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Abstract— An approach is proposed for inferring Granger
causality between jointly stationary, Gaussian signals from
quantized data. First, a necessary and sufficient rank criterion
for the equality of two conditional Gaussian distributions
is proved. Assuming a partial finite-order Markov property,
sufficient conditions are then derived under which Granger
causality between them can be reliably inferred from the second
order moments of the quantized processes. This approach does
not require the statistics of the underlying Gaussian signals to
be estimated, or a system model to be identified.

I. INTRODUCTION

Causal inference is the determination of the qualitative
cause-and-effect (or input versus output) relationships be-
tween two or more different signals over time. Sometimes
these relationships are obvious beforehand, but in many crit-
ical applications they are not. For instance, in environmental
monitoring the direction in which a pollutant spreads may
be unknown to begin with, making it difficult to determine
a priori which measurements are inputs and which are
outputs. In large manufacturing plants, the root cause of
alarm signals is commonly obscured by complex feedback
loops. A misunderstanding of the correct causal relationships
not only reduces the accuracy of the subsequently identi-
fied model, but could mislead decision-makers into poorly
founded interventions.

In 1963, the econometrician C. Granger introduced a
definition of causality in terms of statistical prediction [1],
inspired by the work of N. Wiener [2]. A signal x is said
to cause another signal z if at some time, the optimal
expected prediction error for a future value of z is reduced
by knowledge of past x and z, as compared to if the past
values only of z are known. In subsequent work [3], [4],
Granger proposed a looser definition in terms of conditional
probabilities, whereby x is said to Granger cause (GC) z
if, at some time, a future z and past x are conditionally
dependent given past z; i.e., given past z, past x can still
influence the future of z. In the case of jointly Gaussian
processes under a mean-square error prediction error, the first
definition coincides with the second. These definitions allow
causality from z to x as well, which would reflect mutual
coupling between the two processes as they evolve over time.

As defined above, Granger causality is a ‘non-
interventionist’ notion based on signals rather than systems.
This suits applications where signals can only be measured,
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and cannot easily be adjusted through experiments. In [5], a
connection with linear systems theory is introduced through
the idea of feedback-freeness for wide-sense stationary ran-
dom processes, which is shown to be equivalent to Granger
non-causality under linear minimum mean-square error pre-
diction. A more restrictive version of feedback-free random
processes having block-diagonal innovation covariance is
introduced in [6] and its equivalence to strictly causal linear
systems is discussed. The effect of sampling rate on Granger
causality is investigated in [7]–[9] while the impact of
filtering is discussed in [8], [9] and the effects of noise are
addressed in [7], [9]–[11].

In this paper, we propose a method for inferring Granger
causality between two jointly Gaussian, stationary signals
using quantized measurements. Evidently, the nonlinearity
introduced by the quantizers moves this problem beyond the
linear systems realm of the literature above. The basis of
our analysis is a necessary and sufficient rank condition
for two conditional Gaussian distributions to be identical
(Theorem 2.3). This extends a recent result of [12], [13]
on Gaussian conditional independence and, to the best of
our knowledge, has not appeared in the literature before.
Assuming a partial finite-order Markov property, we then
use a perturbation bound to derive sufficient conditions under
which Granger causality between the unquantized signals
can be inferred from the second order moments of their
quantized versions (Theorem 3.3). In the case of high-
resolution, uniform quantization, this condition reduces to
an explicit inequality relating the quantizer resolutions to
the statistics of the processes (Proposition 3.6 and Remark
3.7).

Unlike much of the literature on causal inference, e.g.
[14]–[16], our approach does not require the statistics of the
underlying Gaussian signals to be estimated, or a system
model to be identified.

The rest of the paper is organized as follows: in section
II, the problem of inferring Granger causality between a
pair of jointly Gaussian signals is analyzed in terms of
the rank of a matrix of covariances. In section III, the
effects of quantization are investigated and conditions are
presented under which the Granger causality can be inferred
correctly from the statistics of the quantized data. Section IV
concludes the paper.

Notation: Throughout this paper, we denote the random
process segments (xk)nk=` by xn` , and (xk)nk=1 by xn. We
use the conventions that xn` = (xk)nk=1 when ` ≤ 1, and
equals the empty sequence when ` > n or n < 1. Similarly,
xn is the empty sequence when n < 1. When clear from
context, the full sequence (xk)∞k=1 is written as x.



II. GRANGER CAUSALITY FOR JOINTLY
GAUSSIAN, PARTIALLY MARKOV PROCESSES

In this section, we give the formal definition of Granger
causality between discrete-time stochastic processes, in terms
of conditional independence. Assuming that the process is
partially finite-order Markov, this reduces to comparing two
conditional distributions. Under the additional assumption
of joint Gaussianity, we show that this comparison can be
expressed in terms of the rank of a structured matrix of
covariances.

Let x, z be discrete-time random processes on the time-
axis k = 1, 2, . . . .

Definition 1 (Granger Causality [3]): The random pro-
cess x is said to not Granger cause (GC) z if

P (zk+1|xk, zk) = P (zk+1|zk),

with probability (w.p.) 1, k = 1, 2, . . . ,
(1)

where P (·|·) denotes conditional probability measure. Oth-
erwise, if for some k ≥ 1 there is a nonzero probability that
P (zk+1|xk, zk) 6= P (zk+1|zk), then x is said to GC z.

In other words, x GC z means that there is a nonzero
chance that at some time k, the next value of z could still
be stochastically influenced by past and present x, even if
all past and present values of z up to time k are known. If
x does not GC z, the next value of z is always conditionally
independent of past and present x, given past and present z.

Now let us assume the following:
Assumption 2.1 (Partial Markov-m): The random process

z is said to be partially Markov of order m ≥ 1 in x and z
if P (zk+1|xk, zk) = P (zk+1|xkk−m+1, z

k
k−m+1).

Remark 2.2: This is weaker than being joint Markov-m
since the x process is not assumed to exhibit an analogous
property.

With this restriction, we may rewrite the condition for x
to not Granger cause z as

P
(
zk+1|xkk−m+1, z

k
k−m+1

)
= P

(
zk+1|zkk−m+1, z

k−m) ,
w.p. 1, k = 1, 2, . . . . (2)

As the conditioning term on the RHS is no longer nested (i.e.
included) in that of the LHS, this is no longer a conditional
independence relationship. In much of the literature e.g.
[17]–[19], it is assumed that under non-causality the process
z is also Markov-m, so that zk−m can be dropped from
the RHS. However, finite-order partial Markovianity does
not generally imply finite-order marginal Markovianity. In
this paper, we do not make any a priori assumption on the
Markovianity of z, but show that for jointly Gaussian signals,
(2) and Assumption 2.1 imply that z is marginally Markov-
m, under a mild additional requirement.

For jointly Gaussian processes, it turns out that (2) can
be expressed in terms of a rank condition. We first present
this condition for general jointly Gaussian random vectors
A,B,C,D with joint covariance matrix Γ. The covariance
matrices between subsets of variables are denoted by match-
ing subscripts, for instance ΓA,B = ΓTB,A is the cross-

covariance matrix between A and B, while Γ[CD],[CD] is
the covariance matrix for the random vector [CD].1

Theorem 2.3: Let A,B,C,D be jointly Gaussian random
vectors with joint covariance matrix Γ, and suppose that the
random vector [BCD] has positive definite covariance. Then

1) the conditional distributions P (A|C,B) and
P (A|C,D) are identical if and only if

rank
([

ΓA,B ΓA,C ΓA,D
ΓC,B ΓC,C ΓC,D

])
= #C, (3)

where #C is the dimension of the random vector C,
and

2) if (3) holds, then P (A|C,B) = P (A|C,D) =
P (A|C).

Proof: Refer to Appendix.
Remark 2.4: The first item in this result is a variation of a

recent rank formula for Gaussian conditional independence,
due to Sullivant [12], [13]. Under joint Gaussianity, the pos-
itive definiteness of Γ[BCD],[BCD] excludes degenerate cases
where deterministic (affine) relationships exist between B, C
and D. With additional analysis, it can be shown that if D is
constant (requiring this positive definiteness to be relaxed),
then the formula of [12], [13] for conditional independence
can be recovered as a special case. However, this extension
is not needed for our present purposes. The second item
in this result shows that if P (A|C,B) = P (A|C,D), then
conditional independence between A,B and between A,D
immediately follow, given C.

Now suppose that x, z are jointly stationary Gaussian
signals satisfying Assumption 2.1. Further assume that they
are each scalar-valued, for simplicity, and that there is never a
deterministic relationship between xkk−m+1 and zk. We may
then apply Theorem 2.3 to (2) with A = zk+1, B = xkk−m+1,
C = zkk−m+1 and D = zk−m, to conclude that x does not
GC z if and only if

rank(Cx→zG (m, k)) = min{m, k}, ∀k ≥ 1, (4)

where for fixed k and any ` ≥ 1 we define a matrix

Cx→zG (m, `) :=
[

Γz∗,x̃ Γz∗,z̃ Γz∗,zo
]

(5)

of covariances, where

z∗ := zk+1
k−m+1, z̃ := zkk−m+1, z

o := zk−mk−`+1, x̃ := xkk−m+1.
(6)

When k ≥ ` − 1 ≥ m, the covariances Γz∗x̃ and Γz∗z̃ are
(m+ 1)×m matrices, and Γz∗zo is an (m+ 1)× (`−m)
matrix.

For jointly stationary Gaussian signals x and z satisfying
Assumption 2.1, we call Cx→zG (m, `) the causality matrix
from x to z over the interval [k− `+ 1, . . . , k]. This matrix
depends on the cross-covariances between x and z and the
autocovariances of z, but not on the autocovariances of x.
Notice that as it has a fixed number m + 1 of rows, but
a growing number k + m of columns as k increases above

1For convenience we adopt this mild abuse of notation, rather than
[CTDT ]T .



m. Thus, confirming that x does not GC z over a growing
horizon is not a simple task, as expected. On the other hand,
a sufficient condition to verify that x GC z can be derived
as follows:

Lemma 2.5: Let x, z be jointly Gaussian, stationary, scalar
random processes and z be partial Markov-m. Assume that[
xkk−m+1z

k
]

has positive definite covariance at given time
k > m, i.e. no deterministic relationship exists between
xkk−m+1 and zk.

If there exists some q ∈ (m, k] such that the matrix
Cx→zG (m, q) is full rank, then x Granger causes z.

Proof: Suppose by hypothesis that the matrix
Cx→zG (m, q) has full rank (m+1) for q ∈ (m, k]. Increasing
q appends columns to Cx→zG (m, q) (to the partitioned matrix
of [ΓTA,DΓTC,D]T in (3)), which can only keep the matrix full-
rank. Hence Cx→zG (m, k) must also have rank m + 1. This
violates the noncausality condition (4), so x must GC z.

Remark 2.6: A distinguishing feature of this result is that
it allows Granger causality to be inferred directly from
the second-order statistics of the signals, without having to
analyse or fit a linear dynamical model as is often done in
the literature. For computational reasons, it is preferable to
have a sufficient q in this Lemma that remains bounded as
k increases, or at least grows slower than k. We conjecture
that this can be achieved under suitable bounds on the auto-
and cross-covariance terms at large time lags.

III. INFERRING GRANGER CAUSALITY USING
QUANTIZED DATA

In this section, we investigate the impact of quantized data
on the inference of Granger causality between the jointly
Gaussian, stationary processes x and z where z is partially
Markov-m. Using the second-order statistics of the quantized
data, we construct a post-quantization matrix Cx

Q→zQ that
mirrors the causality matrix Cx→zG (5) of the unquantized
processes. We then show that if the difference between these
two matrices is sufficiently small, then the full-rankness of
Cx

Q→zQ implies that x Granger causes (GC) z. For high-
resolution uniform quantizers, we derive this condition as an
explicit inequality, and show that causality can be inferred if
the resolution is sufficiently fine.

A. Relationship Between Cx→zG and Cx
Q→zQ

We begin with the relationship between the scalar covari-
ances γz,x, γz,z of the unquantized signals, and γzQ,xQ ,
γzQ,zQ of their quantized versions, where superscript Q

denotes the quantized version. For convenience, in the fol-
lowing we suppress time lags and use w1 and w2 to denote
x and/or z. We have

γwQ1 ,w
Q
2

= γw1,w2
+ γw1,ε2 + γε1,w2

+ γε1,ε2 , (7)

where ε1 and ε2 denote the quantization errors of w1 and w2

respectively. Now define the matrix

Cx
Q→zQ(m, `) :=

[
Γz∗Qx̃Q Γz∗Qz̃Q Γz∗QzoQ

]
≡Cx→zG (m, `) + Γε(m, `), (8)

where

Γε(m, `) :=
[

Γz∗,εx̃ Γz∗,εz̃ Γz∗,εzo
]

+[
Γεz∗ ,x̃ Γεz∗ ,z̃ Γεz∗ ,zo

]
+[

Γεz∗ εx̃ Γεz∗ εz̃ Γεz∗ εzo
]
, (9)

which is the matrix version of the scalar relationship (7).

B. Granger Causality Inference Under Quantization

Lemma 2.5 states that if for some q > m the causality
matrix Cx→zG (m, q), the entries of which correspond to scalar
covariances of the unquantized Gaussian random processes,
has full rank m + 1, then x GC z. The question here
is whether we can infer this causal relationship from the
covariances of the quantized data. To answer this question,
we need a classical result in linear algebra:

Theorem 3.1: (Eckart-Young-Mirsky Matrix Approxima-
tion [20], [21]) Let the matrix M ∈ Rl×s have rank
r and singular value decomposition M =

∑r
i=1 σiuiv

T
i ,

where ui, vj , 1 ≤ i, j ≤ r are orthonormal vectors and
σ1 ≥ σ2 ≥ · · · ≥ σr(> 0) are the singular values.

If p < r, then

min
rank(X)=p

‖M −X‖2 = ‖M −Mp‖2 = σp+1 (10)

and

min
rank(X)=p

‖M −X‖F = ‖M −Mp‖F =

√ ∑
i≥p+1

σ2
i , (11)

where Mp =
∑p
i=1 σiuiv

T
i .

Remark 3.2: Unless otherwise stated, ‖ · ‖ denotes either
two-norm (‖·‖2) or Frobenius norm (‖·‖F ) in the following.

Theorem 3.3: Let x, z be jointly Gaussian, stationary,
scalar random processes and z be partial Markov-m. Assume
that

[
xkk−m+1z

k
]

has positive definite covariance at a given
time k > m.

If there exists some q ∈ (m, k] such that the
matrix Cx

Q→zQ(m, q) (8) involving the covariances of
quantized data is full-rank with smallest singular value
σmin(Cx

Q→zQ(m, q)) > ‖Γε(m, q)‖, where Γε(m, q) is de-
fined in (9), then the unquantized Gaussian signal x Granger
causes the unquantized Gaussian signal z.

Proof: Denote the full-rank matrix Cx
Q→zQ(m, q)

by M . If X is any other matrix of the same di-
mensions but lower rank, then Theorem 3.1 states that
‖X − M‖ ≥ σmin(M). Conversely, if ‖X − M‖ <
σmin(M), then X remains full-rank. Setting X =

Cx→z(m, q) ≡ Cx
Q→zQ(m, q) + Γε(m, q), we see that if

σmin(Cx
Q→zQ(m, q)) > ‖Γε(m, q)‖, then Cx→zG (m, q) is

guaranteed to be full-rank. Lemma 2.5 then implies that x
GC z.

Remark 3.4: This result states that GC can be inferred
from the statistics of the quantized data, provided that the
quantization perturbation, as measured by ‖Γε(m, q)‖, is
smaller than σmin(Cx

Q→zQ(m, q)), which can be taken as
a measure of how far Cx

Q→zQ(m, q) is from losing full
rank. However, both sides of this inequality depend on



the quantization schemes. We can derive a condition that
compares the size of the quantization perturbation to the
statistics of the unquantized processes, as follows. We know
that σmin(A) − σmax(B) ≤ σmin(A + B), ([22], Problem
7.3.P16). Therefore, we have:

σmin(Cx→zG (m, q))− σmax(Γε(m, q)) ≤ σmin(Cx
Q→zQ(m, q)),

(12)

Furthermore, we know that ‖Γε(m, q)‖2 = σmax(Γε(m, q)).
So if

‖Γε(m, q)‖2 < σmin(Cx→zG (m, q))− σmax(Γε(m, q)), (13)

then by (12) it is guaranteed to be smaller than
σmin(Cx

Q→zQ(m, q)) as required. Finally, note that since
‖Γε(m, q)‖2 = σmax(Γε(m, q)), the condition (13) may be
equivalently written as

2‖Γε(m, q)‖2 < σmin(Cx→zG (m, q)), (14)

which is feasible with sufficiently fine quantization iff
Cx→zG (m, q) is full-rank.

Remark 3.5: Note that if x GC z, then there exists some
q such that Cx→zG (m, q) is full-rank. In this case, by swap-
ping Cx→zG and Cx

Q→zQ in the proof of Theorem 3.3,
it can be shown that Cx

Q→zQ(m, q) remains full-rank if
‖Γε(m, q)‖2 < σmin(Cx→zG (m, q)). Thus the full rank of CG
is preserved going from quantized to unquantized data as
well as from unquantized to quantized, if the quantizers are
designed to satisfy the stricter condition (14).

C. Granger Causality Inference Under High-Resolution
Quantization

In this section, Theorem 3.3 is explored in the regime of
high-resolution quantization.

Suppose first that zero-mean, jointly Gaussian scalar sig-
nals w1 and w2 are passed through mid-tread uniform
quantizers with quantization intervals of length ∆w1

and
∆w2

, respectively. For simplicity, we assume an infinite
number of quantization intervals on each axis. The auto- and
cross-covariances of uniformly quantized bivariate Gaussian
signals are derived in [23], in the form of infinite sums. By
analysing the dominant terms in these sums for sufficiently
small ki :=

∆wi

γwi
, i = 1, 2 where γwi (with a single subscript)

denotes the standard deviation of wi, we can show that the
last three terms on the RHS of (7) can be expressed as
follows:

γw1ε2 = O
(
e

−2π2

k22

)
, (15)

γε1w2
= O

(
e

−2π2

k21

)
, (16)

γε1ε2 = O
(
k1k2e

−4π2
(

1
2 (
m
f
1

k1
)2+ 1

2 (
m
f
2

k2
)2−ρm

f
1m

f
2

k1k2

))
, (17)

where (mf
1 ,m

f
2 ) is the minimum of f(m1,m2) := (m1

k1
)2 +

(m2

k2
)2 − 2ρm1m2

k1k2
over positive integer two-dimensional

lattice (m1,m2) ∈ N2 and ρ is the correlation coefficient
related to the corresponding Gaussian signals. And O(.) is
Bachmann-Landau O-notation.

Note that (7) for the case where w1 and w2 are the same
(variance instead of covariance) can be represented as:

γ2
wQ1

= γ2
w1

+
k2

1γ
2
w1

(= ∆2
w1

)

12
+O

(
k2

1γ
2
w1
e

−2π2

k21

)
. (18)

In order to have an explicit relation between the auto
and cross-covariances above and σmin(Cx

Q→zQ(m, q)) men-
tioned in Theorem 3.3, we know that:

‖Γε(m, q)‖2 ≤
√
m+ 1‖Γε(m, q)‖∞, (19)

and if we restrict
√
m+ 1‖Γε(m, q)‖∞ <

σmin(Cx
Q→zQ(m, q)), the condition σmin(Cx

Q→zQ(m, q)) >
‖Γε(m, q)‖2 holds. Hence, in the following we try to find
an upper bound on

√
m+ 1‖Γε(m, q)‖∞ and then such

an upper bound is considered as a lower bound on
σmin(Cx

Q→zQ(m, q)), which can be calculated by quantized
signals.

‖Γε(m, q)‖∞ := max
1≤i≤m+1

m+q∑
j=1

|γεij |

= max
2≤i≤m+1

m+q∑
j=1

|γεij |

≤m sup
κ
|γxQzQ(κ)− γxz(κ)|+ (q − 1)×

sup
κ
|γzQzQ(κ)− γzz(κ)|+ |γ2

zQ − γ
2
z |.

(20)

In high resolution quantization regime, ‖Γε(m, q)‖∞ can
be written as follows using (15)-(18):

‖Γε(m, q)‖∞ <
∆2
z

12
. (21)

We have:

‖Γε(m, q)‖2 <
√
m+ 1∆2

z

12
< σmin(Cx

Q→zQ(m, q)). (22)

Hence, the following can be stated:
Proposition 3.6: Let x, z be jointly Gaussian, stationary,

scalar random processes and z be partial Markov-m. Assume
that

[
xkk−m+1z

k
]

has positive definite covariance at a given
time k > m.

Suppose there exists some q ∈ (m, k] such that the
matrix Cx

Q→zQ(m, q) (8), involving covariances of the high-
resolution, uniformly quantized data, is full-rank. Then x
causes z, provided that the quantizer interval length ∆z for
signal z satisfies

∆z <
( 12σQmin√

m+ 1

) 1
2

, (23)

where σQmin is the smallest singular value of Cx
Q→zQ(m, q).

Remark 3.7: This result gives an explicit formula in
the high-resolution regime for deciding how finely quan-
tized x and z should be in order to infer causality from
Cx

Q→zQ(m, q), which can be constructed through quantized
signals available. As in the quantization perturbation bound



in Theorem 3.3, the RHS depends on the quantization
scheme. Using (14), (19) and (21), we can establish a
quantizer-independent RHS as follows:

∆z <
( 6σmin√

m+ 1

) 1
2

, (24)

where σmin := σmin(Cx→zG (m, q)).
Note the LHS depends on ∆z , suggesting that ∆z plays

a more critical role than ∆x. Even if ∆x is coarse, the
inequality can be satisfied by choosing a sufficiently fine ∆z .
Conversely, if ∆x is small, ∆z would still have to be small
to satisfy (24). This is related to the fact that in the causality
matrix Cx→zG (m, q), x appears only in cross-covariances
with z, whereas z also appears in auto-covariances with lag
zero.

IV. CONCLUSIONS

Granger causality inference for jointly stationary Gaussian,
partially Markov-m signals using quantized data has been
investigated in this paper. A rank criterion to assess the
Granger causality between Gaussian signals was proposed.
Conditions under which causality can be inferred by using
just the statistical properties of quantized signals instead of
estimating the statistics or model of the underlying Gaussian
signals have been introduced.

Future work will focus on determining lower bounds and
tighter upper bounds on the coarsest quantizer resolution that
permits Granger causality to be inferred from quantized data,
and also on relaxing the Gaussian assumption. In this case,
it is likely that information-theoretic approaches based on
directed information (see e.g. [24]) will prove useful.

V. APPENDIX

Proof of Part 1 of Theorem 2.3: The conditional Gaussian
random vectors A|C,B and A|C,D have distributions as
follows:

A|C,B ∼ N (µ
A|C,B
cond ,Γ

A|C,B
cond ),

A|C,D ∼ N (µ
A|C,D
cond ,Γ

A|C,D
cond ),

where

µ
A|C,B
cond := µA + ΓA,[CB]Γ

−1
[CB],[CB]

[
C − µC
B − µB

]
,

Γ
A|C,B
cond := ΓA,A − ΓA,[CB]Γ

−1
[CB],[CB]Γ[CB],A,

µ
A|C,D
cond := µA + ΓA,[CD]Γ

−1
[CD],[CD]

[
C − µC
D − µD

]
,

Γ
A|C,D
cond := ΓA,A − ΓA,[CD]Γ

−1
[CD],[CD]Γ[CD],A,

and ΓA,[CD] := [ΓA,C ΓA,D] and Γ[CD],A :=
[ΓTC,A ΓTD,A]T .

In order for two Gaussian distributions to be identical, it
is necessary and sufficient that they should have the same
mean vector and covariance matrix. Let us begin with the
equality of mean vectors (µA|C,Bcond = µ

A|C,D
cond ):[

ΓA,C ΓA,B
] [ ΓC,C ΓC,B

ΓB,C ΓB,B

]−1 [
C − µC
B − µB

]
=

[
ΓA,C ΓA,D

] [ ΓC,C ΓC,D
ΓD,C ΓD,D

]−1 [
C − µC
D − µD

]
As Γ[BCD],[BCD] is positive definite, this linear relation-

ship between B − µB , C − µC and D − µD implies that
their three coefficients must be zero. Noting that the inverses
above and of ΓB,B and ΓD,D also must exist, Problem 1.6.7
of [25] implies that ΓC,C − ΓC,BΓ−1

B,BΓB,C and ΓC,C −
ΓC,DΓ−1

D,DΓD,C are also invertible. Thus the three zero-
coefficient equations can be written in the following form:

ΓA,C(K2 −K1)− ΓA,DΓ−1
D,DΓD,CK2

+ ΓA,BΓ−1
B,BΓB,CK1 = 0, (25)

−ΓA,CK1ΓC,B + ΓA,B + ΓA,BΓ−1
B,BΓB,CK1ΓC,B = 0,

(26)

and

−ΓA,CK2ΓC,D + ΓA,D + ΓA,DΓ−1
D,DΓD,CK2ΓC,D = 0,

(27)

where

K1 := (ΓC,C − ΓC,BΓ−1
B,BΓB,C)−1,

K2 := (ΓC,C − ΓC,DΓ−1
D,DΓD,C)−1. (28)

It can be shown that if (25), (26) and (27) are satisfied,
the equality of the conditional covariance matrices Γ

A|C,B
cond

and Γ
A|C,D
cond also holds. In other words, the conditional Gaus-

sian probability density functions are equal (P (A|C,B) =
P (A|C,D)) if and only if (25), (26), and (27) are satisfied.

Substituting (25) in (27) can be used to express the three
equations as the two following equations:

ΓA,B − ΓA,CK1ΓC,B + ΓA,BΓ−1
B,BΓB,CK1ΓC,B = 0,

(29)

ΓA,D − ΓA,CK1ΓC,D + ΓA,BΓ−1
B,BΓB,CK1ΓC,D = 0.

(30)

We know that a matrix A is zero if and only if rank(A) =
0. Using Guttman rank additivity formula [26] for (29) and
(30), we have:

rank
(
Φ
)

= rank
(
ΓC,C − ΓC,BΓ−1

B,BΓB,C
)

= #C,

rank
(
Υ
)

= rank
(
ΓC,C − ΓC,BΓ−1

B,BΓB,C
)

= #C,

where

Φ :=

[
ΓC,C − ΓC,BΓ−1

B,BΓB,C ΓC,B
ΓA,C − ΓA,BΓ−1

B,BΓB,C ΓA,B

]
,

Υ :=

[
ΓC,C − ΓC,BΓ−1

B,BΓB,C ΓC,D
ΓA,C − ΓA,BΓ−1

B,BΓB,C ΓA,D

]
.

There are two partitioned matrices whose the first column
is the same in the equations above. To deal with the ranks of
these two matrices, we augment two matrices of our interest
through Lemma 6 of [27] as follows:

rank
(
Ξ
)
≤rank

([ ΓC,D ΓC,C − ΓC,BΓ−1
B,BΓB,C

ΓA,D ΓA,C − ΓA,BΓ−1
B,BΓB,C

])



+ rank
([ ΓC,C − ΓC,BΓ−1

B,BΓB,C ΓC,B
ΓA,C − ΓA,BΓ−1

B,BΓB,C ΓA,B

])
− rank

([ ΓC,C − ΓC,BΓ−1
B,BΓB,C

ΓA,C − ΓA,BΓ−1
B,BΓB,C

])
=rank

(
Υ
)

+ rank
(
Φ
)
−#C = #C, (31)

where

Ξ :=

[
ΓC,D ΓC,C − ΓC,BΓ−1

B,BΓB,C ΓC,B
ΓA,D ΓA,C − ΓA,BΓ−1

B,BΓB,C ΓA,B

]
. (32)

We also have:

rank
(
Υ
)
≥ max

{
rank

([
ΓC,D
ΓA,D

])
,

rank
([ ΓC,C − ΓC,BΓ−1

B,BΓB,C
ΓA,C − ΓA,BΓ−1

B,BΓB,C

])}
≥ rank

([
ΓC,D
ΓA,D

])
(33)

where Theorem 2.9 of [28] is used to derive (33). Exploiting
(33), we have:

rank
(
Ξ
)
≥ max

{
rank

([
ΓC,D
ΓA,D

])
, rank

(
Φ
)}

= max
{

rank
(
Υ
)
, rank

(
Φ
)}

= #C. (34)

Equations (31) and (34) yield:

#C ≤ rank
(
Ξ
)
≤ #C. (35)

Thus, we can establish:

rank
(
Ξ
)

= #C. (36)

We can conclude that if the conditional Gaussian probabil-
ity density functions are equal (P (A|C,B) = P (A|C,D)),
(25), (26) and (27) are satisfied and in turn show that the
rank criterion (36) holds. Therefore, one direction is proved.

Due to paper length restriction, proofs of the converse of
part 1 and part 2 of Theorem 2.3 are not mentioned here. �
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