
1

Totally Asynchronous Distributed Quadratic Programming with

Independent Stepsizes and Regularizations

Matthew Ubl? and Matthew T. Hale?

Abstract

Quadratic programs arise in robotics, communications, smart grids, and many other applications. As these

problems grow in size, finding solutions becomes much more computationally demanding, and new algorithms are

needed to efficiently solve them. Targeting large-scale problems, we develop a multi-agent quadratic programming

framework in which each agent updates only a small number of the total decision variables in a problem. Agents

communicate their updated values to each other, though we do not impose any restrictions on the timing with

which they do so, nor on the delays in these transmissions. Furthermore, we allow weak parametric coupling among

agents, in the sense that they are free to independently choose their stepsizes, subject to mild restrictions. We

show that these stepsize restrictions depend upon a problem’s condition number. We further provide the means for

agents to independently regularize the problem they solve, thereby improving condition numbers and, as we will

show, convergence properties, while preserving agents’ independence in selecting parameters. Simulation results are

provided to demonstrate the success of this framework on a practical quadratic program.

I. INTRODUCTION

Convex optimization problems arise in a diverse array of engineering applications, including signal processing [1],

robotics [2], [3], communications [4], machine learning [5], and many others [6]. In all of these areas, problems can

become very large as the number of network members (robots, processors, etc.) becomes large. Accordingly, there

has arisen interest in solving large-scale optimization problems. A common feature of large-scale solvers is that

they are parallelized or distributed among a collection of agents in some way. As the number of agents grows, it

can be difficult or impossible to ensure synchrony among distributed computations and communications, and there

has therefore arisen interest in distributed asynchronous optimization algorithms.

One line of research considers asynchronous optimization algorithms in which agents’ communication topologies

vary in time. A representative sample of this work includes [7]–[12], and these algorithms all rely on an underlying

averaging-based update law, i.e., different agents update the same decision variables and then repeatedly average

their iterates to mitigate disagreements that stem from asynchrony. These approaches (and others in the literature)

require some form of graph connectivity over intervals of a finite length. In this paper, we are interested in cases

in which delay bounds are outside agents’ control, e.g., due to environmental hazards and adversarial jamming

?Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA. Emails:

{m.ubl,matthewhale}@ufl.edu

March 21, 2019 DRAFT

ar
X

iv
:1

90
3.

08
61

8v
1

 [
m

at
h.

O
C

]
 2

0
M

ar
 2

01
9

2

for a team of mobile autonomous agents. In these settings, verifying graph connectivity can be difficult for single

agents to do, and it may not be possible to even check that connectivity assumptions are satisfied. Furthermore,

even if such checking is possible, it will be difficult to reliably attain connectivity with unreliable and impaired

communications. These challenges can cause existing approaches to perform poorly or fail outright. For multi-agent

systems with impaired communications, we are interested in developing an algorithmic framework that succeeds

without requiring any delay bound assumptions.

In this paper, we develop a totally asynchronous quadratic programming (QP) framework for multi-agent opti-

mization. Our interest in quadratic programming is motivated by problems in robotics [3] and data science [13],

where some standard problems can be formalized as QPs. The “totally asynchronous” label originates in [14], and

it describes a class of algorithms which tolerate arbitrarily long delays, which our framework will do. In addition,

our developments will use block-based update laws in which each agent updates only a small subset of the decision

variables in a problem, which reduces each agent’s computational burden and, as we will show, reduces its onboard

storage requirements as well. Both of these properties help enable the solution of large-scale problems.

Other work on distributed quadratic programming includes [15]–[20]. Our work differs from these existing results

because we consider non-separable objective functions, and because we consider unstructured update laws (i.e., we

do not require communications and computations to occur in a particular sequence or pattern). Furthermore, we

consider only deterministic problems, and our framework converges exactly to a problem’s solution, while some

existing works consider stochastic problems and converge approximately.

Asynchrony in agents’ communications and computations implies that they will send and receive different

information at different times. As a result, they will disagree about the values of decision variables in a problem.

Just as it is difficult for agents to agree on this information, it can also be difficult to agree on a stepsize value in

their algorithms. One could envision a network of agents solving an agreement problem, e.g., [21], to compute a

common stepsize, though we instead allow agents to independently choose stepsizes, subject to mild restrictions,

thereby eliminating the need to reach agreement before optimizing.

It has been shown that regularizing problems can endow them with an inherent robustness to asynchrony and

improved convergence properties, e.g., [22]–[24]. Although regularizing is not required here, we show, in a precise

sense, that regularizing improves convergence properties of our framework as well. It is common for regularization-

based approaches to require agents to use the same regularization parameter, though this is undesirable for the same

reasons as using a common stepsize. Therefore, we allow agents to independently choose regularization parameters

as well.

To the best of our knowledge, few works have considered both independent stepsizes and regularizations. The

most relevant is [22], which considers primal-dual algorithms for constrained problems and synchronous primal

updates. This paper is different in that we consider unconstrained problems with totally asynchronous updates.

Regularizing of course introduces errors in a solution, and we bound these errors in terms of agents’ regularization

parameters. The end result is a totally asynchronous quadratic programming framework in which communication

delays can be unbounded, and in which agents independently choose all stepsize and regularization parameters.

March 21, 2019 DRAFT

3

The rest of the paper is organized as follows. Section II provides background on QPs and formal problem

statements. Then, Section III proposes an update law to solve the problems of interest, and Section IV proves

its convergence. Next, Section V shows that independent regularizations lead to better-conditioned problems, and

Section VI provides error bounds in terms of agents’ regularizations; Section VII provides several corollaries and

special cases for these bounds. After that, Section VIII provides simulation results, and Section IX concludes the

paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we describe the quadratic optimization problems to be solved, as well as the assumptions imposed

upon these problems and the agents that solve them. We then describe agents’ stepsizes and regularizations and

introduce the need to allow agents to choose these parameters independently. We next describe the benefits of

independent regularizations, and give two formal problem statements that will be the focus of the remainder of the

paper.

We consider a quadratic optimization problem distributed across a network of N agents, where agents are indexed

over i ∈ [N] := {1, ..., N}. Agent i has a decision variable xi ∈ Rni , ni ∈ N, which we refer to as its state, and

we allow for ni 6= nj if i 6= j. The state xi is subject to the set constraint xi ∈ Xi ⊂ Rni , and we make the

following assumption about each Xi.

Assumption 1: For all i ∈ [N], the set Xi ⊂ Rni is non-empty, compact, and convex. 4

We define the network-level constraint set X := X1 × · · · ×XN , and Assumption 1 implies that X is non-empty,

compact, and convex. We further define the global state as x :=
(
xT1 , ..., x

T
N

)T ∈ X ⊂ Rn, where n =
∑
i∈[N] ni.

We consider quadratic objectives

f(x) :=
1

2
xTQx+ rTx,

where Q ∈ Rn×n and r ∈ Rn. We then make the following assumption about f .

Assumption 2: In f , Q = QT � 0. 4

Because Q is positive definite, f is strongly convex, and because f is quadratic, it is twice continuously

differentiable, which we indicate by writing that f is C2. In addition, ∇f = Qx+ r, and ∇f is therefore Lipschitz

with constant ‖Q‖2. In this paper, we divide n × n matrices into blocks. Given a matrix B ∈ Rn×n, where

n =
∑N
i=1 ni, the ith block of B, denoted B[i], is the ni×n matrix formed by rows of B with indices

∑i−1
k=1 nk+1

through
∑i
k=1 nk. In other words, B[1] is the first n1 rows of B, B[2] is the next n2 rows, etc. Similarly, for a

vector b, b[1] is the first n1 entries of b, b[2] is the next n2 entries, etc. Using this notion of a matrix block, we

define ∇if := ∂f
∂xi

, and we see that ∇if(x) = Q[i]x+ r[i].

Following our goal of reducing parametric coupling between agents, we wish to allow agents to select stepsizes

independently. Allowing independent stepsizes will preclude the need for agents to agree on a single value before

optimizing, which gives agents a degree of freedom in their update laws and eliminates the need to solve an

agreement problem before optimizing. Bearing this in mind, we state the following problem, which will be one

focus of the remainder of the paper.

March 21, 2019 DRAFT

4

Problem 1: Design a totally asynchronous distributed optimization algorithm to solve

minimize
x∈X

1

2
xTQx+ rTx,

where only agent i updates xi, and where agents choose stepsizes independently. 4

While an algorithm that satisfies the conditions stated in Problem 1 is sufficient to find a solution, there are

additional characteristics of f that can be considered, namely kQ, the spectral condition number of Q. For a matrix

Q satisfying Assumption 2, with eigenvalues λ1(Q) ≥ λ2(Q) ≥ ... ≥ λn(Q), kQ is defined as kQ := λ1(Q)
λn(Q) . In

standard centralized quadratic programming analyses, we find that kQ plays a vital role in determining convergence

rates. In particular, a problem with a large kQ is described as “ill-conditioned,” and it will converge slower than a

similar problem with a small kQ. We will find that this is indeed the case in Problem 1 as well. Additionally, as

will be shown below, kQ restricts agents’ choices of stepsizes. Therefore, a reduction in kQ will lead to a wider

range of stepsize choices for agents, in addition to faster convergence.

Regularizations are commonly used for centralized quadratic programs to improve kQ (i.e., to reduce it), and we

will therefore use them here. However, in keeping with the independence of agents’ parameters, we wish to allow

agents to choose independent regularization parameters as well. In particular, we should allow agent i to use use

the regularization parameter αi > 0, while allowing αi 6= αj for i 6= j. The regularized form of f , denoted fA, is

fA(x) := f(x) +
1

2
xTAx =

1

2
xT (Q+A)x+ rTx,

where A = diag (α1In1 , ..., αNInN
), and where Ini is the ni×ni identity matrix. Note that ∇ifA = Q[i]x+ r[i] +

αixi, where we see that only αi affects agent i’s updates.

With the goal of independent regularizations in mind, we now state the second problem that we will solve.

Problem 2: Design a totally asynchronous distributed optimization algorithm to solve

minimize
x∈X

1

2
xT (Q+A)x+ rTx,

where only agent i updates xi, and where agents independently choose their stepsizes and regularizations. 4

Section III specifies the structure of the asynchronous communications and computations used to solve Problem

1, and we will solve Problem 1 in Section IV. Afterwards, we will solve Problem 2 in Section V.

III. BLOCK-BASED MULTI-AGENT UPDATE LAW

To define the exact update law for each agent’s state, we must first describe the information stored onboard each

agent and how agents communicate with each other. Each agent will store a vector containing its own state and

that of every agent it communicates with. Formally, we will denote agent i’s full vector of states by xi, and this is

agent i’s local copy of the global state. Agent i’s own states in this vector are denoted by xii. The current values

stored onboard agent i for agent j’s states are denoted by xij . In the forthcoming update law, agent i will only

compute updates for xii, and it will share only xii with other agents when communicating. Agent i will only change

the value of xij when agent j sends its own state to agent i.

March 21, 2019 DRAFT

5

At time k, agent i’s full state vector is denoted xi(k), with its own states denoted xii(k) and those of agent j

denoted xij(k). At any timestep, agent i may or may not update its states due to asynchrony in agents’ computations.

As a result, we will in general have xi(k) 6= xj(k) at all times k. We define the set Ki to contain all times k at

which agent i updates xii; agent i does not compute an update for time indices k /∈ Ki. In designing an update law,

we must provide robustness to asynchrony while allowing computations to be performed in a distributed fashion.

First-order gradient descent methods are robust to many disturbances, and we therefore propose the following update

law:

xii(k + 1) =

x
i
i(k)− γi

(
Q[i]xi(k) + r[i]

)
k ∈ Ki

xii(k) k /∈ Ki

,

where agent i uses some stepsize γi > 0. This is equivalent to agent i using using the gradient descent law

xii(k + 1) = xii(k)− γi∇if
(
xi(k)

)
when it updates. The advantage of the block-based update law can be seen

above, as agent i only needs to know Q[i] and r[i]. Requiring each agent to store the entirety of Q and r would

require O(n2) storage space, while Q[i] and r[i] only require O(n). For large quadratic programs, this block-based

update law dramatically reduces each agent’s onboard storage requirements.

In order to account for communication delays, we use τ ij(k) to denote the time at which the value of xij(k)

was originally computed by agent j. For example, if agent j computes a state update at time ka and immediately

transmits it to agent i, then agent i may receive this state update at time kb > ka due to communication delays.

Then τ ij is defined so that τ ij(kb) = ka, which relates the time of receipt by agent i to the time at which agent j

originally computed the piece of data being sent. For Ki and τ ij , we assume the following.

Assumption 3: For all i ∈ [N], the set Ki is infinite. Moreover, for all i ∈ [N] and j ∈ [N]\{i}, if {kd}d∈N is

a sequence in Ki tending to infinity, then

lim
d→∞

τ ij(kd) =∞. 4

Assumption 3 is simply a formalization of the requirement that no agent ever permanently stop updating and sharing

its own state with any other agent. For i 6= j, the sets Ki and Kj do not need to have any relationship because

agents’ updates are asynchronous. Our proposed update law for all agents can then be written as follows.

Algorithm 1: For all i ∈ [N] and j ∈ [N]\{i}, execute

xii(k + 1) =

x
i
i(k)− γi

(
Q[i]xi(k) + r[i]

)
k ∈ Ki

xii(k) k /∈ Ki

xij(k + 1) =

x
j
j

(
τ ij(k + 1)

)
i receives j’s state at k+1

xij(k) otherwise �

In Algorithm 1 we see that xij changes only when agent i receives a transmission directly from agent j; otherwise

it remains constant. This implies that agent i can update its own state using an old value of agent j’s state multiple

times and can reuse different agents’ states different numbers of times. Showing convergence of this update law

March 21, 2019 DRAFT

6

must account for these delays, in addition to providing stepsize bounds for each agent, and that is the subject of

the next section.

IV. CONVERGENCE OF ASYNCHRONOUS OPTIMIZATION

In this section, we prove convergence of the multi-agent block update law in Algorithm 1. This will be shown

using a block-maximum norm to measure convergence, along with a collection of nested sets to show Lyapunov-like

convergence. We will derive stepsize bounds from these concepts that will be used to show asymptotic convergence

of all agents.

A. Block-Maximum Norms

The convergence of Algorithm 1 will be measured using a block-maximum norm as in [25], [14], and [24].

We do this to permit agents to use independent normalizations in Problem 1 to weight different components of x

differently when estimating convergence to an optimum. Below, we refer to xii as the ith block of xi and xij as

the jth block of xi. We next define the block-maximum norm that will be used to measure convergence.

Definition 1: Let x ∈ Rn consist of N blocks, with xi ∈ Rni being the ith block. The ith block is weighted by

some normalization constant ωi ≥ 1 and is measured in the pi-norm for some pi ∈ [1,∞]. The norm of the full

vector x is defined as the maximum norm of any single block, i.e.,

‖x‖max := max
i∈[N]

‖xi‖pi
ωi

. N

The following lemma allows us to upper-bound the induced block-maximum matrix norm by the Euclidean matrix

norm, which will be used below in our convergence analysis.

Lemma 1: Suppose for all i ∈ [N] that agent i uses the weight ωi ≥ 1 and pi-norm, pi ∈ [1,∞], in the above

block-maximum norm. Let pmin := mini∈[N] pi and let ωmin := mini∈[N] ωi. Then for all B ∈ Rn×n,

‖B‖max ≤

n
(p−1

min−
1
2)ω−1

min‖B‖2 pmin < 2

ω−1
min‖B‖2 pmin ≥ 2

.

Proof: See Lemma 1 in [26]. �

B. Convergence Via Lyapunov Sub-Level Sets

We will now analyze the convergence of Algorithm 1 when agents are communicating asynchronously. In order

to show convergence, we construct a sequence of sets, {X(s)}s∈N, based on work in [25] and [14]. These sets

behave analogously to sub-level sets of a Lyapunov function, and they will enable an invariance type argument in

our convergence proof. Below, we use x̂ := arg minx∈X f(x) for the minimizer of f . For simplicity, we assume

that x̂ is in the interior of X , though all of our results hold without modification if a projection onto Xi is added to

agent i’s update in Algorithm 1, and that is the only change required if x̂ is not in the interior of X . We state the

following assumption on these sets, and below we will construct a sequence of sets that satisfies this assumption.

Assumption 4: There exists a collection of sets {X(s)}s∈N that satisfies:

March 21, 2019 DRAFT

7

1) ... ⊂ X(s+ 1) ⊂ X(s) ⊂ ... ⊂ X

2) lims→∞X(s) = {x̂}

3) There exists Xi(s) ⊂ Xi for all i ∈ [N] and s ∈ N such that X(s) = X1(s)× ...×XN (s)

4) θi(y) ∈ Xi(s+ 1), where θi(y) := yi − γi∇if(y) for all y ∈ X(s) and i ∈ [N]. 4

Assumptions 4.1 and 4.2 jointly guarantee that the collection {X(s)}s∈N is nested and that they converge to a

singleton containing x̂. Assumption 4.3 allows for the blocks of x to be updated independently by the agents, which

allows for decoupled update laws. Assumption 4.4 ensures that state updates make only forward progress toward

x̂, which ensures that each set is forward-invariant in time. It is shown in [25] and [14] that the existence of such

a sequence of sets implies asymptotic convergence of the asynchronous update law in Algorithm 1. We therefore

use this strategy to show asymptotic convergence in this paper. We propose to use the construction

X(s) = {y ∈ X : ‖y − x̂‖max ≤ qsnDo} , (1)

where we define Do := maxi∈[N] ‖xi(0)− x̂‖max, which is the block furthest from x̂ onboard any agent at timestep

zero, and where we define the constant

q = ‖I − ΓQ‖2,

with Γ = diag (γ1In1 , ..., γNInN
). We will use the fact that each update contracts towards x̂ by a factor of q, and

the following theorem will establish bounds on every γi that imply q ∈ (0, 1). This result will be used to show

convergence of Algorithm 1 through satisfaction of Assumption 4.

Theorem 1: Let Q = QT � 0, Q ∈ Rn×n, have condition number kQ, and let Γ = diag (γ1In1 , ..., γNInN
). If

γi ∈

(√
kQ − 1

||Q||2
√
kQ

,

√
kQ + 1

||Q||2
√
kQ

)
for all i ∈ [N], (2)

then ||I − ΓQ||2 < 1.

Proof: To avoid interrupting the flow of the paper, proof of Theorem 1 can be found in the appendix. �

In Theorem 1, we note that any choice of γlower and γupper that satisfies

1

2γupper‖Q‖2

(
(
√
kQ+1)2√
kQ

− γupper
γlower

(
√
kQ−1)2√
kQ

)
>1 (3)

defines a valid interval of step sizes to ensure ‖I−ΓQ‖2 < 1. While the algebra is omitted here, it can be shown that

the range defined in Theorem 1 is the largest of these intervals. Note also that due to the structure of Equation (3),

if the exact values of kQ and ‖Q‖2 are unavailable or difficult to compute, then they can be replaced in Equation (2)

by upper bounds. These could include using Gershgorin’s Circle Theorem or the trace of Q to bound ‖Q‖2 and

using results such as in [27] to bound kQ.

Letting γi ∈
(√

kQ−1

‖Q‖2
√
kQ
,

√
kQ+1

‖Q‖2
√
kQ

)
for all i ∈ [N] and recalling our construction of sets {X(s)}s∈N as

X(s) = {y ∈ X : ‖y − x̂‖max ≤ qsnDo} ,

we next show that Assumption 4 is satisfied, thereby ensuring convergence of Algorithm 1.

March 21, 2019 DRAFT

8

Theorem 2: If Γ satisfies the conditions in Theorem 1, then the collection of sets {X(s)}s∈N as defined in

Equation (1) satisfies Assumption 4.

Proof: For Assumption 4.1, by definition we have

X(s+ 1) =
{
y ∈ X : ‖y − x̂‖max ≤ qs+1nDo

}
.

Since q ∈ (0, 1), we have qs+1 < qs, which results in ‖y − x̂‖max ≤ qs+1nDo < qsnDo. Then y ∈ X(s + 1)

implies y ∈ X(s) and X(s+ 1) ⊂ X(s) ⊂ X , as desired.

For Assumption 4.2 we find

lim
s→∞

X(s) = lim
s→∞

{y ∈ X : ‖y − x̂‖max ≤ qsnDo} = {x̂} .

The structure of the weighted block-maximum norm then allows us to see that ‖y − x̂‖max ≤ qsnDo if and only

if 1
ωi
‖yi − x̂i‖pi ≤ qsnDo for all i ∈ [N]. It then follows that

Xi(s) =

{
yi ∈ Xi :

1

ωi
‖yi − x̂i‖pi ≤ qsnDo

}
,

which gives X(s) = X1(s)× ...×XN (s), thus satisfying Assumption 4.3.

We then see that, for y ∈ X(s),

‖θi(y)− x̂i‖pi
ωi

=
1

ωi

∥∥∥yi − γi (Q[i]y + r[i]
)
− x̂i + γi

(
Q[i]x̂+ r[i]

)∥∥∥
pi
,

which follows from the definition of θi(y) and the fact that ∇if(x̂) = 0. We then find

‖θi(y)− x̂i‖pi
ωi

≤ max
i∈[N]

1

ωi
‖yi − γi

(
Q[i]y + r[i]

)
− x̂i + γi

(
Q[i]x̂+ r[i]

)
‖pi

= ‖y − x̂− Γ (Qy + r) + Γ (Qx̂+ r) ‖max,

which follows from our definition of the block-maximum norm. Continuing, we find

‖θi(y)− x̂i‖pi
ωi

≤ ‖y − x̂− ΓQ (y − x̂) ‖max

≤ ‖I − ΓQ‖max‖y − x̂‖max

≤

n(p

−1
min

− 1
2)

ωmin
‖I − ΓQ‖2‖y − x̂‖max pmin < 2

1
ωmin
‖I − ΓQ‖2‖y − x̂‖max pmin ≥ 2

,

where the last inequality follows from Lemma 1. Seeing that ‖I − ΓQ‖2 = q ∈ (0, 1), and using the hypothesis

March 21, 2019 DRAFT

9

that y ∈ X(s), we find

‖θi(y)− x̂i‖pi
ωi

≤

n(p

−1
min

− 1
2)

ωmin
q‖y − x̂‖max pmin < 2

1
ωmin

q‖y − x̂‖max pmin ≥ 2

≤

n(p

−1
min

− 1
2)

ωmin
qs+1Do pmin < 2

1
ωmin

qs+1Do pmin ≥ 2

≤

q
s+1nDo pmin < 2

qs+1nDo pmin ≥ 2

,

where the bottom case follows from ωmin ≥ 1 and the top case follows from ωmin ≥ 1 and p−1
min − 1

2 < 1 (since

pi ∈ [1,∞] for all i ∈ [N]). Then θi(y) ∈ Xi(s+ 1) and Assumption 4.4 is satisfied. �

Regarding Problem 1, we therefore state the following:

Theorem 3: Algorithm 1 solves Problem 1 and asymptotically converges to x̂.

Proof: Theorem 2 shows the construction of the sets {X(s)}s∈N satisfies Assumption 4, and from [25] and

[14] we see this implies convergence of Algorithm 1 for all i ∈ [N]. The total asynchrony required by Problem 1

is incorporated by not requiring delay bounds, and agents do not require any coordination in selecting stepsizes,

which means that all of the criteria of Problem 1 are satisfied. �

From these requirements, we see that agent i only needs to be initialized with Q[i], r[i], and upper bounds on

‖Q‖2 and kQ, which can be set by a network operator. Agents are then free to choose normalizations and stepsizes

independently, provided stepsizes obey the bounds established in Theorem 1.

V. INDEPENDENTLY REGULARIZED QUADRATIC PROGRAMS

Equation (2) quantifies the relationship between the condition number of Q and agents’ stepsize bounds. For a

perfectly conditioned matrix Q, such as the identity, we have kQ = 1, which implies that stepsizes may be chosen

from the open interval
(

0, 2
‖Q‖2

)
. This is the familiar 2

L bound encountered in conventional gradient descent settings.

As the problem becomes more ill-conditioned and kQ increases, the allowable interval of stepsize choices becomes

narrower in Equation (2). Specifically, as kQ →∞, the set of allowable stepsizes approaches the degenerate interval[
1
‖Q‖2 ,

1
‖Q‖2

]
, implying that all stepsizes must be equal in such a case.

Equation (2) suggests that if the condition number of a quadratic program is reduced, then the interval of allowable

step sizes can be lengthened. In particular, regularizing f can improve kQ to do so. As stated in Problem 2, we want

to allow agents to choose regularization parameters independently. Before we analyze the effects of independently

chosen regularizations on kQ, we must first show that an algorithm that utilizes them will preserve the convergence

properties of Algorithm 1. As shown above, a regularized cost function takes the form

fA(x) :=
1

2
xT (Q+A)x+ rTx,

where Q+A is symmetric positive definite because Q = QT � 0. We now state the following theorem that confirms

that minimizing fA succeeds.

March 21, 2019 DRAFT

10

Theorem 4: Suppose that A � 0 is diagonal with positive diagonal entries. Then Algorithm 1 satisfies the

conditions stated in Problem 2 when fA is minimized.

Proof: Replacing Q with Q + A, all assumptions and conditions used to prove Theorem 3 hold, with the only

modifications being that the network will converge to x̂A := arg minx∈X fA(x), and the agents must now be

initialized with Q[i], r[i], and upper limits on ‖Q+A‖2 and the condition number of Q+A. �

Theorem 4 implies that there must be some known upper bound on ‖Q + A‖2 and the condition number of

Q + A. These bounds can be determined using bounds on agents’ allowable regularization parameters, which we

develop now. First we will establish the following theorem, which demonstrates that independent regularizations

can indeed reduce the condition number of the quadratic program.

Theorem 5: Let there be two n×n matrices Q = QT � 0 and A = diag (α1In1 , ..., αNInN
) � 0 with respective

condition numbers kQ = λ1(Q)
λn(Q) and kA = λ1(A)

λn(A) = αmax

αmin
, where αmax = maxi αi and αmin = mini αi. If

αmax

αmin
< kQ, then kQ+A < kQ.

Proof: Using αmax

αmin
= kA < kQ, we find λ1(A)

λn(A) <
λ1(Q)
λn(Q) . Rearranging, we find λn(Q)λ1(A) < λ1(Q)λn(A).

Adding λ1(Q)λn(Q) to both sides and factoring gives

λn(Q) (λ1(Q) + λ1(A)) < λ1(Q) (λn(Q) + λn(A)) ,

which we rearrange again to find
λ1(Q) + λ1(A)

λn(Q) + λn(A)
<
λ1(Q)

λn(Q)
. (4)

From Weyl’s inequalities, if B and C are n × n Hermitian matrices, then λ1(B + C) ≤ λ1(B) + λ1(C) and

λn(B) + λn(C) ≤ λn(B + C) [28, Fact 5.12.2]. Therefore

λ1(Q+A)

λn(Q+A)
≤ λ1(Q) + λ1(A)

λn(Q) + λn(A)
.

Combining this with Equation (4) completes the proof. �

Since the regularization matrix A is chosen by the agents, it is always possible to have kA < kQ provided kQ > 1.

Of course, we will only regularize such a problem, and thus, for all practical purposes, regularizing improves the

conditioning of our problems as long as kA is better-conditioned than kQ. If we wish to reduce kQ+A such that it

is bounded above by some desired condition number kD, we can bound αmin via

αmin>‖Q‖2
(
k−1
D −k

−1
Q

)
+

ε‖Q‖22
kQkD (‖r‖2kQ−ε‖Q‖2)

, (5)

which works for any kD such that

kD > kQ −
ε‖Q‖2 (kQ − 1)

‖r‖2kQ
.

Theorem 5 suggests that if we want to expand the interval of allowable stepsizes via regularizing, then we should

choose large, homogeneous regularization parameters among agents. However, larger regularizations will lead to

larger errors in the solution to a quadratic program, and the ability to take larger steps must be balanced with

the quality of solution obtained. In the next section, we will quantify the relationship between regularizations and

March 21, 2019 DRAFT

11

error, and develop a set of guidelines to govern agents’ selection of regularization parameters based on desired error

bounds.

VI. REGULARIZATION ERROR BOUND

We see from the structure of the quadratic program that the solution to the unregularized minimization problem

is x̂ = −Q−1r, where Q−1 is well-defined because Q � 0. Similarly, the solution to the regularized minimization

problem is x̂A = −(Q + A)−1r. We therefore define the regularization error when using regularization matrix A

as eA := ‖x̂− x̂A‖2. We now upper bound eA in terms of the entries of A.

Theorem 6: For the agent-specified regularization matrix A = diag (α1In1 , ..., αNInN
), the regularization error

eA := ‖x̂− x̂A‖2 is bounded via

eA ≤
‖r‖2k2

Qαmax

‖Q‖22 + ‖Q‖2kQαmax
, (6)

where αmax := maxi αi.

Proof: By definition, we have

eA = ‖Q−1r − (Q+A)−1r‖2 ≤ ‖Q−1 − (Q+A)−1‖2‖r‖2.

The above inequality can be rewritten using Lemma 2.

Lemma 2: Let Q and A be positive definite matrices. Then

Q−1 − (Q+A)−1 = (QA−1Q+Q)−1.

Proof: From the Woodbury matrix identity,

(B + UCV)−1 = B−1 −B−1U(C−1 + V B−1U)−1V B−1.

Let B = U = C = Q and C = Q−1AQ−1. Then

(Q+A)−1 = Q−1 −Q−1Q(QA−1Q+QQ−1Q)−1QQ−1,

which simplifies to (Q+A)−1 = Q−1 − (QA−1Q+Q)−1. Rearranging completes the lemma. �

Therefore, eA ≤ ‖(QA−1Q+Q)−1‖2‖r‖2 using Lemma 2. Note that QA−1Q+Q is a symmetric positive definite

matrix. For any symmetric positive definite matrix M , we know ‖M−1‖2 = λ1(M−1) = λ−1
n (M). Applying this

to (QA−1Q+Q)−1 gives

eA ≤
‖r‖2

λn(QA−1Q+Q)
.

From Weyl’s Inequalities [28, Fact 5.12.2] we then have

eA ≤
‖r‖2

λn(QA−1Q) + λn(Q)
.

Since QA−1Q is similar to Q2A−1, we know that λn(QA−1Q) = λn(Q2A−1), and since Q2 and A−1 are

both symmetric positive definite, and λn(Q2) = λ2
n(Q), we can say [28, Fact 8.19.18] that λ2

n(Q)λn(A−1) ≤

λn(Q2A−1), which gives

eA ≤
‖r‖2

λ2
n(Q)λn(A−1) + λn(Q)

=
‖r‖2

λ2
n(Q)α−1

max + λn(Q)
=

‖r‖2αmax
λ2
n(Q) + λn(Q)αmax

.

March 21, 2019 DRAFT

12

Substituting in λn(Q) = ‖Q‖2
kQ

completes the proof. �

VII. DISCUSSION OF RESULTS

In this section, we briefly provide some remarks and interpretation of our results. We begin with the following

corollary that follows from Theorem 6.

Corollary 1: As αmax → 0, eA → 0.

It is desirable for an error bound to be sharp in the sense that equality is achieved for at least one point. Corollary 1

shows that this is achieved in Equation (6). This implies zero regularization error when zero regularization is applied,

which establishes Equation (6) as a sharp upper bound.

Corollary 2: As αmax →∞, eA → ‖r‖2kQ
‖Q‖2 .

Another notable behavior of Equation (6) is a finite upper bound on the regularization error, as shown in Corol-

lary 2. To elaborate on this, consider the case where A = αI , where α is a positive scalar. As α → ∞, we see

x̂A = −(Q+A)−1r → 0. That is, very large regularizations move the regularized solution x̂A towards zero. We

also see as α → ∞, eA → ‖Q−1r‖2, since the norm of the error between zero and the unregularized solution is

simply the norm of the unregularized solution itself. The upper bound from Equation (6) as αmax →∞ is due to

the fact that

‖Q−1r‖2 ≤ ‖Q−1‖2‖r‖2 =
‖r‖2kQ
‖Q‖2

.

If there is some desired upper bound ε on the error eA, then an upper bound on αmax can be determined as

αmax <
ε‖Q‖22

‖r‖2k2
Q − ε‖Q‖2kQ

, (7)

which holds as long as ε < ‖r‖2kQ
‖Q‖2 . This bound can be combined with the bound on αmin in Equation (5) to

present agents with an admissible range of regularization parameters, which we do in the next section.

VIII. SIMULATION

In this section, two simulations are run in which a network of agents solves a quadratic program using Algorithm

1. In the first simulation, the problem is unregularized and agents select stepsizes independently from the allowable

set for the problem, and they then asynchronously solve the quadratic program. In the second simulation, a desired

condition number bound and regularization error bound are specified. Agents independently select regularization

parameters to satisfy those requirements. Agents then choose stepsizes independently from the expanded allowable

set, and then asynchronously solve the quadratic program. The desired condition number bound and error bound

conditions are shown to be satisfied, and the convergence histories of the first and second simulations are compared.

The network consists of 25 agents, each with 4 states. The quadratic program is randomly generated with kQ =

100 and ‖Q‖2 = 100. For the first simulation, agents randomly choose stepsizes from the interval (0.009, 0.0110),

which is obtained from Equation (2) and the values of kQ and ‖Q‖2. In the second, we specify the desired condition

number kD = 10 and the upper bound ε = 0.1 on regularization error. Agents then randomly choose regularization

March 21, 2019 DRAFT

13

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The distance to the optimum x̂ for the unregularized problem (shown in the solid blue line) and the regularized problem (shown in

the dashed orange line). The desired regularization error bound ε is shown as the dash-dotted yellow line. We see that the regularized problem

converges substantially faster than the unregularized one. Regularization error is equal to the final value of the dashed orange line, which we

see is indeed below the dash-dotted yellow line, indicating that the desired regularization error is indeed obeyed.

parameters from the interval (11, 20), which follows from Equations (7) and (5). Agents then randomly select

stepsizes from the interval (0.0056, 0.0117), which is obtained as before.

Both simulations were run for 2000 timesteps. To force asynchrony, at each timestep agent i has a 10% chance

of transmitting its state to agent j, and agent i has a 10% chance of computing an update to its own state.

As shown in Figure 1, the regularized problem (dashed orange line) shows notably faster convergence than the

unregularized one (solid blue line). The final error in the regularized solution was eA = 0.0308, well below the

desired upper bound of eA < 0.1, which is shown in Figure 1 by the dash-dotted yellow line. The condition number

of the regularized problem was kQ+A = 8.1836, satisfying our desired condition number bound as well.

IX. CONCLUSION

A totally asynchronous quadratic programming framework was presented. This framework allowed agents to

independently choose all stepsize and regularization parameters and showed fast convergence in simulation. Future

work includes incorporating functional constraints into this framework, as well as implementing this work for path

planning problems in robotic teams.

APPENDIX

Proof of Theorem 1: The following lemmas will facilitate the proof of Theorem 1.

Lemma 3: Let B and C be positive definite n×n Hermitian matrices with eigenvalues λ1(B) ≥ λ2(B) ≥ ... ≥

λn(B) and λ1(C) ≥ λ2(C) ≥ ... ≥ λn(C). Then

λn(BC + CB) ≥ min
β∈{1,n}

[
λβ(B)λβ(C)

2

(
(
√
kB+1)2

√
kB

− kC
(
√
kB−1)2

√
kB

)]
,

March 21, 2019 DRAFT

14

where kB and kC are the spectral condition numbers of B and C, respectively.

Proof: See [29]. �

Lemma 4: Let Q = QT � 0, Q ∈ Rn×n have condition number kQ, and let Γ = diag (γ1In1
, ..., γNInN

). If

γi ∈

(√
kQ − 1

‖Q‖2
√
kQ

,

√
kQ + 1

‖Q‖2
√
kQ

)
for all i ∈ [N],

then Q−1Γ−1 + Γ−1Q−1 − I � 0.

Proof: Let B = Q−1 and C = Γ−1, and note that

kQ−1 =
λ1(Q−1)

λn(Q−1)
=
λ−1
n (Q)

λ−1
1 (Q)

=
λ1(Q)

λn(Q)
= kQ

and likewise kΓ−1 = kΓ. Now, using Lemma 3, we can write

λn(Q−1Γ−1 + Γ−1Q−1) ≥ min
β∈{1,n}

[
λ−1
β (Q)λ−1

β (Γ)

2

(
(
√
kQ + 1)2√
kQ

− kΓ

(
√
kQ − 1)2√
kQ

)]
. (8)

Define the constants

γlower =

√
kQ − 1

‖Q‖2
√
kQ

and γupper =

√
kQ + 1

‖Q‖2
√
kQ

.

Then, by hypothesis, γi ∈ (γlower, γupper) and

kΓ <
γupper
γlower

=

√
kQ + 1√
kQ − 1

.

Substituting this bound into Equation (8). we find

λn(Q−1Γ−1 + Γ−1Q−1) ≥ min
β∈{1,n}

[
λ−1
β (Q)λ−1

β (Γ)

2

(
(
√
kQ + 1)2√
kQ

−
(
√
kQ + 1)

(
√
kQ − 1)

(
√
kQ − 1)2√
kQ

)]

≥ min
β∈{1,n}

[
λ−1
β (Q)λ−1

β (Γ)

2

(
2

√
kQ + 1√
kQ

)]
,

the right hand side of which is always positive. This indicates that the minimum will occur when β = 1, and gives

λn(Q−1Γ−1 + Γ−1Q−1) ≥ λ−1
1 (Q)λ−1

1 (Γ)

(√
kQ + 1√
kQ

)
.

Using λ1(Q) = ‖Q‖2 and λ1(Γ) < γupper, we have

λn(Q−1Γ−1 + Γ−1Q−1) >

(
1

‖Q‖2

)(‖Q‖2√kQ√
kQ + 1

)(√
kQ + 1√
kQ

)

= 1,

which implies Q−1Γ−1 + Γ−1Q−1 � I . �

From Q−1Γ−1 + Γ−1Q−1 − I � 0 we see that the matrix on the left hand side is symmetric positive definite.

In particular, all eigenvalues are positive. Then, by Sylvester’s Law of Inertia [28, Fact 5.8.17], performing a

congruence transformation will preserve the positivity of the eigenvalues. Any non-singular matrix P provides a

March 21, 2019 DRAFT

15

valid congruence transformation of a matrix M via M ′ = PTMP , where M ′ is the transformed matrix. Using the

nonsingular matrix P = ΓQ, we find

PT (Q−1Γ−1 + Γ−1Q−1 − I)P � 0

QΓ(Q−1Γ−1 + Γ−1Q−1 − I)ΓQ � 0,

where we have used the symmetry of Q and Γ. Expanding, we find QΓ + ΓQ − QΓ2Q � 0. Multiplying by

−1 and adding I gives I − QΓ − ΓQ + QΓ2Q ≺ I , which we factor as (I − ΓQ)T (I − ΓQ) ≺ I . This in

turn implies λmax[(I − ΓQ)T (I − ΓQ)] < 1, where the square root gives
√
λmax[(I − ΓQ)T (I − ΓQ)] < 1 and

finally ‖I − ΓQ‖2 < 1. �

REFERENCES

[1] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for communications and signal processing,” IEEE Journal on selected

areas in communications, vol. 24, no. 8, pp. 1426–1438, 2006.

[2] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential

convex optimization and convex collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[3] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in 2011 IEEE International Conference on

Robotics and Automation. IEEE, 2011, pp. 2520–2525.

[4] M. Chiang et al., “Geometric programming for communication systems,” Foundations and Trends R© in Communications and Information

Theory, vol. 2, no. 1–2, pp. 1–154, 2005.

[5] S. Shalev-Shwartz et al., “Online learning and online convex optimization,” Foundations and Trends R© in Machine Learning, vol. 4, no. 2,

pp. 107–194, 2012.

[6] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[7] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-gradient method,” in 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2012, pp. 601–608.

[8] M. Zhu and S. Martínez, “On distributed convex optimization under inequality and equality constraints,” IEEE Transactions on Automatic

Control, vol. 57, no. 1, pp. 151–164, 2012.

[9] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Transactions on

Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Transactions on Automatic Control,

vol. 54, no. 1, p. 48, 2009.

[11] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradient projection algorithms for convex optimization,” Journal of

optimization theory and applications, vol. 147, no. 3, pp. 516–545, 2010.

[12] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex optimization over random networks,” IEEE Transactions on

Automatic Control, vol. 56, no. 6, pp. 1291–1306, 2011.

[13] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S. Cruz, “Quadratic programming feature selection,” Journal of Machine Learning

Research, vol. 11, no. Apr, pp. 1491–1516, 2010.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods. Prentice hall Englewood Cliffs, NJ, 1989,

vol. 23.

[15] R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Distributed quadratic programming under asynchronous and lossy communi-

cations via newton-raphson consensus,” in 2015 European Control Conference (ECC). IEEE, 2015, pp. 2514–2520.

[16] A. Teixeira, E. Ghadimi, I. Shames, H. Sandberg, and M. Johansson, “Optimal scaling of the admm algorithm for distributed quadratic

programming,” in 52nd IEEE Conference on Decision and Control. IEEE, 2013, pp. 6868–6873.

[17] C.-P. Lee and D. Roth, “Distributed box-constrained quadratic optimization for dual linear svm,” in International Conference on Machine

Learning, 2015, pp. 987–996.

March 21, 2019 DRAFT

16

[18] K. Lee and R. Bhattacharya, “On the convergence analysis of asynchronous distributed quadratic programming via dual decomposition,”

arXiv preprint arXiv:1506.05485, 2015.

[19] A. Kozma, J. V. Frasch, and M. Diehl, “A distributed method for convex quadratic programming problems arising in optimal control of

distributed systems,” in 52nd IEEE Conference on Decision and Control. IEEE, 2013, pp. 1526–1531.

[20] M. Todescato, G. Cavraro, R. Carli, and L. Schenato, “A robust block-jacobi algorithm for quadratic programming under lossy

communications,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 126–131, 2015.

[21] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the 2005,

American Control Conference, 2005. IEEE, 2005, pp. 1859–1864.

[22] J. Koshal, A. Nedić, and U. V. Shanbhag, “Multiuser optimization: Distributed algorithms and error analysis,” SIAM Journal on Optimization,

vol. 21, no. 3, pp. 1046–1081, 2011.

[23] M. T. Hale, A. Nedić, and M. Egerstedt, “Cloud-based centralized/decentralized multi-agent optimization with communication delays,” in

2015 54th IEEE Conference on Decision and Control (CDC), Dec 2015, pp. 700–705.

[24] M. T. Hale, A. Nedić, and M. Egerstedt, “Asynchronous multiagent primal-dual optimization,” IEEE Transactions on Automatic Control,

vol. 62, no. 9, pp. 4421–4435, 2017.

[25] D. P. Bertsekas and J. N. Tsitsiklis, “Convergence rate and termination of asynchronous iterative algorithms,” in Proceedings of the 3rd

International Conference on Supercomputing, 1989, pp. 461–470.

[26] S. Hochhaus and M. T. Hale, “Asynchronous distributed optimization with heterogeneous regularizations and normalizations,” in 2018

IEEE Conference on Decision and Control (CDC), 2018, pp. 4232–4237.

[27] G. Cheng, “Note on some upper bounds for the condition number,” Journal of Mathematical Inequalities, vol. 8, no. 2, pp. 369–374, 2014.

[28] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas-Second Edition. Princeton university press, 2009.

[29] D. W. Nicholson, “Eigenvalue bounds for ab+ ba, with a, b positive definite matrices,” Linear Algebra and its Applications, vol. 24, pp.

173–184, 1979.

March 21, 2019 DRAFT

	I Introduction
	II Background and Problem Statement
	III Block-Based Multi-Agent Update Law
	IV Convergence of Asynchronous Optimization
	IV-A Block-Maximum Norms
	IV-B Convergence Via Lyapunov Sub-Level Sets

	V Independently Regularized Quadratic Programs
	VI Regularization Error Bound
	VII Discussion of Results
	VIII Simulation
	IX Conclusion
	References

