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Abstract— In this paper, zero-sum mean-field type games
(ZSMFTG) with linear dynamics and quadratic utility are stud-
ied under infinite-horizon discounted utility function. ZSMFTG
are a class of games in which two decision makers whose
utilities sum to zero, compete to influence a large population of
agents. In particular, the case in which the transition and utility
functions depend on the state, the action of the controllers,
and the mean of the state and the actions, is investigated. The
game is analyzed and explicit expressions for the Nash equilib-
rium strategies are derived. Moreover, two policy optimization
methods that rely on policy gradient are proposed for both
model-based and sample-based frameworks. In the first case,
the gradients are computed exactly using the model whereas
they are estimated using Monte-Carlo simulations in the second
case. Numerical experiments show the convergence of the two
players’ controls as well as the utility function when the two
algorithms are used in different scenarios.

I. INTRODUCTION

Decision making in multi-agent systems has recently re-
ceived an increasing interest from both theoretical and empir-
ical viewpoints. Multi-agent reinforcement learning (MARL)
and stochastic games were shown to model well systems with
a small number of agents. However, as the number of agents
becomes large, analysing such systems becomes intractable
due to the exponential growth of agent interactions and the
prohibitive computational cost. To tackle this issue, mean-
field approximations, borrowed from statistical physics, were
considered to study the limit behaviour of systems in which
the agents are indistinguishable and their decisions are influ-
enced by the empirical distribution of the other agents.

Mean-field games (MFGs) [1], [2] and their variants mean-
field type control (MFC) [3] and mean-field type games
(MFTG) [4] consist of studying the global behaviour of
systems composed of infinitely many agents which interact in
a symmetric manner. In particular, the mean-field approxima-
tion captures all agent-to-agent interactions that, individually,
have a negligible influence on the overall system’s evolution.

An archetypal MFTG is mean-field zero-sum games. Two-
player zero-sum games in their standard stochastic form, with
no mean-field interactions, have been extensively studied in
the literature. In this class of games, two decision makers
compete to respectively maximize and minimize the same
utility function. The large literature on this topic is motivated
by many applications and by connections with robust control
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[5]. Recently, generalizations to the case where the state dy-
namics is of MKV type have been introduced in continuous
time over a finite horizon. Optimality conditions have been
derived using the theory of backward stochastic differential
equations (BSDEs) in [6], using the dynamic programming
principle and partial differential equations (PDEs) in [7] or
using a weak formulation in [8]. All these works assume
compactness of the action space, and hence are not applicable
to a general linear-quadratic setting.

Although general stochastic problems with mean-field
interactions can be studied from a theoretical perspective, ex-
plicit computation of the solution and numerical illustration
of the Nash equilibrium are challenging. In standard optimal
control, linear-quadratic (LQ) models, where the dynamics
are linear and the utility is quadratic, usually have analytical
or easily tractable solutions, which makes them very pop-
ular. These problems have also attracted much interest in
the optimization and machine learning communities, since
algorithms with proof of convergence can be developed, see
e.g. [9] where the authors prove convergence of model-based
and sample-based policy gradient methods for an LQ optimal
control problem. Sample-based methods have also been used
to solve LQ zero-sum games. In [10], a discrete-time linear
quadratic zero-sum game with infinite time horizon is studied
and a Q-learning algorithm is proposed, which is proved
to converge to the Nash equilibrium. In [11], the authors
study mean-field control problems with a focus on linear-
quadratic models in discrete time and propose a model-
free policy gradient algorithm that is shown to converge to
the optimal control. A model-free Q-learning algorithm is
developed in [12] for MFC problems. The MFC problem
is first cast as a Markov decision process (MDP) with
deterministic transitions and then the convergence of the Q-
learning algorithm is analysed. In [13], the authors study LQ
zero-sum games and propose three projected nested-gradient
methods that are shown to converge to the Nash equilibrium
of the game. However, none of these works tackle mean-field
interactions in a zero-sum setting.

In the present work, under an infinite-horizon and dis-
counted utility function, we investigate zero-sum mean-field
type games (ZSMFTG) of linear-quadratic type, which, to
the best of our knowledge, had not been the focus of any
work before. In particular, we address the case in which
the transition and utility functions do not only depend on
the state and the action of the controllers, but also on the
mean of the state and the actions. Moreover, the state is
subject to a common noise. The structure of the problem
and the infinite horizon regime allow us to identify the

ar
X

iv
:2

00
9.

02
14

6v
1 

 [
m

at
h.

O
C

] 
 2

 S
ep

 2
02

0



form of the equilibrium controls as linear combinations of
the state and its mean conditioned on the common noise,
both in the open-loop and the closed-loop settings. To learn
the equilibrium, we extend the policy-gradient techniques
developed in [11] for MFC, to the ZSMFTG framework. We
design policy optimization methods in which the gradients
are either computed exactly using the model or estimated
using Monte-Carlo samples if the model is not fully known.

The rest of the paper is organized as follows. In Sec-
tion II, the zero-sum mean-field type game is formulated,
preceded by a N -agent control problem which motivates
this setting. Optimality conditions for the equilibrium are
briefly discussed in Section III, showing that the equilibrium
controls of the two players are linear in the state and
its mean. Model-based and model-free policy optimization
methods are proposed in Section IV. In Section V, we
report numerical experiments to show the convergence of
the controls and the utility function for different scenarios.
Section VI concludes the paper. More details are provided
in the long version of the paper [14].

II. MODEL AND PROBLEM FORMULATION

In this section, we first present a zero-sum game in
which two controllers compete to influence a population of
agents interacting in a symmetric way, through the empirical
distribution of their states and actions. We then present an
asymptotic mean-field version of the game, in which the two
controllers influence a state whose dynamics is of MKV type.

A. N -agent problem

Consider a system composed of a population {1, . . . , N}
with N indistinguishable agents. We investigate the case
in which these agents have symmetric interactions and are
influenced by two decision makers, also called controllers
or players, competing to optimize a criterion. In particular,
we are interested in the linear-quadratic zero-sum case. Here,
the state evolution of an agent i ∈ {1, . . . , N} is given by

xit+1 = Axit + Āx̄t +B1u
i
1,t + B̄1ū1,t

+B2u
i
2,t + B̄2ū2,t + εit+1 + ε0t+1, (1)

with initial condition xi0 = εi0 + ε00, where xi0 is the initial
state of agent i to which we introduce randomness with εi0
and ε00. At each time t, xit ∈ Rd corresponds to the state of
the i-th agent in the population, and ui1,t ∈ R` and ui2,t ∈
R` are the controls prescribed to this agent respectively by
the first and the second decision maker. The noise terms
ε0t+1 and εit+1 are independent of each other and of ε00 and
εi0. Moreover, the noise terms ε0t+1 for t ≥ 0 are assumed
to be identically distributed with mean 0, and similarly for
εit+1 for t ≥ 0. The interpretation of the noise terms is that
ε0t is a common noise affecting the state of all the agents,
whereas εit is an indiosyncratic noise affecting only the state
of the i-th agent. A, Ā,Bi, B̄i are fixed matrices with suitable
dimensions. Here, x̄t = 1

N

∑N
i=1 x

i
t, is the sample average

of the individual states, and similarly for u1 and u2: ūj,t =

1
N

∑N
i=1 u

i
j,t. The instantaneous utility is defined by

c(x, x̄, u1, ū1,u2, ū2) = (x− x̄)>Q(x− x̄) + x̄>(Q+ Q̄)x̄

+ (u1 − ū1)>R1(u1 − ū1) + ū>1 (R1 + R̄1)ū1

− (u2 − ū2)>R2(u2 − ū2)− ū>2 (R2 + R̄2)ū2.
(2)

where Q, Q̄,Ri, R̄i are symmetric matrices of suitable sizes
such that Ri, Ri + R̄i for i = 1, 2 are positive definite.

The goal of each controller in this zero-sum problem is to
minimize (resp. maximize) the N -agent utility functional

JN (u1,u2) = E
[+∞∑
t=0

γtc̄N (xt, u1,t, u2,t)
]
,

where xt = (x1t , . . . , x
N
t ), and ui = (ui,t)t with ui,t =

(u1i,t, . . . , u
N
i,t) (we use a boldface to denote a function of

time and an underline to denote a vector of size N ), and c̄N

is the average utility, defined by

c̄N (xt, u1,t, u2,t) =
1

N

N∑
i=1

c(xit, x̄t, u
i
1,t, ū1,t, u

i
2,t, ū2,t).

The minimax problem is defined as follows,

inf
u1

sup
u2

JN (u1,u2). (3)

This problem is a generalization of the mean-field control
setup, in which there is a single decision maker. It can also be
viewed as a variant of Nash mean-field control setup studied
in [15] or mean-field type games [16] in which several mean-
field decision makers compete in a general-sum game. An
interesting special case is when each decision maker controls
a different population. See [14, Remark 1] for more details.

B. Asymptotic mean-field problem
Here, we consider the limit of the N -agent case. The

dynamics is given by: x0 = ε00 + ε10, and for t ≥ 0,

xt+1 = Axt + Āx̄t +B1u1,t + B̄1ū1,t

+B2u2,t + B̄2ū2,t + ε0t+1 + ε1t+1. (4)

When considering the mean-field problem, we use the
notation x̄t = E[xt|(ε0s)0≤s≤t] for the expectation of the
state conditional on the realization of the common noise,
and likewise for u1 and u2. Note that (4) is a dynamics of
MKV type since it is influenced by its distribution and the
distribution of the actions. The utility function takes the form

J(u1,u2) = E
[+∞∑
t=0

γtct

]
, (5)

where γ ∈ [0, 1] is a discount factor, and the instantaneous
utility at time t is defined as

ct = c(xt, x̄t, u1,t, ū1,t, u2,t, ū2,t), (6)

where the function c is as in the N -agent problem. The goal
is to find a Nash equilibrium (NE), i.e., (u∗1,u

∗
2) such that

J(u∗1,u
∗
2) = inf

u1

sup
u2

J(u1,u2). (7)

Next, we study the existence of the NE and derive its closed-
form expression for the formulated ZSMFTG.



III. OPTIMALITY CONDITION AND GRADIENT
EXPRESSION

We now characterize the structure of a NE in terms of
linear combinations of the state xt and conditional mean x̄t.

To alleviate the notation, let Ã = A + Ā, Q̃ = Q + Q̄,
B̃i = Bi + B̄i, R̃i = Ri + R̄i, i = 1, 2. Let us denote

Γi = (−1)i
1

2
R−1i B>i ,Ξ1 = (−1)i

1

2
R−1i [B̄>i − R̄iR̃−1i B̃>i ],

Λi = Γi + Ξi = (−1)i
1

2
R̃−1i B̃>i , i = 1, 2.

To investigate the solution of (7) and derive the closed-
form expressions for the equilibrium controls in terms of the
idiosyncratic and mean-field state processes, we introduce
the following Riccati equations

γ[A>P + 2Q] [A+ (B1Γ1 +B2Γ2)P ] = P, (8)

and

γ[Ã>P̄ + 2Q̃]
[
Ã+ (B̃1Λ1 + B̃2Λ2)P̄

]
= P̄ . (9)

Under suitable conditions and relying on a form of
stochastic Pontryagin maximum principle (see [3] for the
zero-sum case without mean-field interactions and [17] for
the case of mean-field interactions but without zero-sum
structure), the ZSMFTG admits an open-loop Nash equilib-
rium, say (u∗1,u

∗
2). These controls correspond to the open-

loop saddle point and can be explicitly written in terms of
the solutions P, P̄ of the Riccati equations above as

u∗i,t = ΓiP (xt − x̄t) + ΛiP̄ x̄t, for i = 1, 2. (10)

This relies on a form of Pontryagin maximum principle
for mean-field dynamics. To keep the presentation concise,
the proof is provided in the long version of the paper [14]
(see Propositions 12 and 14, and Corollary 20 therein).

According to the above result, it is sufficient to look for
(K∗i , L

∗
i ), i = 1, 2 such that u∗i,t = (−1)iK∗i (x

u∗1 ,u
∗
2

t −
x̄
u∗1 ,u

∗
2

t ) + (−1)iL∗i x̄
u∗1 ,u

∗
2

t , for i = 1, 2.
Optimizing over all possible open-loop controls is infea-

sible from a numerical perspective because it is a set of all
stochastic processes which does not admit a simple repre-
sentation. Hence, we focus on closed-loop Nash equilibrium
with the above linear structure in the sequel (which allows
us to do the optimization over a small number of parameters,
namely the coefficients of the linear combination). In fact,
under suitable conditions, looking for closed-loop controls
which are linear in x and x̄ leads to the same Nash equilib-
rium as open-loop controls, see [14, Section 6].

We henceforth replace problem (7) by the following
problem, for which optimality conditions are studied in [14,
Section 5]. Each player i = 1, 2 chooses parameter θ∗i =
(K∗i , L

∗
i ) such that

J(u
θ∗1
1 ,u

θ∗2
2 ) = inf

θ1

sup
θ2

J(uθ11 ,u
θ2
2 ),

where for θ = (θ1, θ2), uθ1,θ2i,t = (−1)iKi(x
u
θ1
1 ,u

θ2
2

t −

x̄
u
θ1
1 ,u

θ2
2

t ) + (−1)iLix̄
u
θ1
1 ,u

θ2
2

t , for i = 1, 2.

For simplicity, we introduce the following notation
xu

θ1
1 ,u

θ2
2 = xθ1,θ2 , and since we focus on linear controls, we

redefine the utility as C(θ1, θ2) = J(uθ11 ,u
θ2
2 ). Moreover,

we introduce yK1,K2

t = xθ1,θ2t − x̄θ1,θ2t and zL1,L2

t = x̄θ1,θ2t ,
which is justified by the fact that the dynamics of y and z
depend respectively only on (K1,K2) and (L1, L2).

Let P yK1,K2
be a solution to the linear equation

P yK1,K2
= Q+K>1 R1K1 −K>2 R2K2 (11)

+ γ(A−B1K1 +B2K2)>P yK1,K2
(A−B1K1 +B2K2),

and let P zL1,L2
be a solution to the linear equation

P zL1,L2
= Q̃+ L>1 R̃1L1 − L>2 R̃2L2 (12)

+ γ(Ã− B̃1L1 + B̃2L2)>P zL1,L2
(Ã− B̃1L1 + B̃2L2).

In order to guarantee that the above equations have solu-
tions, we introduce the notion of stabilizing parameters.

Definition 1: The set of stabilizing parameters is defined
as follows:

Θ =
{

(K1, L1,K2, L2) : γ‖A−B1K1 +B2K2‖2< 1,

γ‖Ã− B̃1L1 + B̃2L2‖2< 1
}
. (13)

More details on this closed-loop information structure and
the corresponding optimality conditions are provided in [14,
Section 5].

We now prove the following result, which provides an
explicit expression for the gradient of the utility function with
respect to the control parameters in terms of the solution to
the equations (11) and (12).

Proposition 1 (Policy gradient expression): For any
θ = (θ1, θ2) ∈ Θ, we have for j = 1, 2, the gradient

∇KjC(θ1, θ2) = 2Ey,jK1,K2
ΣyK1,K2

(14)

where

[
Ey,1K1,K2

Ey,2K1,K2

]
= −γ

[
B>1 P

y
K1,K2

A

−B>2 P
y
K1,K2

A

]
+ R

[
K1

K2

]
with

R =

[
R1 + γB>1 P

y
K1,K2

B1 −γB>1 P
y
K1,K2

B2

−γB>2 P
y
K1,K2

B1 −R2 + γB>2 P
y
K1,K2

B2

]
and ΣyK1,K2

= E
[∑

t≥0 γ
tyK1,K2

t (yK1,K2

t )>
]
.

Similarly, for j = 1, 2, ∇LjC(θ1, θ2) = 2Ez,jL1,L2
ΣzL1,L2

where

[
Ez,1L1,L2

Ez,2L1,L2

]
= −γ

[
B̃>1 P

z
L1,L2

Ã

−B̃>2 P zL1,L2
Ã

]
+ R̃

[
L1

L2

]
with

R̃ =

[
R̃1 + γB̃>1 P

z
L1,L2

B̃1 −γB̃>1 P zL1,L2
B̃2

−γB̃>2 P zL1,L2
B̃1 −R̃2 + γB̃>2 P

z
L1,L2

B̃2

]

and ΣzL1,L2
= E

[∑
t≥0 γ

tzL1,L2

t (zL1,L2

t )>
]
.

Proof: We note that the utility can be split as
C(θ1, θ2) = Eỹ,z̃

[
Cy(K1,K2, ỹ) + Cz(L1, L2, z̃)

]
, where

Cy(K1,K2, ỹ) = E
∑
t≥0

γt
[
(yL1,L2

t )>QyK1,K2

t

+

2∑
i=1

(−1)i(ui,t − ūi,t)>Ri(ui,t − ūi,t) | y0 = ỹ
]



and analogously for Cz . Let us consider the first part. We
note, using the above definition together with (11) and the
dynamics satisfied by yK1,K2

t = xθ1,θ2t − x̄θ1,θ2t , that

Cy(K1,K2, ỹ) = ỹ>P yK1,K2
ỹ +

γ

1− γ
E[(ε11)>P yK1,K2

ε11],

and thus ∇ỹCy(K1,K2, ỹ) = 2P yK1,K2
ỹ. Moreover,

Cy(K1,K2, ỹ) = ỹ>(Q+K>1 R1K1 −K>2 R2K2)ỹ

+ γE
[
Cy

(
K1,K2, (A−B1K1 +B2K2)ỹ

)
| y0 = ỹ

]
.

Using the two above equalities and the chain rule, we obtain

∇K1Cy(K1,K2, ỹ)

= 2R1K1ỹỹ
> − 2γB>1 P

y
K1,K2

(A−B1K1 +B2K2)ỹỹ>

+ γE
[
∇K1

Cy

(
K1,K2, ỹ

′
)
|ỹ′=(A−B1K1+B2K2)ỹ+ε11

]
.

Using recursion and the equation satisfied by P yK1,K2
yields

∇K1
Cy(K1,K2, ỹ)

= 2[R1K1 − γB>1 P
y
K1,K2

(A−B1K1 +B2K2)](
ỹỹ> + E

[∑
t≥1

γtyK1,K2

t (yK1,K2

t )>
])
.

With similar computations, we obtain ∇K2
Cy . We proceed

similarly for the gradients with respect to L1 and L2.

IV. PROPOSED ALGORITHMS

In this section, we propose policy-gradient algorithms to
find the NE of the zero-sum MFTG. After introducing model-
based methods, we explain how to extend them to sample-
based algorithms in which the gradient is estimated using a
simulator providing stochastic realizations of the utility.

A. Model-based policy optimization

Let us assume that the model is known and both players
can see the actions of one another at the end of each time
step. To explain the intuition behind the iterative methods, we
first express the optimal control of a player when the other
player has a fixed control. For some given θ2 = (K2, L2), the
inner minimization problem for player 1 becomes an LQR
problem with instantaneous utility at time t:

(xt − x̄t)>QK2(xt − x̄t) + x̄>Q̃K2 x̄

+ (u1,t − ū1,t)>R1(u1,t − ū1,t) + ū>1,t(R1 + R̄1)ū1,t,

when player 1 uses control u1, where QK2 = Q−K2R2K2

and Q̃L2
= Q̃− L2R̃2L2, and state dynamics given by:

xt+1 = AK2
xt + ĀK2,L2

x̄t

+B1u1,t + B̄1ū1,t + ε0t+1 + ε1t+1,

where AK2 = A+B2K2 and ĀK2,L2 = Ā+B̄2L2+B2(L2−
K2). Inspired by the results in [9], we propose to find the
stationary point θ∗1(θ2) = (K∗1 (K2), L∗1(L2)) of the inner
problem. By setting ∇θ1C(θ1, θ2) = 0 and by Proposition 1,

K∗1 (K2) = γ(R1 + γB>1 P
y
K2
B1)−1B>1 P

y
K2

[A+B2K2] ,
(15)

where P yK2
= P yK∗1 (K2),K2

solves

P yK2
= Q̃K2 + γÃ>K2

P yK2
ÃK2

− γ2Ã>K2
P yK2

B1(R1 + γB>1 P
y
K2
B1)−1B>1 P

y
K2
ÃK2 ,

where Q̃K2
= Q −K>2 R2K2 and ÃK2

= A + B2K2. This
equation is obtained by considering the equation (11) for
P yK1,K2

and replacing K1 by the above expression (15) for
K∗1 (K2). One can similarly introduce K∗2 (K1), which is the
optimal K2 for a given K1, and likewise for L∗1(L2), L∗2(L1).

Based on this idea and inspired by the works of Fazel
et al. [9] and Zhang et al. [13], we propose two itera-
tive algorithms relying on policy-gradient methods, namely
alternating-gradient and gradient-descent-ascent, to find the
optimal values of θ1 and θ2. Starting from an initial guess of
the control parameters, the players update either alternatively
or simultaneously their parameters by following the gradients
of the utility function. In the alternating-gradient (AG)
method, the players take turn in updating their parameters.
Between two updates of θ2, θ1 is updated T1 times. This
procedure is summarized in Algorithm 1, which is based on
nested loops. In the gradient-descent-ascent (GDA) method,
all the control parameters are updated synchronously at each
iteration, as presented in Algorithm 2.

At each step of these methods, the gradients can be com-
puted directly using the formulas provided in Proposition 1.
For instance, in the inner loop of the AG method, based
on (14), parameter K1 can be updated by:

Kt1+1,t2
1 = Kt1,t2

1 − η1∇K1
C(θt1,t21 , θt2−12 )

= Kt
1 − 2η1

[
(R1 +B>1 P

y

K
t1,t2
1 ,K

t2−1
2

B1)Kt1,t2
1

−B>1 P
y

K
t1,t2
1 ,K

t2−1
2

Ã
K
t2−1
2

]
Σ
K
t1,t2
1 ,K

t2−1
2

.

Then, in the outer loop, one can compute ∇K2
C at the point

(θT1,t2
1 , θt2−12 ) using again (14).
In order to have a benchmark, one can compute the

equilibrium (θ∗1 , θ
∗
2) by solving the Riccati equations (8)–

(9) and then using the expression (10). Alternatively, the
Nash equilibrium can be computed by finding K2 such that
∇K2Cy(K∗1 (k2),K2)|k2=K2

= 0. The left-hand side has an
explicit expression obtained by combining (14) and (15).

Algorithm 1 Alternating-Gradient method

Input: Number of inner and outer iterations T1, T2; initial
guess θ01, θ

0
2; learning rates η1, η2

Output: (K∗1 ,K
∗
2 )

θ0,11 ← θ01
for t2 = 1, 2, . . . , T2 do

for t1 = 1, 2, . . . , T1 do
θt1,t21 ← θt1−1,t21 − η1∇θ1C(θt1−1,t21 , θt2−12 )

end for
θt22 ← θt2−12 + η2∇θ2C(θT1,t2

1 , θt2−12 )
end for
return (θT1,T2

1 , θT2
2 )



Algorithm 2 Gradient-Descent-Ascent method

Input: Number of iterations T ; initial guess θ01, θ
0
2; learning

rates η1, η2
Output: (K∗1 ,K

∗
2 )

for t = 1, 2, . . . , T do
θt1 ← θt−11 − η1∇θ1C(θt−11 , θt−12 )
θt2 ← θt−12 + η2∇θ2C(θt−11 , θt−12 )

end for
return (θT1 , θ

T
2 )

B. Sample-based policy optimization

The aforementioned methods use explicit expressions for
the gradients, which rely on the knowledge of the model.
However, in many situations these coefficients are not known.
Instead, let us assume that we have access to the following
simulator, called MKV simulator and denoted by STMKV :
given a control parameter θ = (θ1, θ2) = (K1, L1,K2, L2),
STMKV (θ) returns a sample of the mean-field utility (i.e.,
the quantity inside the expectation in equation (5)) for the
MKV dynamics (4) using the control θ and truncated at
time horizon T . This type of simulator is similar to the one
introduced in [11] when there is a single controller.

In other words, it returns a realization of the social utility∑T −1
t=0 γtct, where ct is the instantaneous mean-field utility

at time t, see (6). This is used in Algorithm 3, which provides
a way to estimate the gradient of the utility with respect to
the control parameters of the first player. One can estimate
the gradient with respect to the control parameters of the
second player in an analogous way. The estimation algorithm
uses the simulator to obtain realizations of the (truncated)
utility when using perturbed versions of the controls. In order
to estimate the gradient of Cy , we use 2M perturbations
v1,1,i, v1,2,i which are i.i.d. with uniform distribution µSτ
over the sphere Sτ of radius τ . The first index corresponds
to the player (1 or 2), the second index corresponds to the
part of the control being perturbed (K or L) and the last
index corresponds to the index of the perturbation (between
1 and M ). See e.g. [9] for more details. Notice that, although
the simulator needs to know the model in order to sample
the dynamics and compute the utilities, Algorithm 3 uses this
simulator as a black-box (or an oracle), and hence uses only
samples from the model and not the model itself.

V. NUMERICAL RESULTS

In this section, we provide numerical results both for
model-based and sample-based versions of the two methods
presented in the previous section.

Setting. The specification of the model used in the simula-
tions is given in Table I. This setting has been chosen so that
it allows us to illustrate the convergence of the method when
the equilibrium controls are not symmetric, i.e. θ1 6= θ2. To
be able to visualize the convergence of the controls, we focus
on a one-dimensional example, that is, d = ` = 1.

Model-based results. The parameters used are given in
Table I. This choice of parameters is based on the values used

Algorithm 3 Sample-Based Gradient Estimation for Player 1

Data: Parameter θ = (θ1, θ2) = (K1, L1,K2, L2); num-
ber of perturbations M ; length T ; radius τ
Result: An estimator for ∇θ1C(θ)
for i = 1, 2, . . . ,M do

Sample v1,1,i, v1,2,i i.i.d. ∼ µSτ
Set θ̌1,i := (K1,i, L1,i) := (K1 + v1,1,i, L1 + v1,2,i)
Set θ̌i = (θ̌1,i, θ2)
Sample C̃i using MKV simulator STMKV (θ̌i)

end for
Set ∇̃K1C(θ) = d

τ2
1
M

∑M
i=1 C̃

iv1,1,i,

and ∇̃L1C(θ) = d
τ2

1
M

∑M
i=1 C̃

iv1,2,i

Return: ∇̃θ1C(θ) := diag
(
∇̃K1

C(θ), ∇̃L1
C(θ)

)

(a) (b)

Fig. 1: Model-based policy optimization: Convergence of
each part of the utility. (a) Cy as a function of (K1,K2).
(b) Cz as a function of (L1, L2).

for a single controller in [11] and numerical experiments.

Fig. 1 displays the trajectory of (K1,K2) 7→ Cy(K1,K2)
and (L1, L2) 7→ Cz(L1, L2) generated by the itera-
tions of AG and DGA methods. Iterations are counted
in the following way: in AG at iteration k, (θk1 , θ

k
2 ) =

(θ
kmodT1,dk/T1e
1 , θ

dk/T1e−1
2 ), while in DGA one step of for-

loop corresponds to one iteration. The utility at the starting
point and the utility at the Nash equilibrium are respectively
given by a black star and a red dot. In the AG method,
since θ1 is updated T1 times between two updates of θ2, the
trajectory moves faster in the θ1-direction until it reaches
an approximate best response against θ2, after which the
trajectory moves towards the Nash equilibrium. This is
also confirmed by the convergence of the parameters θ =
(K1, L1,K2, L2) in Fig. 2(a). The relative error on the utility
is shown in Fig. 2(b). The convergence is slower with AG
because player 2 updates her control only every T1 iterations.

Sample-based results. The parameters, chosen based on
the values in [11] as well as numerical experiments, are given
in Table I. The figures are obtained by averaging the results
over 5 experiments, each based on a different realization
of the randomness (initial points, dynamics and gradient
estimation). Fig. 3 displays the trajectory of (K1,K2) 7→
Cy(K1,K2) and (L1, L2) 7→ Cz(L1, L2) generated by the
iterations of AG and DGA methods. The convergence of the
parameters θ = (K1, L1,K2, L2) and the evolution of the
relative error on the utility are shown in Fig. 4(a) and 4(b).



(a) (b)

Fig. 2: Model-based policy optimization: Convergence of the
control parameters in (a) and of the relative error on the
utility in (b).

(a) (b)

Fig. 3: Sample-based policy optimization: Convergence of
each part of the utility. (a) Cy as a function of (K1,K2).
(b) Cz as a function of (L1, L2).

TABLE I: Simulation parameters

Model parameters

A A B1 = B1 B2 = B2 Q Q R1 = R1 R2 = R2 γ

0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.9

Initial distribution and noise processes

ε00 ε10 ε0t ε1t
U([−1, 1]) U([−1, 1]) N (0, 0.01) N (0, 0.01)

AG and DGA methods parameters

T1 T2 T η1 η2 K0
1 L0

1 K0
2 L0

2

10 200 2000 0.1 0.1 0.0 0.0 0.0 0.0

Gradient estimation algorithm parameters

T M τ

50 10000 0.1

(a) (b)

Fig. 4: Sample-based policy optimization: Convergence of
the control parameters in (a) and of the relative error on the
utility in (b).

VI. CONCLUSION

We have studied zero-sum mean-field type games with lin-
ear quadratic model under infinite-horizon discounted utility
function. We have identified the closed-form expression of
the Nash equilibrium controls as linear combinations of the
state and its mean. Moreover, we have proposed two policy
optimization methods to learn the equilibrium. Numerical
results have shown the convergence of the two methods in
both model-based and sample-based settings.
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