
Sample-Based Learning Model Predictive Control
for Linear Uncertain Systems

Ugo Rosolia and Francesco Borrelli

Abstract— We present a sample-based Learning Model Pre-
dictive Controller (LMPC) for constrained uncertain linear
systems subject to bounded additive disturbances. The proposed
controller builds on earlier work on LMPC for deterministic
systems. First, we introduce the design of the safe set and
value function used to guarantee safety and performance
improvement. Afterwards, we show how these quantities can
be approximated using noisy historical data. The effectiveness
of the proposed approach is demonstrated through a numerical
example. We show that the LMPC is able to safely explore the
state space and to iteratively improve the worst-case closed-
loop performance, while robustly satisfying state and input
constraints.

I. INTRODUCTION

Exploiting historical data in order to iteratively improve
the performance of Model Predictive Controllers (MPC) has
been an active theme of research in the past few decades [1]–
[11]. The key idea is to use stored state-input pairs in order
to compute at least one of the following three components
used in the control design: i) a model which describes the
evolution of the system, ii) a safe set of states (and an
associated control policy π(·)) from which the control task
can be safely completed and iii) a value function which
represents the cumulative closed-loop cost from a given point
of the safe set when the policy π(·) is used. In this work,
we present a strategy to build safe sets and the associated
value functions by exploiting historical noisy closed-loop
trajectories.

Policy evaluation strategies used to estimate value func-
tions from historical data are studied in Approximate Dy-
namic Programming (ADP) and Reinforcement Learning
(RL) [12]–[14]. For instance, direct strategies compute the
estimate value function which best fits the closed-loop cost
data over the stored states. On the other hand, in indi-
rect strategies the estimate value function is computed by
iteratively minimizing the temporal difference [15], [16].
A survey on policy evaluation strategies goes beyond the
scope of this work, we refer the reader to [12], [13] for a
comprehensive review on this topic.

The integration of MPC with system identification strate-
gies has been extensively studied in the literature [1]–[7].
In [5] the authors identified the system’s model using a
deep neural network, which incorporates uncertainty using an
ensemble of models. Another system identification strategy
consists of fitting a Gaussian Process (GP) to experimental
data [2]–[4]. GP provides a nominal model and confidence

U. Rosolia and F. Borrelli are with the Department of Mechanical
Engineering, University of California at Berkeley , Berkeley, CA 94701,
USA {ugo.rosolia, fborrelli}@berkeley.edu

bounds, which may be used to tighten the constraint set
over the planning horizon. This strategy allows to provide
high-probability safety guarantees [3], [4]. The effectiveness
of GP-based strategies on experimental platform has been
shown in [4], where a MPC is used to race a 1/43-scale
vehicle. Regression strategies may also be used to identify
the system’s model [6], [7]. For instance, the authors in [6]
used linear regression to identify both the nominal model and
the model uncertainty used for robust MPC design. In [7],
we used local linear regression to identify the model used
by the controller, which was able to drive a 1/10-scale race
car at the limit of handling.

Data-based strategies to construct safe sets have been in-
vestigated in [17]–[22]. The authors in [17] proposed a linear
model predictive safety certification framework, where safe
sets are computed exploiting closed-loop data generated by a
robust controller. In [18], [19] the authors computed safe sets
combining stored trajectories with polyhedron and ellipsoidal
invariant sets. Another approach is proposed in [20] where
the stored trajectories are mirrored to construct invariant sets.
In [21], [22] we showed that data from a deterministic system
can be trivially used to compute safe sets. However, these
strategies cannot be used to compute safe sets for uncertain
system.

In this work we present a sample-based Learning Model
Predictive Controller (LMPC) for linear systems subject to
bounded additive uncertainty. We refer to a control task
execution as “iteration” and we iteratively update the LMPC
policy. At iteration j−1, we show how to construct a robust
safe set and value function, which are used to synthesize the
LMPC policy at next jth iteration. We show that the pro-
posed strategy guarantees that: i) state and input constraints
are robustly satisfied, ii) the closed-loop system converges
asymptotically to a neighborhood of the origin, iii) the worst-
case performance of the jth LMPC policy is non-increasing
with the iteration index, and iv) the domain of the LMPC
policy is not shrinking at each jth iteration. The proposed
control strategy is computationally intensive. Therefore, we
propose a practical algorithm that exploits simulations of the
closed-loop system, which are associated with unknown sam-
pled disturbance realizations. These closed-loop simulations,
referred to as “roll-outs”, are used to approximate the safe
set and the value function used in the LMPC design.

II. PROBLEM DEFINITION

We consider the following linear time invariant system

xjk+1 = Axjk +Bujk + wjk (1)

ar
X

iv
:1

90
4.

06
43

2v
6 

 [
cs

.S
Y

] 
 2

1 
Ja

n 
20

21



where at time k of the jth iteration the disturbance wjk ∈ W ,
the state xk ∈ Rn and input ujk ∈ Rd. Furthermore, the
system is subject to the following convex polytopic state and
input constraints, for all k ≥ 0

xk ∈ X and πj(xjk) ∈ U .

At each jth iteration, we define the worst-case iteration
cost associated with the control policy πj(·) as the solution
to the Bellman equation

Jjπj (xj0) = max
w∈W

[h(xj0, π
j(xj0))+Jjπj (Axj0 +Bπj(xj0)+w)].

(2)
The goal of the control design is to solve the following
infinite time robust optimal control problem,

Jj,∗0→∞(xjS) = min
πj(·)

Jjπj (xj0)

xjk+1 = Axjk +Bπj(xjk) + wjk

ujk = πj(xjk)

xjk ∈ X , u
j
k ∈ U

xj0 = xjS

∀wjk ∈ W, k ∈ {0, 1, . . .}.

(3)

We present a strategy to iteratively design a feedback
policy

πj(·) : F j ⊆ X → U (4)

which is a feasible solution to Problem (3) for xj0 ∈ Fj . In
particular the proposed strategy guarantees: i) convergence
of the closed-loop system (1) and (4) to a neighborhood
of the origin O, ii) safety, state and input constraints are
robustly satisfied, iii) performance improvement, if the con-
troller performs the same task repeatedly (i.e. xj0 = xj+1

0 ),
then the worst-case iteration cost (2) is non-increasing (i.e.
Jj+1
πj+1(xj+1

0 ) ≤ Jjπj (xj0)), and iv) exploration, the domain of
the policy (4) is not shrinking with the iteration index (i.e.
F i ⊆ Fj ,∀j ≥ i).

Throughout this paper we use the standard function classes
K, K∞ and KL notation (see [23]) and we define the distance
from a point x ∈ Rn to a set O ⊆ Rn as

|x|O
∆
= inf
d∈O
||x− d||1.

Furthermore, we make the following assumptions.
Assumption 1: The set O ⊂ Rn is a robust positive invari-

ant set for the autonomous system xk+1 = (A+BK)xk+wk,

∀xk ∈ O → (A+BK)xk + wk ∈ O,∀wk ∈ W

and ∀xk ∈ O we have that Kxk ∈ U .
Assumption 2: The continuous stage cost h(·, ·) is jointly

convex in its arguments. Furthermore, we assume that ∀x ∈
Rn,∀u ∈ Rd

αlx(|x|O) ≤ h(x, 0) ≤ αux(|x|O)

and αlu(|u|KO) ≤ h(0, u) ≤ αux(|u|KO)

where αux, α
l
x, α

u
u and αlu ∈ K∞.

Notice that the above assumptions imply that the optimal
policy from (3) robustly steers system (1) to the goal set O.

III. LEARNING MODEL PREDICTIVE CONTROL

In this section we illustrate the control design strategy. We
show how to construct a safe set of states, from which the
control policy πj(·) can successfully complete the control
task. Afterward, we define a value function which approxi-
mates the cost-to-go associated with the control policy πj(·).
Finally, we exploit the safe set and the value function to
synthesize the control policy πj+1(·) at the next iteration
j + 1.

A. Safe Set

In this section we show how to iteratively construct a set
of states from which the control task can be safely executed.
First, we recall the definition of robust reachable set [24] for
the closed-loop system (1) and (4),

Rk+1(xj0) =

{
xk+1 ∈ X

∣∣∣∣∣ ∃wk ∈ W, xk ∈ Rk(xj0),
xk+1 = Axk +Bπj(xk) + wk

}
(5)

with R0(xj0) = xj0. The above robust reachable set RN (xj0)
collects that states which may be reached in N -steps by the
closed-loop system (1) and (4).

Now, we define the safe set at the jth iteration as

SSj =

{ ∞⋃
k=0

Rk(xj0)

}⋃
O. (6)

The above safe set SSj contains the state evolution of the
closed-loop system (1) and (4) at the jth iteration.

Remark 1: In practical applications each iteration has a
finite-time duration. It is common in the literature to adopt
an infinite time formulation at each iteration for the sake
of simplicity. We follow such an approach in this paper.
Our choice does not affect the practicality of the proposed
method. In Section IV-A, we show that if the jth iteration is
completed in finite time (i.e. xjT j ∈ O, T j < ∞), then the
safe set SSj can be approximated using historical data.

Finally, we define the convex safe set CSj as the convex
hull of the safe sets SSk for iterations k ∈ {0, . . . , j},

CSj = conv

(
j⋃

k=0

SSk
)
. (7)

Notice that, if the control policies πk(·) for k ∈ {0, . . . , j}
safely steer the system to the neighborhood of the origin O.
Then, CSj is a robust control invariant set as stated by the
following proposition.

Proposition 1: For j ≥ 0, let πj(·) : F j → U be a
control policy defined over F j ⊆ X . Consider system (1)
in closed-loop with πj(·) and assume that ∀xj0 ∈ F j we
have xjk ∈ X and limt→∞ xjt ∈ O,∀wk ∈ W, k ≥ 0. Then,
the convex safe set CSj ⊆ X is a robust control invariant
set for system (1),

∀x ∈ CSj → Ax+Bπj(x) + w ∈ CSj , ∀w ∈ W
Proof: By assumption πk(·) for k ∈ {0, . . . , j} in

closed-loop with (1) robustly satisfies and input constraints.
By definition (6), SSk is a robust control invariant set



for k ∈ {0, . . . , j}. Therefore, by linearity of system (1),
CSj ⊆ X is a robust control invariant set.

B. Q-function
In this section we define the value function Qj(·) : CSj →

R, which approximates the cost-to-go from any state x ∈
CSj . Recall that the iteration cost (2) for the control policy
πj(·) is given by the solution to following Bellman equation

Jjπj (xj0) = max
w∈W

[h(xj0, π
j(xj0))+Jjπj (Axj0 +Bπj(xj0)+w)],

(8)
and it represents the worst-case cost-to-go from any point in
the state space. The solution to the above Bellman equation
is hard to compute [12] and closed-form exists just for few
problems [24]. For a survey on strategies to approximate the
solution to Bellman equation we refer to [12], [13].

Now, we define the worst-case cost-to-go over the safe set
as

Ljπj (x) =

{
max
w∈W

[h(x, πj(x)) + Ljπj (xj+(w))] If x ∈ SSj

+∞ If x /∈ SSj
(9)

where xj+(w) = Ax + Bπj(x) + w. Notice that, for all
x ∈ SSj , the above function coincides with the Bellman
equation (8). The difference between Jjπj (·) and Ljπj (·) is
that the domain of the latter is the safe set SSj from (6).
The solution equation (9) is still hard to compute, however it
may be approximated using sampled closed-loop trajectories
from SSj , as shown in Section IV-B.

Finally, for all x ∈ CSj we define the function

Qj(x) = min
µ
{µ | (x, µ) ∈ conv

(⋃j
k=0 epi(Lπj (x)j)

)
},
(10)

which interpolates the worst-case cost-to-go functions Lkπk(·)
for k ∈ {0, . . . , j}. Notice that the above Qj(·) is simply a
convexification of the cost-to-go functions (i.e. epi(Qj(x)) =
conv

(
∪jk=0 epi(Lπk(x)k))). Furthermore, if the control poli-

cies πk(·) for k ∈ {0, . . . , j} safely steer the system to the
neighborhood of the origin O, then the approximated value
function Qj(·) is a robust control Lyapunov function over
the convex safe set CSj for system (1), as shown by the
following proposition.

Proposition 2: For j ≥ 0, let πj(·) : Fj → U be a control
policy defined over F j ⊆ X . Consider system (1) in closed-
loop with πj(·) and assume that ∀xj0 ∈ Fj we have xjk ∈ X
and limt→∞ xjt ∈ O ∀wk ∈ W . Then, Qj(·) is a robust
control Lyapunov function, i.e.

min
u∈U

max
w∈W

[
Qj(Ax+Bu+w)+h(x, u)−Qj(x)

]
≤ 0 (11)

for all x ∈ CSj .
Proof: From definition (10), we have that ∀x ∈ CSj

there exist a set of multipliers {λ0
0, . . . , λ

i
k, . . . , λ

j
K} and

a set of states {x0
0, . . . , x

i
k, . . . , x

j
K} such that for all k ∈

{0, . . . ,K} and for all i ∈ {0, . . . , j} we have xik ∈ SS
i,

λik ≥ 0,
∑j
i=0

∑K
k=0 λ

i
k = 1,

∑j
i=0

∑K
k=0 λ

i
kx

i
k = x, and

Qj(x) =

j∑
i=0

K∑
k=0

λikL
i
πi(xik).

Substituting in the above equation the definition of the worst-
case cost-to-go (9) evaluated at xik ∈ SS

i and leveraging the
convexity of h(·, ·), we have that

Qj(x) =

j∑
i=0

K∑
k=0

λik
[

max
w∈W

[h(xik, π
i(xik)) + Liπi(xik,+(w))]

]
≥ max
w∈W

[h(x, u) +

j∑
i=0

K∑
k=0

λikL
i
πi(xik,+(w))],

where x =
∑j
i=0

∑K
k=0 λ

i
kx

i
k, u =

∑j
i=0

∑K
k=0 λ

i
kπ

i(xik) ∈
U and xik,+(w) = Axik +Bπi(xik) +w. Definition (10) im-
plies that Qj(x) ≤ Liπi(x),∀x ∈ CSj and ∀i ∈ {0, . . . , j},
therefore from the above equation and convexity of Qj(·)
we conclude that

Qj(x) ≥ max
w∈W

[h(x, u) +

j∑
i=0

K∑
k=0

λikQ
j(xik,+(w))]

≥ max
w∈W

[h(x, u) +Qj
( j∑
i=0

K∑
k=0

λikx
i
k,+(w)

)
]

≥ min
u∈U

max
w∈W

[h(x, u) +Qj(Ax+Bu+ w)].

C. Controller Design
In this section we illustrate the controller design which

leverages the convex safe set (7) and the approximated value
function (10). At each time t of the jth iteration, we solve
the following finite time optimal control problem

J LMPC,j
t→t+N (xjt ) = min

πj
t (·)

max
w̄j

t

[

t+N−1∑
k=t

h(xjk|t, u
j
k|t)

+Qj−1(xjt+N |t)]

xjk+1|t = Axjk|t +Bujk|t + w̄jk|t

ujk|t = πjk|t(x
j
k|t)

xjk|t ∈ X , u
j
k|t ∈ U

xjt+N |t ∈ CS
j−1

xjt|t = xjt

∀w̄jk|t ∈ W, k ∈ {t, . . . , t+N}
(12)

where the control policy πjt (·) = [πjt|t(·), . . . , π
j
t+N |t(·)]

and the disturbance w̄j
t = [w̄jt|t, . . . , w̄

j
t+N |t]. The optimal

feedback policy from the above finite time optimal control
problem safely steers system (1) from xjt to the convex safe
set, while minimizing the worst-case cost. Let

πj,∗t (·) = [πj,∗t|t (·), . . . , πj,∗t+N |t(·)] (13)

be the optimal feedback policy to Problem (12). Then we
apply to system (1)

πj(xjt ) = πj,∗t|t (xjt ). (14)

The finite time optimal control problem (12) is solved at time
t + 1, based on the new state xjt+1|t+1 = xjt+1, yielding a
moving or receding horizon control strategy.



Furthermore, we define the domain of the LMPC pol-
icy (14), which is given by

F j =

{
x0 ∈ X

∣∣∣∣∣
∃κ(·) : Rn → Rd, xk ∈ X , κ(xk) ∈ U

xk+1 = Axk +Bκ(xk) + wk,

xN ∈ CSj−1,∀wk ∈ W, k ∈ {0, . . . , N}

}
.

(15)
The set F j , which collects the feasible initial conditions
to Problem (12), is used to compute the initial state xj0
of the jth iteration. In particular, the initial condition at
the jth iteration is computed solving the following convex
optimization problem,

xj0 = argmax
x∈Fj

{ax | a⊥x = 0} (16)

where the user-defined row vector a ∈ Rn represents the
direction in which the LMPC explores the state space, and
a⊥ ∈ Rn is a row vector perpendicular to a.

It is well-known that the solution to Problem (12) can be
computed enumerating the vertices of the disturbance over
the prediction horizon [25]. Therefore, the computational
complexity of Problem (12) explodes with the horizon length
N . For this reason, it is important to construct a terminal
set and terminal cost, which allow to guarantee safety and
performance improvement independently on the prediction
horizon length. In the result section, we show that the
proposed controller is able to safely explore the state space
and to improve its performance, even with a short prediction
horizon.

D. Properties

As discussed in Propositions 1-2, for every point in CSj
there exists a control policy which safely steers the system
to the terminal goal set. The properties of CSj and Qj(·)
allow us to guarantee that the proposed strategy meets
the requirements from Section II. The following theorem
shows that the LMPC (12) and (14) satisfies state and input
constraints while steering the system to the neighborhood of
the origin O.

Theorem 1: Consider system (1) in closed-loop with the
LMPC (12) and (14). Let Assumptions 1-2 hold, initialize
CS0 = O and Q0(·) = 0. If xj0 ∈ Fj ,∀j ≥ 1, then the
LMPC (12) and (14) is feasible for all t ≥ 0 and iteration
j ≥ 1. Furthermore, the closed-loop system asymptotically
converges to O, regardless of the disturbance realization.

Proof: Assume that at the jth iteration Qj(·) is a robust
control Lyapunov function defined on the robust control
invariant set CSj . Then, by standard MPC arguments and
the assumption on xj0 ∈ F j , we have that at iteration
j + 1 the LMPC (12) and (14) recursively satisfies state
and input constraints, and the closed-loop system (1) and
(14) converges asymptotically to the terminal set O [24].
Consequently, the LMPC policy at iteration j + 1 used to
compute Qj+1(·) and CSj+1 satisfies the assumptions in
Propositions 1-2, and therefore Qj+1(·) is a robust control
Lyapunov function defined on the robust control invariant set
CSj+1.
The proof is completed by induction. We initialized Q0(·) =

0, which is a robust control Lyapunov function defined on the
robust control invariant set CS0 = O. Therefore it follows
that ∀j ≥ 1 the LMPC (12) and (14) recursively satisfies
state and input constraints, and the closed-loop system (1)
and (14) converges asymotically to the terminal set O.

Next, we discuss the performance improvement properties.
In particular, we show that if the initial condition of two
subsequent iterations does not change (i.e. xj0 = xj+1

0 ), then
the worst-case cost iteration cost is non-increasing.

Theorem 2: Consider system (1) in closed-loop with the
LMPC (12) and (14). Let Assumptions 1-2 hold, initialize
CS0 = O and Q0(·) = 0. If the initial condition of two
subsequent iterations are equal, xj+1

0 = xj0 ∈ F j . Then,
the worst-case iteration cost (2) is non-increasing with the
iteration index Jj+1

0→T j+1(xj+1
0 ) ≤ Jj0→T j (xj0).

Proof: By Theorem 1, the LMPC (12) and (14) is
feasible at time t of the jth iteration. Let (13) be the optimal
policy time t of the jth iteration, by Proposition 2 we have

J LMPC,j
t→t+N (xjt ) =

t+N−1∑
k=t

h(xj,∗k|t, π
j,∗
k|t(x

j,∗
k|t)) +Qj−1(xj,∗t+N |t)

≥ h(xj,∗t|t , u
j,∗
t|t ) +

t+N−1∑
k=t+1

h(xj,∗k|t, π
j,∗
k|t(x

j,∗
k|t)))

+ min
u∈U

max
w∈W

Qj−1(Axj,∗t+N |t +Bu+ w) + h(xj,∗t+N |t, u)

≥ h(xj,∗t|t , u
j,∗
t|t ) + min

πj
t (·)

max
wj

t

[

t+N−1∑
k=t

h(xk|t, uk|t)

+Qj−1(xt+N |t)]

= h(xj,∗t|t , u
j,∗
t|t ) + J LMPC,j

t+1→t+1+N (xjt+1).

The above equation and the convergence of the closed-loop
system (1) and (14) from Theorem 1 imply that

J LMPC,j
0→N (xj0) ≥ h(xj,∗0|0, x

j,∗
0|0) + J LMPC,j

1→1+N (xjt+1)

≥
∞∑
t=0

h(xj,∗t|t , u
j,∗
t|t ) + lim

t→∞
J LMPC,j
t→t+N (xjt )

=

∞∑
t=0

h(xjt , u
j
t ).

The above derivation holds for all disturbance realization,
therefore we have that

J LMPC,j
0→N (xj0) ≥ Jjπj (xj0).

Finally we notice that the above inequality together with
Equations (9)-(10) and the feasibility of the LMPC policy
πj(·) (14) at the next iteration j + 1 imply that

Jjπj (xj0) = Ljπj (xj0)

= max
wj

0,...,w
j
N−1

N−1∑
k=0

[h(xjk, π
j(xjk)) + Ljπj (xjN )]

≥ max
wj

0,...,w
j
N−1

N−1∑
k=0

[h(xjk, π
j(xjk)) +Qj(xjN )]

≥ J LMPC,j+1
0→N (xj0) ≥ Jj+1

πj+1(xj0) = Jj+1
πj+1(xj+1

0 ).



Finally, we show that the domain of the LMPC (12) and
(14) does not shrink at each iteration.

Theorem 3: Consider system (1) in closed-loop with the
LMPC (12) and (14). Let Assumptions 1-2 hold, and initial-
ize CS0 = O and Q0(·) = 0. If xj0 ∈ Fj ,∀j ≥ 1. Then, the
domain of which the LMPC defined in (15) does not shrink
at each iteration, i.e. F i ⊆ Fj ,∀j ≥ i.

Proof: The proof follows from the definition of the
convex safe set. Notice that by definition (7) we have that
CSi ⊆ CSj ,∀j ≥ i. Therefore, the terminal set in (15) is not
shrinking at each iteration and F i ⊆ Fj ,∀j ≥ i.

IV. PRACTICAL IMPLEMENTATION

In this section we show how the closed-loop trajectories
associated with unknown sampled disturbance sequences can
be used to approximate the convex safe set CSj and the value
function Qj(·). At each jth iteration we collect R simulations
of the closed-loop systems, also referred to as “roll-outs”.
Afterwards, we exploit these R roll-outs to approximate the
robust reachable sets (5) and the worst-case cost-to-go (9).

A. Sample-Based Convex Safe Set

In this section we show how the data from the closed-
loop system (1) and (4) can be used to approximate the
convex safe set CSj . We define the ith disturbance realization
sequence wj

i = [wj0,i, . . . , w
j
T j ,i], where wjk,i is the realized

disturbance at time k of the jth iteration. Furthermore, we
denote the stored closed-loop trajectory associated with the
ith disturbance realization wj

i as

xj(wj
i ) = [xj0(wj

i ), . . . , x
j
T j (wj

i )], (17)

where T j is the time at which the terminal goal set O is
reached. The above notation emphasizes that the realized
state xjk(wj

i ) is a function of the realized disturbance se-
quence wj

i . Now, we notice that at each time k of the jth
iteration the state xjk(wj

i ) is contained into the k-steps robust
reachable set from xj0 (i.e. xjk(wj

i ) ∈ Rk(xj0)). Therefore,
we approximate the k-steps robust reachable set Rk(xj0)
using R roll-outs. In particular, for i ∈ {1, . . . , R} sampled
disturbance sequences wj

i we define the approximated k-
steps robust reachable set

R̃k(xj0) = conv

(
R⋃
i=1

xjk(wj
i )

)
⊆ conv

(
Rk(xj0)

)
. (18)

Finally, we define the approximated safe set

S̃Sj =

{ T j⋃
k=0

R̃k(xj0)

}⋃
O,

which is used to construct the approximated convex safe set,

C̃Sj = conv

(
j⋃

k=0

S̃Sk
)
. (19)

It is important to underline that the above approximated
convex safe set C̃Sj is not invariant, as the approximated

reachable sets are an inner approximation of the exact
reachable sets (Figure 1). Indeed, it may exist a disturbance
realization which can steer the closed-loop system (1) and
(14) outside C̃Sj . In particular, given x ∈ C̃Sj there is a
probability ε > 0 that the closed-loop system evolves outside
C̃Sj ,

Pr(Ax+Bπj(x) + w /∈ C̃Sj |x ∈ C̃Sj) ≥ ε. (20)

In the result section, we show that the above probability is
a function of the number of roll-outs used to construct C̃Sj .
In particular as more roll-outs are collected, C̃Sj from (19)
better approximates the convex safe set CSj from (7).

Fig. 1. Approximated robust reachable sets R̃k from (18) construct using
1000 roll-outs. We notice that the approximated robust reachable sets R̃k

are an inner approximation the robust reachable sets Rk from (5).

B. Sample-Based Q-function
In this section we show how the closed-loop trajectories

may be used to approximate the cost-to-go function Ljπj (·)
in (9). First, we define the realized cost-to-go associated with
the stored state xjk(wi) ∈ R̃k(xj0) ⊆ S̃Sj ,

J̃jk→T j (xjk(wi)) =

T j∑
t=k

h
(
xjk(wi), ujk(wi)

)
(21)

where ujk(wi) = πj(xjk(wi)).
The realized cost (21), associated with the realized trajec-

tory (17), is used to approximate the worst-case cost-to-go
function Ljπj (·). We compute an hyperplane which upper-
bounds the realized cost J̃jk→T j (xjk(wi)) for all stored states{⋃R

i=1 x
j
k(wi)

}
∈ R̃k(xj0). In particular, for time k of the

jth iteration we define the hyperplane ajkx+ bjk, where

[ajk, b
j
k] =

= argmin
a∈Rn,b∈R

R∑
i=0

||axjk(wi) + b− J̃jk→T j (xjk(wi))||22

s.t. axjk(wi) + b ≥ J̃jk→T j (xjk(wi)),

∀i ∈ {0, . . . , R}.
(22)



At the jth iteration, the hyperplanes ajkx + bjk are used to
approximate the worst-case cost-to-go Ljπj (·) from (9) as
follows,

L̃jπj (x) =


+∞ If x /∈ S̃Sj

0 Elseif x ∈ O
ajkx+ bjk Elseif x ∈ R̃k(xj0)

. (23)

The resulting approximated value function is defined as

Q̃j(x) = min
µ
µ | (x, µ) ∈ conv

( j⋃
k=0

epi(L̃πj (x)j)
)
. (24)

Finally, we underline that the above approximated value
function is not a control Lyapunov function for system (1).
Indeed, there is a probability γ > 0 that Equation (11) does
not hold and Q̃j(·) is not decreasing along the closed-loop
trajectory,

Pr
(
Q̃j(Ax+Bπj(x)+w)+h(x, πj(x))− Q̃j(x) > 0

)
≥ γ.
(25)

In the result section, we show that above probability is
inversely proportional to the number R of roll-outs used to
construct L̃jπj (·) in (23).

V. RESULTS

We test the proposed control strategy on the following
double integrator system

xk+1 =

[
1 1
0 1

]
xk +

[
0
1

]
uk + wk, (26)

where the the random disturbance wk is uniformly distributed
on the set W = {w ∈ R2 : ||wk||∞ ≤ 0.1}. The system is
subjected to the following state and input constraints, xk ∈
X = {x ∈ R2 : ||x||∞ ≤ 10} and uk ∈ U = {u ∈ R2 :
||u||∞ ≤ 1}, for all k ≥ 0. Furthermore, we compute the
minimal robust positive invariant set O for the autonomous
system xk+1 = (A + BK)xk + wk where −K is the LQR
gain for Q = 1 and R = 1. Finally, we define the stage cost
h(x, u) = |x|O + |u|KO which satisfies Assumption 2.

The convex safe set CSj and value function Qj(·), used in
the LMPC (12) and (14), are approximated as described in
Section IV. In particular at each iteration j, we use R roll-
outs to compute the approximated safe set C̃Sj and value
function Q̃j(·). In order to initialize the LMPC we set N =

3, C̃S0
= O and Q̃0(·) = 0. Finally at each jth iteration,

the initial state xj0 is computed as the furthest point along
the negative x-axis which belongs to F j . Basically, we set
a = [−1, 0] in (16).

A. Convex Safe Set and Value Function Approximation

In this section, we construct C̃S1
and Q̃1(·) using R =

100 and R = 1000 roll-outs. Furthermore, we perform 1000
Monte-Carlo simulations for the closed-loop system (1) and
(14), in order to estimate the properties of C̃S1

and Q̃1(·).
Figure 2 shows the terminal set O and the approximated

robust reachable sets R̃k(x1
0), which are used to construct

the approximated convex safe set C̃Sj with R = 100 and

Fig. 2. The approximated robust reachable sets R̃k (18) used to construct
C̃S1 with R = 100 and R = 1000 roll-outs. Notice that the approximated
convex safe set C̃S1 constructed using 1000 roll-outs contains the one
constructed using 100.

R = 1000 roll-outs. As expected, the approximated convex
safe set C̃Sj constructed using 1000 trajectories contains
the one constructed using 100 trajectories. As mentioned in
Section IV-A (Eq. (20)), the approximated convex safe set is
not invariant. Indeed, there is a probability ε > 0 that, given
a state x ∈ C̃S1

, the closed-loop system evolves outside
C̃S1

. In order to estimate the probability ε, we perform 1000
Monte-Carlo simulations for the closed-loop system (1) and
(14) and we compute the percentage of realized states which
evolved outside C̃Sj . As expected the probability ε decreases
as more roll-outs are used to construct C̃S1

. In particular,
we have that ε ∼ 3.6% and ε ∼ 0.3% for R = 100 and
R = 1000, respectively.

Fig. 3. Approximated value function Q̃j(·) constructed with R = 100
and R = 1000 realized trajectories. Note that as more trajectories are used
the value of Q̃j(·) increases almost everywhere, thus it better approximated
Qj(·).



Finally, we analyze how the number of roll-outs affects
the approximated value function Q̃1(·). Figure 3 shows the
approximated value function Q̃1(·) constructed with R =
100 and R = 1000 roll-outs. First, we notice that the
domain of approximated value function Q̃1(·) is enlarged as
more realized trajectories are used to compute the approx-
imation. Indeed, the domain of Q̃1(·) is the approximated
safe set C̃S1

from Figure 2. Second, we recall that Q̃1(·) is
constructed based on sampled disturbance sequences and it
underestimates Q1(·), which considers the whole disturbance
support. Therefore, we expect that as more sample distur-
bance sequences are considered Q̃1(·) better approximates
Q1(·). This intuition is confirmed by Figure 3, we notice
that Q̃1(·) constructed with 1000 trajectories upper-bounds
almost everywhere the value function Q̃1(·) constructed with
100 trajectories, therefore it better approximates Q1(·). Fi-
nally, we recall from Equation (25) that Q̃1(·) is not a robust
control Lyapunov function. Indeed, there is a probability
γ > 0 that Q̃1(·) is not decreasing along the realized closed-
loop trajectory. In order to estimate the probability γ, we use
1000 Monte Carlo simulations. As expected, the probability
γ decreases as more closed-loop trajectories are used to
construct Q̃1(·). In particular, we have γ ∼ 10.1% and
γ ∼ 4.3% for R = 100 and R = 1000, respectively.

B. Iterative Policy Update

In this section we run the LMPC for 10 iterations. In
particular, at each jth iteration we collect R = 1000 roll-
outs which are used to compute the approximated convex
safe set C̃Sj and the approximated value function Q̃j(·). We
show that the LMPC is able to explore the state space while
safely steering the system to the terminal set O.

TABLE I
INITIAL CONDITION xj

0 AT EACH jTH ITERATION.

x1
0 = −

[
2.00 0

]>
x6
0 = −

[
9.90 0

]>
x2
0 = −

[
5.46 0

]>
x7
0 = −

[
9.90 0

]>
x3
0 = −

[
6.86 0

]>
x8
0 = −

[
9.90 0

]>
x4
0 = −

[
9.35 0

]>
x9
0 = −

[
9.90 0

]>
x5
0 = −

[
9.90 0

]>
x10
0 = −

[
9.90 0

]>
As stated in Section V, at each jth iteration we compute

the initial condition xj0 as the furthest point along the
negative x-axis such that Problem (12) is feasible. Notice
that by Theorem 3, the domain of the LMPC policy F j
is enlarged at each iteration (i.e. Fk ⊆ Fj for all k ∈
{1, . . . , j}). As a result, the region of the state space from
which the controller is able to safely complete the control
task grows at each iteration. This fact is highlighted in
Table I, where we report the initial condition xj0 as a function
of the iteration index. Furthermore, in Figure 4 we show 1000
realized trajectories for the 2nd, 4th and 8th iterations. We
notice that at each iteration the LMPC safely operates the
system over progressively larger regions of the state space,

Fig. 4. For iterations j ∈ {2, 4, 8} and i = {1, . . . , 1000} disturbance
realizations we show the closed-loop trajectories xj(wj

i ) from (17). Fur-
thermore, we report the initial condition xj

0 which is further from the origin
at each iteration.

until the closed-loop trajectory is close to saturate the state
constraints.

Finally, in Figure 5 we report the approximated value
function Q̃j(·) for the 2nd, 4th and 8th iterations. We recall
that the domain of Q̃j(·) is the approximated convex safe
set C̃Sj , which is enlarged at each iteration. Therefore,
as more iterations of the control task are executed, Q̃j(·)
approximates the value function over larger regions of the
state space, as shown in Figure 5.

C. Performance Improvement

In this section we empirically validate Theorem 2. We
design a LMPC which minimizes the stage cost h̄(x, u) =
0.1|x|O+ |u|KO. Afterwards, we run the closed-loop system
for 10 iterations starting from the same initial condition,
xj0 = −[0, 9.9] ∀j ∈ {0, . . . , 9}. In order to initialize
the LMPC, we use a suboptimal controller which robustly

Fig. 5. Approximated value function Q̃j at the 2nd, 4th and 8th iteration.
Notice that the domain of Q̃j is enlarged at each iteration.



Fig. 6. Worst-case realized cost and realized cost of the LMPC over the
iteration index. We notice that the LMPC improves the worst-case realized
cost from the suboptimal controller at the 0th iteration, until it reaches
convergence.

steers system (26) to O and we exploit the closed-loop
data to initialize the approximated convex safe set and value
function.

Figure 6 shows the closed-loop cost J̃j0→T j (xj0(wj
i ))

from (21) and the worst-case realized cost

max
i∈{0,...,R}

J̃j1→T j (xj0(wj
i )) (27)

for 10 iterations. We notice that the LMPC is able to improve
the worst-case realized cost associated with the suboptimal
policy used at the 0th iteration. Furthermore, we underline
that the controller performs exactly the same task at each
iteration (xj0 = xi0,∀j, i ≥ 0) and the worst-case realized
cost (27) decreases at each iteration, until it converges within
a tolerance of 0.7% as stated in Theorem 2.

VI. CONCLUSIONS

In this paper we proposed a sample-based Learning Model
Predictive Controller (LMPC) for linear system subject to
bounded additive uncertainty. First, we used the LMPC pol-
icy to construct a safe set and the associated value function.
Afterwards, we showed that the proposed strategy allows to
guarantee safety and worst-case performance improvement.
Finally, we exploited sampled closed-loop trajectories to
approximate the safe set and associated value function. We
demonstrated the effectiveness of the proposed approach
on a numerical example. In particular, we showed that the
proposed LMPC is able to safely explore the state space
while estimating the value function associated with the
control task. Future work concentrates on finding probability
bounds, which would allows to characterize the properties of
the approximated safe set and approximate value function as
a function of the sampled trajectories.

REFERENCES

[1] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[2] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian process model based predictive control,” in Proceedings
of the 2004 American Control Conference, vol. 3. IEEE, 2004, pp.
2214–2219.

[3] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059–
6066.

[4] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with
gaussian process dynamics for autonomous miniature race cars,” in
2018 European Control Conference (ECC). IEEE, 2018, pp. 1341–
1348.

[5] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Advances in Neural Information Processing Systems, 2018,
pp. 4759–4770.

[6] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Learning-based
predictive control for linear systems: a unitary approach,” arXiv
preprint arXiv:1810.12584, 2018.

[7] U. Rosolia and F. Borrelli, “Learning how to autonomously race a
car: a predictive control approach,” arXiv preprint arXiv:1901.08184,
2019.

[8] K. S. Lee and J. H. Lee, “Model predictive control for nonlinear
batch processes with asymptotically perfect tracking,” Computers &
Chemical Engineering, vol. 21, pp. S873–S879, 1997.

[9] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based
nonlinear model predictive control to improve vision-based mobile
robot path-tracking in challenging outdoor environments,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 4029–4036.

[10] K. S. Lee and J. H. Lee, “Convergence of constrained model-based
predictive control for batch processes,” IEEE Transactions on Auto-
matic Control, vol. 45, no. 10, pp. 1928–1932, 2000.

[11] J. H. Lee, K. S. Lee, and W. C. Kim, “Model-based iterative learning
control with a quadratic criterion for time-varying linear systems,”
Automatica, vol. 36, no. 5, pp. 641–657, 2000.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming.
Athena Scientific Belmont, MA, 1996, vol. 5.

[13] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: a survey and some new implementations,” IEEE/CAA Journal
of Automatica Sinica, vol. 6, no. 1, pp. 1–31, 2019.

[14] B. Recht, “A tour of reinforcement learning: The view from contin-
uous control,” Annual Review of Control, Robotics, and Autonomous
Systems, 2018.

[15] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[16] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,” Machine learning, vol. 22, no. 1-3, pp.
33–57, 1996.

[17] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 7130–7135.

[18] M. Bacic, M. Cannon, Y. I. Lee, and B. Kouvaritakis, “General inter-
polation in mpc and its advantages,” IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 1092–1096, 2003.

[19] F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing linear model
predictive control: On the enlargement of the terminal set,” in 2013
European Control Conference (ECC). IEEE, 2013, pp. 511–517.

[20] F. Blanchini and F. A. Pellegrino, “Relatively optimal control and
its linear implementation,” IEEE Transactions on Automatic Control,
vol. 48, no. 12, pp. 2151–2162, 2003.

[21] U. Rosolia and F. Borrelli, “Learning model predictive control for
iterative tasks: a computationally efficient approach for linear system,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 3142–3147, 2017.

[22] ——, “Learning model predictive control for iterative tasks. a data-
driven control framework.” IEEE Transactions on Automatic Control,
2017.

[23] C. M. Kellett, “A compendium of comparison function results,”
Mathematics of Control, Signals, and Systems, vol. 26, no. 3, pp. 339–
374, 2014.

[24] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[25] P. O. Scokaert and D. Mayne, “Min-max feedback model predictive
control for constrained linear systems,” IEEE Transactions on Auto-
matic control, vol. 43, no. 8, pp. 1136–1142, 1998.


	I Introduction
	II Problem Definition
	III Learning Model Predictive Control
	III-A Safe Set
	III-B Q-function
	III-C Controller Design
	III-D Properties

	IV Practical Implementation
	IV-A Sample-Based Convex Safe Set
	IV-B Sample-Based Q-function

	V Results
	V-A Convex Safe Set and Value Function Approximation
	V-B Iterative Policy Update
	V-C Performance Improvement

	VI Conclusions
	References

