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Abstract— A significant portion of a consumer’s annual
electrical costs can be made up of coincident peak charges:
a transmission surcharge for power consumed when the entire
system is at peak demand. This charge occurs only a few times
annually, but with per-MW prices orders of magnitudes higher
than non-peak times. While predicting the moment of peak
demand charges over the course of the entire billing period
is possible, optimal cost mitigation strategies based on these
predictions have not been explored. In this paper we cast
coincident peak cost mitigation as an optimization problem and
analyze conditions for optimal and near-optimal policies for
mitigation. For small consumers we use approximate dynamic
programming to first show the existence of a near-optimal policy
and second train a neural policy for curtailing coincident peak
charges when subject to ramping constraints.

I. INTRODUCTION

A coincident peak (CP) is a consumer’s electrical demand
at the time of the total system peak demand. Since much
of the power system infrastructure is only used only during
peak times [1], some system operators and utilities use CP
pricing mechanisms to incentivize customers to reduce their
consumption during peak times, therefore hoping to achieve
an overall reduction of the system peak [2], [3]. Existing
CP charges are applied through a rate structure, with the
rates at peak times hundreds of times larger than at regular
times. As a result, CP charges often account for a significant
portion—often greater than 20%—of annual electrical costs
for participating customers [4], providing them with a strong
incentive to reduce their consumption at these peak times [5],
[6].

In this paper, we adopt the view point of a small cus-
tomer facing CP charges and study how the customer can
operationally mitigate this cost. The primary challenge is
that the timing of the CP charges are only known after all
of the system demands have been realized. For example, if
CP is charged on a monthly basis [3], the hour that the peak
load occurred in only determined after the entire month has
passed.

To mitigate this uncertainty in peak timing, operators
typically provide warning signals to consumers to indicate
peak is forthcoming. In [4], the authors utilize these signals
to develop a scheduling model for a data center’s workload in
the Fort Collins PUD [3]. However, forecasting when a peak
will occur is a difficult prediction problem [7], [8], since it
only occurs (by definition) at a single point in time. Since
the rate associated with the CP is orders of magnitude higher
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than normal time-of-use rates, false negative predictions are
extremely costly. Therefore operators tend to send out many
successive CP warning signals, degrading the efficiency of
customer responses and leading to user fatigue in the long
run [9], [6].

In this work we treat the problem of mitigating CP costs
as an optimization problem that is continually solved over
the entire horizon of the billing period. Instead of explicitly
predicting when the peak will occur, we adopt a probabilistic
framework to gracefully incorporate observations made by
the customer to maximize their expected revenue. That
is, at each time-step we calculate the probability of the
peak occurring at some point in the future having observed
previous values of system demand.

Related works on mitigating CP pricing focus on large
consumers with considerable demand flexibility, namely,
data centers [10]. Limited works have addressed CP prices
for data center consumers directly such as [4] which in-
corporates existing grid operator signals. Others related to
data center peak power consumption address the problem
generally based on time-of-use costs given on-site storage
or generation capabilities [11], [12] without tackling the
idiosyncrasies of CP pricing mechanisms.

Dynamic programming is a natural approach to maximize
the expected revenue of a small customer in the face of
CP timing uncertainty. However, since the action space
of a customer is continuous and coupled in time, solving
the dynamical programming problem becomes intractable.
Therefore we approximate the value function and train a
deterministic policy parametrized as a neural network. Based
on the structure of the CP charge, we design the input of
the neural network to explicitly include the maximum of the
observed demand and the number of time periods. Using
these inputs, we show that this neural network based policy
is comparable to a brute force grid search and outperforms a
standard benchmark algorithm. This approach advances the
state-of-the-art by providing a way to actively reduce the CP
cost that does not rely on system warning signals or assumes
an adversarial environment.

The rest of the paper is organized as follows: Section II
defines the optimization problems to be solved, Section III
provides the solution framework, Section IV presents a
numerical case study. We conclude with a discussion on
future work for both large and small consumers and make
some final remarks in Section V.
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Fig. 1: In PJM’s Duke Energy Ohio/Kentucky region: (a)
actual and forecasted system load and (b) the distribution of
forecast error from June 1 to September 30, 2018.

II. MODEL AND PROBLEM FORMULATION

We consider a small customer that tries to maximize its
revenue subject to CP charges over T time periods. Let
xt be the energy consumption of the customer at time
t ∈ {1, . . . , T}, and it is limited to be between x and
x. We assume the revenue of the customer is represented
by a concave increasing function g(·) [13], [14] of power
consumption. Let πcp be the CP charge rate and the customer
pays an amount of πcpxt∗ where t∗ is the time period the
system peak occurs.

We model the system load in each time period as random
variables S1, . . . , ST where the mean of St is the forecasted
load value. Even though system loads are strongly correlated
in time, once the forecast value is given, the forecast errors
are typically independent across time periods [15], [16]. For
example, Fig. 1 illustrates the distribution of system load
forecast error for the top 10% of system load values during
summer months in 2018 in a single PJM subregion.

Additionally, it is clear a large customer has a measurable
impact on the value of St. In the case of ERCOT, for exam-
ple, the 6 largest customers accounted for over 80% of each
summer monthly CP in 2017 and 2018. On the other hand, of
the 130 total customers participating in ERCOT’s CP pricing
program, 20% in 2017, and 40% in 2018 consumed less than

1
10 the difference between the annual system peak and the
second closest system demand. For these exceedingly small
customers, the variance of the forecast error well exceeds
their CP demands of less than 5-10 MW.

Therefore, in the case of a small customer we assume that
S1, . . . , ST are independent and their mean is given by the
forecast values. We define t∗ as the time index corresponding
to the maximum load:

t∗ = arg max
t
{S1, . . . , St}. (1)

Note since t∗ is a function of random variables, it is also a
(discrete) random variable.

With these definitions, the expected net revenue (or re-
ward) of a customer is

E[R] := E

[
T∑

t=1

g(xt)− πcpxt∗
]

(2)

where t∗ is defined in (1) and the expectation is over the
random variables S1, . . . , ST .

The goal of the customer is then to maximize E[R] subject
to their operational constraints. We assume a fairly simple
customer model where the demand from each time-period
is coupled through a ramping constraint, and the customer’s
optimization problem is

maximize
xt

E[R]

subject to x ≤ xt ≤ x̄
xt−1 − δ ≤ xt ≤ xt−1 + δ

(3)

where δ limits the possible rate-of-change between two time
periods. Other types of constraints can be included using the
techniques described in this paper.

A. Sequential Decision Problem

In practice, the optimization problem in (3) needs to be
solved in a sequential manner. There are two sources of
temporal coupling in (3) that makes this sequential optimiza-
tion problem nontrivial and interesting. The first is the ramp
constraint between two successive time steps. The second is
how the timing of the peak changes after loads are observed.

At time t, the customer have observed the realization
of S1, . . . , St−1, which we denote as s1, . . . , st−1. Based
on these observations, the value of peak time t∗ changes.
In other words, if the observed loads are large, then the
peak is likely to have already occurred and the customer
can act aggressively; conversely, if the maximum value of
the observed loads are small, then the customer should act
more conservatively to protect against incurring a large CP
charge in the future. Therefore, even if the ramp limits
are not present, the structure of the CP charge induces a
time dependency on the observations made at each stage. A
variant of (3) without ramp constraints is studied in [4] where
data centers are assumed to have a large amount of flexibility
and can ignore the coupling of its own actions between
two time periods. In this paper, we focus on commercial
customers that may not have this level of flexibility and are
limited in their rate-of-change.



B. Benchmark Algorithm

There are two typical strategies to solve (3) in practice.
The first is to simply assume that all time periods (e.g.,
all hours between 3 PM and 7 PM on a hot summer day)
experience the peak demand and conservatively reduce the
load to mitigate the CP charge [6]. The the CP charge
is evenly distributed over all of these time intervals. The
second is to follow the warning signals of operators and treat
those as true peak times [3], [4]. It turns out that these two
strategies amount to the same thing, since operators tend to
be conservative and issue CP warnings for all of the time
periods that have a reasonable chance of experiencing the
moment of peak demand [3]. This is to say that conservative
CP warnings amount to treating any hot summer afternoon,
for example, as equally likely to the system peak without
taking into joint consideration the known system capacity
and previously observed system loads during the billing
window. Therefore we adopt the following strategy as the
a baseline algorithm which we call the naive strategy [8],
where the customer solves

max
xt

g(xt)−
1

T
πcpxt, (4)

where the scaling factor 1/T represents the fact that the cost
of CP is amortized evenly to all of the time periods under
consideration. The optimal solution is then the the demand
that satisfies the first order optimality condition Tg′(x∗) −
πcp = 0.

Note even though this solution is simple to compute,
it does not take into account the successive realization
in the system load and is generally suboptimal. In later
comparisons, we will call it the naive policy. In the next
section, we develop a policy based on approximate dynamic
programming to solve (3).

III. APPROXIMATE DYNAMIC PROGRAMMING

A. Dynamic Programming Formulation

Let us first directly apply a dynamic programming ap-
proach to optimize (2). Suppose the customer is solving
for the optimal xT , having already chosen x1, . . . , xT−1 at
the final step t = T − 1. The customer must maximize
the expected reward conditioned on observed system load
realizations, s1, . . . , sT−1, specifically, E[R|s1, . . . , sT−1].

At t = T−1, let sm = max{s1, . . . , sT−1}, the maximum
observed so far; since this is the final round, the expected
reward depends only on whether sT will be larger than sm.
Let pT = 1 − P (sm < ST ), the probability that the final
system load realization will be the CP. Then the objective,

E[R|sm] =
∑

t=1,...T−1
g(xt) + g(xT )− πcpE [xt∗ |sm] (5a)

=
∑

t=1,...T−1
g(xt) + g(xT )− (5b)

πcp[(1− pT )xt∗ + pTxT ]. (5c)

Thus, for the solution x′T to g(x′T ) − πcppT = 0, the
optimal x∗T is the point in the interval [xT−1 − δ, xT−1 + δ]

which minimizes |x′T −x∗T |. At t = T − 2, in order to solve
for the optimal x∗T−1 there are two potential rounds that the
CP may yet occur on and the customer must consider the
probability that either ST or ST−1 is the CP. Indeed,

E[R|s1, . . . , sT−2] =
∑

t=1,...,T−2
g(xt) + g(xT−1)+ (6a)

E[g(xT )− πcp[(1− pT )xt∗ + pTxT ]],
(6b)

noting that xT remains inside the expectation since it de-
pends on the realization of ST−1. Iterating backwards yields
a dependency on future realizations of St, where only the
current consumption xt, maximum system load observed
thus far sm, and number of rounds remaining T−t influence
future choices of xt+1, . . . , xT .

A straightforward means of addressing this would be a
brute force grid search. Consumption values in [x, x̄] and a
range of likely system loads St can be discretized, with every
potential outcome being computed forward from each possi-
ble initial value x1. At each time a consumer would choose a
feasible xt+1 subject to ramping constraints that maximizes
the expected reward over the entire horizon T for all possible
outcomes given s1, . . . , st using the output of the grid search
as a look-up table; however, a complete grid search exhibits
exponential complexity in T . This dimensionality problem is
common in applications of dynamic programming [17].

Therefore we propose an approximate dynamic program-
ming approach by sampling from all possible outcomes in
order to estimate the best choices of xt+1. These samples are
used to train a policy f , which takes as input at time t the
current consumption xt, the largest system load observed so
far in the billing period sm, and the number of rounds left,
T−t. The policy then outputs an estimated optimal x̂t+1. We
note that in the absence of these time coupling constraints,
an optimal solution exists since each time-step is completely
independent.

B. Neural Network Policy

Neural networks have gained popularity as a tractable way
to parameterize policies. For example, they have been used to
solve approximate dynamic programming problems in [17],
[18], [19]. We also adopt a neural network based policy to
solve (3). In the context of dynamic programming, a policy
is a function that maps previous values to an action. In our
case, this policy should map the current choice of xt and
observations of st to an output xt+1 that a customer should
select as their demand based on, in this case, criterion that
maximizes their expected reward over the remaining time
horizon. A policy in the context of approximate dynamic
programming attempts to output a value x̂t+1 that is close
to optimal.

Therefore, in order to train a policy f we require an
approximation of the true optimal output x∗t+1 of f that
maximizes expected reward R given previous observations
of s. Alg. 1 details the process by which these samples
are generated. At time t, for each feasible value of xt+1



Fig. 2: Architecture of single-layer neural network policy,
with inputs xt, sm, T − t, and a linear bias term.

subject to the ramping constraints, potential outcomes are
forward simulated until time T a total of C times. The value
of xt+1 with the best average remaining reward—modulo∑t

i=1 g(xt)—is selected as the training output. If the range
of customer consumption values are discretized into n values,
sampling across all possible starting times t ∈ T yields an
improved complexity of O(TCn).

Many samples are compiled and used to train a neural
network to to approximate the function f . Fig. 2 illustrates
the basic network architecture described and used in Sec. IV.
The necessary inputs of the policy at time t are 1) the
current state xt, as this determines the range of feasible
values due to the ramping constraint, 2) the maximum value
sm = max{s1, . . . , st} observed thus far, as values of
si < sm have no bearing on the timing of the CP, and
3) the number of rounds left, T − t—given the probability
density function of St—determines the probability any future
value will be greater than sm and thus the new potential CP.
When performing grid search, these three values completely
determine the expected reward when choosing a value xt+1.

IV. CASE STUDIES

To test the efficacy of our approximate dynamic program-
ming solution compared to the naive strategy, we set up
a numerical study1. We consider two different consumer
revenue functions (illustrated in Fig. 3),

g1(x) = 2 log(1 + x2) and (7a)

g2(x) = 1.386
4
√
x (7b)

For both revenue functions we suppose the customer’s
ramp constraint δ = 0.3, and that the customer’s CP charge
rate πcp = 0.6Tg(x̄), or 60% of their maximum possible
gross revenue over T rounds. Typically CP charges form
greater than 20% of their annual electrical costs, but we

1All code to reproduce our results and results plots can be found on
our GitHub project repo at https://github.com/cpatdowling/
peakload/blob/master/notebooks/cdc_2019_submission.
ipynb

Data: xt, sm, T
Result: Estimated policy output x̂t+1

C = number of Monte Carlo simulations;
sim rewards = [];
discretize [xt − δ, xt + δ];
for each feasible xt+1 ∈ [xt − δ, xt + δ] do

sim rewards[xt+1] ← [];
for j = 1, . . . , C do

sample st+1 according to system load
distribution;

x← [xt, xt+1];
s← [sm, st+1];
for k = t+ 2, . . . , T do

sample sk according to system load
distribution;
s← sk;
randomly sample feasible xk from interval
[xk−1 − δ, xk−1 + δ];
x← xk

end
sim rewards[xt+1]← R(x, s);

end
end
x̂t+1 = arg maxxt+1

1
C

∑
sim rewards (choose xt+1

with best average forward simulated reward)
Algorithm 1: Monte Carlo path sampling

Fig. 3: Case study revenue functions gi(x)

choose to much higher percentage to illustrate a more drastic
scenario.

For T = 2, ...10 rounds2, we use the sampling strategy
defined in Alg. 1 to generate 1000 input/output samples per
time t ∈ [1, . . . , T ], such that we train with an even number
of x̂t+1 for all t. For each feasible xt+1 being evaluated, the
number of simulations C = 100.

As a first pass we design our neural network to have a
single hidden layer of size 4 with a sigmoidal activation
function. Further, we included a linear bias term, indicated as
the fourth input in Fig. 2. The neural network is trained using
mean-squared error; additional hyperparameters like learning

2Results for larger values of T can be found for g1(x) in our Github
project repo

https://github.com/cpatdowling/peakload/blob/master/notebooks/cdc_2019_submission.ipynb
https://github.com/cpatdowling/peakload/blob/master/notebooks/cdc_2019_submission.ipynb
https://github.com/cpatdowling/peakload/blob/master/notebooks/cdc_2019_submission.ipynb


Fig. 4: Comparison of best-possible performance via grid
search to a NN policy and the naive strategy. Reward is
strictly increasing with each additional number of rounds
roughly as Tg1(x)

Fig. 5: Policy performance for revenue g1(x), across time
horizons T with πcp set to be 60% of maximum, unpenalized
revenue for each T .

rate and batch-size can be found in our linked repository.
First we test the validity of the assumption that our

ADP sampling procedure yields near-optimal choices x̂t+1

against an exhaustive grid-search. For T = 2, 3 and 4, and
revenue function g1(x) we compute an exhaustive grid for
our example function and system load distribution. Fig. 4
illustrates the relative performances of each strategy; while
we found that the discretization resolution of the grid search
has a noticeable effect on the resulting reward given the
choice of our case study revenue function, the NN policy
performs nearly as well and we make use of the sampling
technique on a larger number of rounds for which grid search
is intractable.

Figures 5 and 6 illustrate the performance of the respective
NN policies against the naive strategies for g1(x) ad g2(x).
The NN policies consistently outperforms the naive optimal
solution while maintaining the added benefit of being an
solution approximated from sampled paths. In the case of
mitigating CP costs on an hourly basis, it is unlikely that
a potential CP would occur at anytime in excess of 8 to

Fig. 6: Policy performance for revenue g2(x), across time
horizons T with πcp set to be 60% of maximum, unpenalized
revenue for each T .

Fig. 7: Example of policy for revenue g1(x) for multiple
rounds t over time horizon T = 4 and fixed xt = 0.3.
With later rounds of t, the policy becomes less conservative
and shifts to the right as the decreasing number of rounds
decreases the probability of a new maximum system load
being observed.

10 consecutive hours, viz occuring outside known, afternoon
peak hours [4]. This benefits a customer by allowing them
to focus on sweeping training parameters to tune the policy
for a narrow range of values of T .

Figures 7 and 8 illustrate examples of the outputs of f
corresponding to g1(x) and g2(x) both trained for T = 4.
For each time t = 1, 2, 3, the output xt+1 is given as a
function of sm for a fixed initial value, xt = 0.3. Note that
with each consecutive round, the likelihood of St remaining
that may be a CP changes both as a function t and sm.
In general, the probability that the next realization of St

will be the maximum over all T , pt = 1
T−t (1 − P (St <

sm)(T−t). Interestingly these policies learned for g1(x) and
g2(x) appear very different.

In the case of policy f learned for g1(x), outputs of the
policy for each t become less conservative with decreasing
number of rounds. The flattening of the policy at small



Fig. 8: Example of policy for revenue g2(x) for multiple
rounds t over time horizon T = 4 and fixed xt = 0.3.
With later rounds of t, the policy interestingly becomes more
conservative, likely due to the sharper decrease in g′2(x) in
increasing x.

values of sm is due to the ramping constraint. Conversely,
decreasing the radius of curvature of the revenue function—
the sharpness in the initial revenue increase transitioning
into diminishing returns—as in g2(x), it appears that a more
conservative strategy arises, likely due to the decreased cost
of false negatives. Large changes in x result in little change
in g2(x) but correspondingly a relatively larger marginal
decrease of πcp in the CP charge. That is to say it costs
the customer little to curtail to values already near the naive
optimal strategy for g2(x), (e.g. for T = 10, x = 0.311), yet
the NN policy still improves on the naive strategy.

V. CONCLUSION

In sum we considered how a small customer participating
in a CP pricing program can near-optimally trade off lost
revenue for CP cost savings. We formulated an approximate
dynamic programming problem that incorporates successive
observations of system loads likely to be a CP as inputs
allowing a customer subject to ramping constraints to make
informed curtailment decisions over the course of the billing
period time horizon. This work improves on existing algo-
rithms such as [4] or [8] by escaping an ad-hoc threshold
curtailment regime where if some measure exceeds a thresh-
old parameter than the customer should curtail. Further, this
optimization framework provides footing for further theoretic
analysis, detailed below.

A. Future Work

The goal of future work is to explore the implications
of the optimization formulation in (3) for large players as
observations of St become a function of xt. Multiple large
customers contributing to St resemble a Cournot compe-
tition, and a desirable outcome might be the existence of
convergent strategies for large customers.

Additionally, for both large and small players, given a
customer’s time-coupled revenue function, how are they

incentivized to participate in a CP program? Intuitively a
customer with more demand flexibility—such as in the case
of the data center in [4]—has potentially more to gain from
participating in a CP pricing program than a comparably
sized customer with little demand flexibility. If this is the
case, how do factors such as CP billing horizon affect incen-
tives, e.g. annually vs. monthly, impact this incentives like
discounted time of use rates in exchange for participating?
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