). Then, the
claim immediately follows. Now, consider the case when
the 3rd clause is applied. Equation (3) in this case leads
to
∑

u∈Ws(v) νuA
+
uv + νwA

+
wv = 0. Similar to the second

case, we can prove that all summands of
∑

u∈Ws(v) νuA
+
uv

have the same sign. Without loss of generality, assume that
for all i ∈ Ws(v), m(i) = sign(νi). Based on equation (3),
we should have sign(νw) = Pwvinv(s). Moreover, based on
the 3rd clause of the rule, m(w) = Pwvinv(s), and hence
we have m(w) = sign(νw). Hence, the claim remains valid
in this case, completing the proof. �

The next theorem is one of the main results of the
paper, providing a sufficient condition for strong structural
controllability of positive (resp., negative/zero) eigenvalues
of a signed network.

Theorem 2: In an LTI network with a signed graph Gs,
every positive (resp., negative/zero) eigenvalue of all A ∈
Qs(Gs) is controllable if VC is a positive signed zero
forcing set (resp., negative signed zero forcing set/signed
zero forcing set) of Gs.

Proof. We only provide the proof for controllability of
positive eigenvalues for brevity. Suppose VC is a positive
signed zero forcing set of Gs, but there is some A ∈ Ps(Gs)
with an uncontrollable positive eigenvalue λ. Then, there is
a nonzero left eigenvector ν associated with λ > 0 such that
νTB = 0, or equivalently, νi = 0, for all i ∈ VC . Since
D+

c (VC) = V , from Lemma 1, we have ν = 0; which is a
contradiction. �

The next example is mentioned in [20].
Example 5: Consider a signed network with dynamics (1)

with the signed graph Gs in Fig. 5 (a), and let VC = {4, 5}.
Since VC is a signed, a positive signed, and a negative signed
zero forcing set of Gs, then based on Theorem 2, zero,
positive, and negative eigenvalues of the network are strongly
structurally controllable.

Theorem 2 leads to the next result, a sufficient condition
for strong structural controllability of signed networks.

Theorem 3: Consider an LTI network with a signed graph
Gs whose sign pattern admits only real eigenvalues. Then,
(Gs, VC) is controllable if VC is a signed, a positive signed,
and a negative signed zero forcing set of Gs.

Example 6: For the undirected network shown in Fig.
7(a), one can verify that VC is a signed, positive signed,
and negative signed zero forcing set of the graph; as such
based on Theorem 3, we can deduce that the signed network
is strongly structurally controllable. To demonstrate that VC
is a signed zero forcing set, the steps of the signing and
coloring rule are shown in Fig. 7.



Fig. 7. An example of the signing and coloring rule.

In [24], an upper bound on the maximum nullity of
matrices with a symmetric sign pattern has been obtained.
In the same direction, by using the notions of positive and
negative signed zero forcing sets, we can provide an upper
bound on the maximum geometric multiplicity of positive
and negative eigenvalues of matrices with the same sign
pattern. Let Λ+(A) (resp., Λ−(A)) denote the set of positive
(resp., negative) eigenvalues of the matrix A.

Proposition 2: Consider a signed graph Gs = (V,E, Ps)
with the positive (resp., negative) signed zero forcing number
Z+

s (resp., Z−s ). Then, for all A ∈ Qs(Gs), we have
ΨΛ+(A)(A) ≤ Z+

s (resp., ΨΛ−(A)(A) ≤ Z−s ).
Proof: Here we state the proof for positive eigenvalues

only. Assume that for some λ > 0, ψA(λ) = k. Then, similar
to the proof of Proposition 2.2 of [22], we can say that for
every subset of nodes X whose cardinality is k − 1, there
exists a nonzero ν ∈ SA(λ) = {ν ∈ Rn|νTA = λνT }
such that νi = 0, for every i ∈ X . Now, suppose that there
exists a positive eigenvalue β of some A ∈ Qs(G) such
that ψA(β) > Z+

s . Let Z be a positive signed zero forcing
set of Gs with the cardinality Z+

s . Then, there is a nonzero
eigenvector ν ∈ SA(β) for which we have νi = 0, for all
i ∈ Z. Additionally, we know from Lemma 1 that with the
positive signed zero forcing set Z, if νZ = 0, then ν = 0,
as D+

c (Z) = V . Thus, we reach a contradiction. �

V. CONCLUSION

Strong structural controllability of positive, negative and
zero eigenvalues of LTI systems defined on the same signed
graphs has been examined in this work. We introduced the
notions of positive and negative signed zero forcing sets;
these notions can be used to provide a set of control nodes
for ensuring strong structural controllability of positive and
negative eigenvalues of signed networks. Moreover, we have
shown that a signed zero forcing set, as a set of control nodes,
renders the zero eigenvalues strongly structurally control-
lable. Finally, an upper bound on the maximum multiplicity
of the positive and negative eigenvalues of matrices with the
same sign pattern has been presented.
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