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State Variance Estimation in Large-Scale Network Systems

Muhammad Umar B. Niazi, Carlos Canudas-de-Wit, and Alain Y. Kibangou

Abstract— State variance of a network system is a nonlinear
functional computed as the squared deviation of the network’s
state vector. Such a quantity is useful to monitor how much
the states of network nodes are spread around their average
mean. Estimating state variance is crucial when the full state
estimation of a network system is not possible due to limited
computational and sensing resources. We propose a novel
methodology to estimate the state variance in a computationally
efficient way. First, clusters are identified in the network such
that the state variance can be approximated from the average
states of the clusters. Then, the approximated state variance is
estimated from the average state observer.

I. INTRODUCTION

Large-scale network systems are ubiquitous in modern
engineering applications such as traffic networks, building
thermal systems, and distributed sensor networks. Complete
monitoring of such large-scale systems is usually not pos-
sible due to limited computational and sensing resources.
Limited computational resources can make the real-time
state estimation task infeasible, whereas limited number of
sensors may render the system unobservable. It is reasonable,
therefore, to monitor the network system by estimating
the aggregated state profiles such as the state average and
variance. In particular, our goal is to estimate the aggregated
state profiles of unmeasured nodes from the knowledge of
the state measurements at few gateway (or measured) nodes.

The state average is defined as the mean of the unmeasured
states, whereas the state variance is the squared deviation
of the unmeasured states from the state average. Both are
state functionals that evolve with time and are meaningful
in several applications. For instance, estimating the traffic
density of every road in an urban traffic network is often not
possible [1]. However, the aggregated quantities like average
and variance of traffic densities over a sector of the traffic
network are considered to be quite suitable for monitoring
traffic. In building thermal systems [2], the average (mean
operative temperature) and the variance inside a room pro-
vide a good measure for thermal comfort [3]. Finally, in
distributed sensor networks [4], estimating the state average
and variance allows to monitor the consensus value and
consensus formation, respectively.

State average estimation has been studied in [5], which
rely on the theory of minimum-order linear functional ob-
servers [6]–[8]. However, to the best of our knowledge, the
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problem of state variance estimation is novel and has not
been studied in the literature.

The fundamental concepts of nonlinear functional ob-
servers are presented in [9], which can be employed to esti-
mate the state variance. However, the fundamental limit with
regards to the state variance is that a nonlinear functional
observer should have an order of at least the number of un-
measured nodes minus one. That is, even if the observer is of
minimum order, it is equivalent to estimate all but one states
of the unmeasured nodes in order to asymptotically estimate
the state variance. This makes the problem trivial because it
can be argued that, in large-scale systems, estimating all but
one states is almost same as estimating all the states. Thus,
if we can estimate all the states, there is no need to estimate
the state variance. However, in this paper, we assume that
the system need not be observable.

The infeasibility of designing a nonlinear functional ob-
server directs us towards the estimation of state variance
in an approximate sense. That is, we first approximate the
state variance by projecting the network system on a lower
dimensional state space by clustering. The state vector of the
projected system include the states of the measured nodes
and the average states of the clusters. Then, by estimating
the average states of the clusters, we can estimate the
approximated state variance.

II. PROBLEM STATEMENT

Consider a graph G = (V, E), where V = {1, · · · , `} is
the set of nodes, ` = m + n with m measured nodes and
n unmeasured nodes, and E ⊆ V × V is the set of directed
edges. Let A ∈ R`×` be a Metzler matrix such that, for
i 6= j, [A]ij > 0 if (i, j) ∈ E , and [A]ij = 0 otherwise;
also, [A]ii ≤ 0 for all i ∈ V . In particular, we consider
A = Λ− L(G), where L(G) is the Laplacian matrix of G
and Λ = diag([ a11 · · · a`` ]) with aii ≤ 0 for all i ∈ V .
Thus, the spectrum eig(A) ⊂ C<0 ∪ {0}, where C<0 is the
open left-half complex plane.

Each node i has a state xi(t) ∈ Xi ⊂ R for t ∈ R≥0,
where Xi is a bounded interval. A network system with a
structure given by the graph G is represented as

Σ :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where x(t) ∈ X ⊂ Rm+n is the network state vector,
u(t) ∈ Rp is the input vector, and y(t) ∈ Rm is the
measurement vector. Without loss of generality, we suppose
V1 = {1, · · · ,m} to be the set of measured nodes and
V2 = {m + 1, · · · ,m + n} to be the set of unmeasured
nodes. Then, we can write x(t) = [ xT

1(t) xT
2(t) ]T, where



x1(t) = y(t) = [ x1(t) · · · xm(t) ]T is the state vector of
V1 and x2(t) = [ xm+1(t) · · · xm+n(t) ]T is the state vector
of V2. Correspondingly, we obtain the following partition of
system matrices:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
Im 0m×n

]
.

Let the state average be xa(t) = 1
n

∑
j∈V2 xj(t). Then,

the state variance is defined as

xv(t) =
1

n

∑
j∈V2

(
xj(t)− xa(t)

)2
=

1

n
x2(t)TJnx2(t) (1)

where the matrix Jn = In− 1
n1n1T

n is symmetric (Jn = JT
n),

idempotent (J2
n = Jn) and positive semi-definite with In the

identity matrix of size n×n and 1n the vector of ones of size
n× 1. Then, the goal is to estimate the state variance xv(t)
when the measurement vector y(t) and the input vector u(t)
are known.

III. REVIEW OF FUNCTIONAL OBSERVERS

In this section, we briefly review the fundamental concepts
of functional observers [9].

Given a nonlinear functional xv(t), a functional observer
of order k is a system

ẇ(t) = f(w(t),y(t),u(t))

x̂v(t) = h(w(t),y(t))
(2)

with f : Rk × Rm × Rp → Rk and h : Rk × Rm → R
designed such that the error xv(t)− x̂v(t) converges to zero
exponentially. Equivalently, there exists an invariant manifold
w = g(x) such that

∂g(x)

∂x

(
Ax +Bu

)
= f(g(x),y,u)

xv = h(g(x),y).
(3)

For linear systems, we need to find a linear map g(x) = P Tx,
where P ∈ R(m+n)×k, in order to satisfy the condition (3).
This can be stated as follows:

Proposition 1: Consider an observer (2) with
f(w(t),y(t),u(t)) = Mw(t) +Ky(t) +Nu(t)

h(w(t),y(t)) = wT(t)Dw(t) + yT(t)Ly(t)
(4)

where M ∈ Rk×k is a Hurwitz matrix and all the other
matrices K,N,D,L are of appropriate dimensions. Then,
the error xv(t) − x̂v(t) converges to zero exponentially if
and only if there exists a matrix P ∈ R(m+n)×k such that

P TA−MP T = KC (5a)
PDP T = T (5b)

where T =

[
−L 0m×n

0n×m
1
nJn

]
. y

The proof is a straightforward consequence of (3).
We remark that, in order to design an observer of the

form (4) under the constraint that M is Hurwitz, one has to
determine the order k and find P ∈ R(n+m)×k that satisfies
(5). Finding a minimal order k such that the Sylvester
equation (5a) is solvable is known to be quite challenging,
[7], [8]. Moreover, in order to solve (5b), we see that the
order k of the observer must be at least n− 1. To elucidate

this fact, we suppose P T = [ P T
1 P T

2 ] with P1 ∈ Rm×k and
P2 ∈ Rn×k, then (5b) can be written as[

P1DP
T
1 P1DP

T
2

P2DP
T
1 P2DP

T
2

]
=

[
−L 0m×n

0n×m
1
nJn

]
.

Apart from P1DP
T
1 = −L, P1DP

T
2 = 0 and P2DP

T
1 = 0,

we also need to satisfy P2DP
T
2 = 1

nJn, which implies that
rank(P2) ≥ n− 1 because rank(Jn) = n− 1. Hence, it is
necessary that k ≥ n − 1, which is a lower bound on the
order of the functional observer (4).

Even if the functional observer is of minimum order, i.e.,
k = n − 1, the estimation is still not feasible because n
can be very large. Such an observer estimates all but one
states of the unmeasured nodes to compute the state variance.
This is because rank(Jn) = n − 1 and 1T

nJn = 0, which
means that if we estimate n − 1 elements of the vector
Jnx2(t) = x2(t) − 1nxa(t), the n-th element equals the
negative sum of the estimated n− 1 elements. The problem
of interest, however, is to estimate the variance xv(t) without
estimating the whole vector Jnx2(t), which is not possible
due to the limitation on the order of the observer. Therefore,
instead of the asymptotic estimation, i.e., xv(t)− x̂v(t)→ 0
exponentially as t → ∞, we would like to find an optimal
approximate estimation solution, where the order k is chosen
according to the available computational capability.

IV. STATE VARIANCE APPROXIMATION BY NETWORK
CLUSTERING

To approximate the state variance, we approximate the
state trajectory x2(t) of unmeasured nodes V2 by projecting
it on a lower dimensional state space. That is, we partition
V2 into k clusters such that the states of nodes in each cluster
can be approximated by its average state, which is similar to
a k-means clustering problem [10]. Finally, the approximated
state variance is then computed from the average states of
the clusters.

A. Clustering problem

Let k < n to be a given number of clusters and
Q = {C1, · · · , Ck} to be a clustering (or partition) of
the unmeasured nodes V2 = {m+ 1, · · · ,m + n}, where
C1 ∪ · · · ∪ Ck = V2 and Cα ∩ Cβ = ∅, for α 6= β and
α, β = 1, · · · , k. The characteristic matrix Q ∈ Bn×k of
the clustering Q, for i ∈ {1, · · · , n} and α ∈ {1, · · · , k}, is
defined as

[Q]iα =

{
1, if m+ i ∈ Cα
0, otherwise

where Bn×k = {X ∈ {0, 1}n×k : X1k = 1n} is a set that
ensures that each cluster is nonempty and each node belongs
to at most one cluster.

The rationale for an approximated state variance is as
follows: If Q ∈ Bn×k is such that x2 ≈ Qza, where za =
Q+x2 and Q+ = (QTQ)−1QT, then xv ≈ 1

nzTaQ
TJnQza.

That is, if a clustering is such that the states of all nodes in
a cluster Cα, for α = 1, · · · , k, can be approximated by its
average xa,α = 1

nα

∑
j∈Cα xj , then the state variance can be



approximated as

xv ≈ 1

n
zTaQ

TJnQza

=
1

n

k∑
α=1

nαx
2
a,α(t)−

(
1

n

k∑
α=1

nαxa,α(t)

)2 (6)

where za(t) = [ xa,1(t) · · · xa,k(t) ]T ∈ Rk and nα = |Cα|
with

∑k
α=1 nα = n.

Let the multi-cluster deviation vector to be σ = x2−Qza
with i-th entry, for i = 1, · · · , n, given by σi = xj − xa,α,
where j = m + i, j ∈ Cα, and α ∈ {1, · · · , k}.
That is, the entries of σ are the differences between the
states of unmeasured nodes and the average states of the
corresponding clusters. We can write σ = DQx, where
DQ = [ 0n×m In −QQ+ ]. Then, the transfer function
from u to σ is given by Gσ(s) = DQ(sI − A)−1B
with the H2(τ)-norm defined as, see [11], ‖Gσ‖2H2(τ) =

tr(DQΓτD
T
Q), where, for some τ ∈ R>0, Γτ =∫ τ

0
exp(At)BBT exp(ATt)dt is the finite-horizon control-

lability grammian of the network system Σ. If the state
matrix A is Hurwitz, then the standard H2-norm can also
be considered, which can be computed by using the infinite-
horizon controllability grammian, [11].

The network clustering problem is defined as follows: Find
Q ∈ Bn×k such that

min
Q∈Bn×k

tr(DQΓτD
T
Q) (7)

where Bn×k = {X ∈ {0, 1}n×k : X1k = 1n}. The
clustering problem (7) is a non-convex, mixed-integer NP-
hard optimization problem.

B. Clustering algorithm

In this subsection, we provide a heuristic algorithm to find
a suboptimal solution to (7) in polynomial time. Let ψ =
tr(DQΓτD

T
Q) be the cost of (7) for some Q ∈ Bn×k, which

is the characteristic matrix of the clustering Q. Similarly, let
ψ0 = tr(DQ0ΓτD

T
Q0

) be the cost of a randomly initialized
clustering Q0.

Algorithm 1: The algorithm requires the number of clus-
ters k, the number of measured nodes m, the number of
unmeasured nodes n, the controllability grammian Γτ , an
initial clustering Q0, and a stopping criterion δ > 0 which
is a very small number (e.g., 10−6). It outputs a suboptimal
clustering Q = {C1, · · · , Ck} with ψ = tr(DQΓτD

T
Q).

1: Compute ψ0 and assign Q1 ← Q0.
2: repeat
3: Assign ψ1 ← ψ0.
4: for i = 1, 2, · · · , n do
5: Assign Q2 ← Q1.
6: Let β ∈ {1, · · · , k} be such that m+ i ∈ Cβ .
7: if Cβ has more than one node, i.e., |Cβ | > 1, then
8: for α = 1, 2, · · · , k and α 6= β do
9: Move m+ i from its cluster to Cα.

10: Update Q2 accordingly and compute ψ2.
11: if ψ2 < ψ0 then
12: Update ψ0 ← ψ2 and Q1 ← Q2.

13: end if
14: end for
15: end if
16: end for
17: until ψ1 − ψ0 > δ
18: Assign Q ← Q1.
19: return Q = {C1, · · · , Ck}, ψ = tr(DQΓτD

T
Q). y

The suboptimal solution obtain from Algorithm 1 depends
on the initial clustering Q0. Therefore, to obtain a better so-
lution, the following algorithm repeatedly runs Algorithm 1,
where at every iteration the clustering is initialized randomly.

Algorithm 2: The algorithm requires a positive integer c >
0 that is the maximum value of a counter and the same
inputs k,m, n,Γτ ,Q0, δ as those of Algorithm 1. It outputs
a suboptimal clusteringQ∗ = {C∗1 , · · · , C∗k} with a cost ψ∗ =
tr(DQ∗ΓτD

T
Q∗) such that ψ∗ ≤ ψ, where ψ is obtained by

running Algorithm 1 once.
1: Assign a← 0 and b← 0.
2: repeat
3: Compute ψ0 = tr(DQ0

ΓτD
T
Q0

)
4: Run Algorithm 1 and store Q and ψ.
5: Assign a← a+ 1.
6: if a = 1 then
7: Assign ψ∗ ← ψ and Q∗ ← Q.
8: Randomly initialize Q0 and compute DQ0

.
9: else

10: if ψ < ψ∗ then
11: Assign ψ∗ ← ψ and Q∗ ← Q.
12: Randomly initialize Q0 and compute DQ0 .
13: else
14: Assign b← b+ 1.
15: end if
16: end if
17: until b ≤ c
18: return Q∗ = {C∗1 , · · · , C∗k}, ψ∗ = tr(DQ∗ΓτD

T
Q∗). y

C. Illustrative example

Consider a network system shown in Fig. 1, where the
input u = [ u1 u2 ]T and the output y = [ y1 y2 ]T. The
measured nodes V1 = {1, 2} and the unmeasured nodes
V2 = {3, 4, · · · , 10}. Let the number of clusters be k = 3.
Then, the clustering Q∗ = {C∗1 , C∗2 , C∗3} is obtained from
Algorithm 2, where C∗1 = {3, 6, 9}, C∗2 = {4, 7}, and
C∗3 = {5, 8, 10}, which are specified by the dashed lines
in Fig. 1.

The clustering obtained by Algorithm 2 ensures that the
state trajectories of each cluster stay closer to each other as
time progresses, shown in Fig. 2(a). For instance, initially
the states x5(0), x8(0), x10(0) are not close to each other,
however, as t > 1, we see that their trajectories converge
closer to each other. Consequently, the state variance can be
approximated as shown in Fig. 2(b).
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Fig. 1: Three clusters (enclosed by the dashed lines) identified by
Algorithm 2 for the example network.
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Fig. 2: (a) State trajectories of clustered unmeasured nodes of
the network system shown in Fig. 1. (b) The plots of actual state
variance xv(t) computed by (1) from the states of unmeasured nodes
and approximated state variance computed by (6) from the average
mean values of the identified clusters.

V. STATE VARIANCE ESTIMATION BY AVERAGE STATE
OBSERVER

The average state za(t) = Q+x2(t) ∈ Rk is the vector
of average mean states of clusters that are obtained from
Algorithm 2, where Q ∈ Bn×k is the characteristic matrix of
the clustering. In this section, we present an observer design
procedure to estimate za(t), from which the state variance
will be estimated.

The network system Σ whose nodes are clustered ac-
cording to Q is called a clustered network system. Since
x2 = Qza + σ, we examine the dynamics of za(t) from a
projected network system, [5],

Σ̊ :


ż(t) =Ez(t) + Fσ(t) +Gu(t)

y(t) =Hz(t)

0 =Q+σ

where z(t) = [ xT
1(t) zTa(t) ]T ∈ Rm+k, σ(t) ∈ Rn, and

E =

[
A11 A12Q

Q+A21 Q+A22Q

]
, F =

[
A12

Q+A22

]
H =

[
Im 0m×k

]
, G =

[
B1

Q+B2

]
.

The projected network system Σ̊ is an aggregated model
where each cluster is considered as a single node, and whose
state vector contains the states of measured nodes and the
average states of the clusters of unmeasured nodes. We use
this model to design an average state observer of order k
that estimates the average states of clusters.

A. Average state observer

To estimate the average state za(t) ∈ Rk, we consider a
minimum order average state observer (ASO), presented in
[5],

Ωa :

{
ẇ(t) = Mw(t) +Ky(t) +Nu(t)

ẑa(t) = w(t) + Ly(t)

with w(t) ∈ Rk the state of the observer, ẑa(t) the estimated
average state of clusters, and

M = Q+A22Q− LA12Q
N = Q+B2 − LB1

K = ML− LA11 +Q+A21

L = (Q+A22 − V Q+)A+
12

(8)

where V = αQ+A22Q is a Hurwitz matrix with α > 0 the
tuning parameter to be chosen such that M is Hurwitz and
the average state estimation (ASE) error ζa(t) = za(t)−ẑa(t)
is minimum as t→∞. The following results are presented
in [5] with slight modifications.

Theorem 2: The following statements are true:

(i) Let b, c ∈ R>0 be some positive constants. Then, the
ASE error satisfies ‖ζa(t)‖2 ≤ c e−

α
b t, where α > 0 is

the tuning parameter, if and only if

rank

 A12

Q+

Q+A22

 = rank (A12) .

(ii) Let b, c2 ∈ R>0 be some positive constants and c1 ∈
R≥0 be some non-negative constant. Then, the ASE
error satisfies

‖ζa(t)‖2 ≤
c1
α

+ c2 e
−αb t, (9)

where α > 0 is the tuning parameter, if and only if

rank

([
A12

Q+

])
= rank (A12) .

(iii) Let b, c ∈ R>0 be some positive constants. Then, the
ASE error satisfies ‖ζa(t)‖2 ≤ c e−

1
b t if and only if

ker(Q+) ⊆ ker(Q+A22). Notice that the inequality is
without a tuning parameter α. y

The proofs of the theorem statements given above are
similar to the ones provided in [5] for average observability
and average detectability. Theorem 2(i) corresponds to the
case where limt→∞ ‖ζa(t)‖2 = 0 for any tuning parameter
α > 0, i.e., this is the average observability case and the
ASO is a tunable observer. Theorem 2(iii) is the case where
limt→∞ ‖ζa(t)‖2 = 0 but without any tuning parameter α,
i.e., this is the average detectability case and is closely related
to the notion of lumpability [12]. Theorem 2(ii) implies that
limt→∞ ‖ζa(t)‖2 = c1/α, which can be made arbitrarily
small by choosing α to be very large. Notice that if the
condition in Theorem 2(iii) is satisfied, then the conditions
in Theorem 2(i) and (ii) are equivalent and c1 = 0 in (9).

The network interpretation of the conditions in Theo-
rem 2(i) and (ii) is as follows: It is necessary that the
measured nodes span all the unmeasured nodes. In other
words, for every unmeasured node j ∈ V2, there exists at
least one measured node i ∈ V1 to which j is connected,



i.e., (i, j) ∈ E or [A]ij > 0. This condition is not sufficient
because we also require that the weights of the edges between
measured and unmeasured nodes are balanced is such a way
that Q+ is in the rowspace of A12.

The network interpretation of the condition in Theo-
rem 2(iii) is that the characteristic matrix Q corresponds
to an equitable partition, which means the following. First,
the induced subgraphs formed by the nodes of each cluster
are weighted out-regular, i.e., the weighted out-degrees of
nodes with respect to their own cluster is equal. Second, the
induced bipartite subgraphs formed by the nodes of every
pair of clusters must also be weighted out-regular, i.e., the
weighted out-degrees of nodes of one cluster with respect to
another cluster is equal.

B. Minimizing the ASE error

The conditions given in Theorem 2 require strict structural
constraints on the clustered network system (Σ clustered
according to Q). Since Algorithm 1 and 2 do not take
these constraints into account, therefore these conditions are
not satisfied in general, which implies that the ASE error
doesn’t converge to zero. In this subsection, we present a
methodology to deal with general clustered network systems.
The problem is formulated as a convex optimization in order
to minimize the ASE error ‖ζa(t)‖2.

Let Rα = Q+A22 − LA12, then, from (8), we obtain
Rα = Q+A22

(
In − (In − αQQ+)A+

12A12

)
.

The matrix M = RαQ and the dynamics of the ASE
error is given by ζ̇a(t) = RαQζa(t) + Rασ(t), where
σ(t) = DQx(t). Suppose α̌ > 0 be such that RαQ is
Hurwitz for α > α̌. The transfer function from x to ζa is
given by Gζ(s) = (sI − RαQ)−1RαDQ with the H2(τ)-
norm defined as ‖Gζ‖2H2(τ) = tr(Ξτ (α)), where Ξτ (α) =∫ τ

0
exp(RαQt)RαDQD

T
QR

T
α exp(QTRT

αt)dt. The ASE error
minimization problem is as follows: Find α > α̌ such that

min
α>α̌

tr(Ξτ (α)). (10)

For some α > α̌, let γα = tr(Ξτ (α)) to be the cost of (10).

Algorithm 3: The algorithm requires a small real number
ε > 0, a large positive integer η, and all the matrices required
to compute Ξτ (α) for a given α > α̌. It outputs α∗ the
suboptimal solution of (10).

1: Initialize α← 0.
2: repeat
3: Assign α← α+ ε and compute RαQ.
4: until RαQ is Hurwitz.
5: Assign α← α+ ε and compute γα = tr(Ξτ (α)).
6: repeat
7: Assign γ ← γα and α← α+ ε.
8: Compute γα = tr(Ξτ (α)).
9: until γα > γ

10: Assign α1 ← α− 2ε and α2 ← α.
11: Let I be the set of η equidistant points in [α1, α2].
12: Compute α∗ = arg minα∈I tr(Ξτ (α)).
13: return α∗ y

C. State variance estimation error

In this subsection, we derive an expression for the state
variance estimation (SVE) error as the sum of the variance
approximation error and a quantity proportional to the ASE
error. This is to justify that if the variance approximation
error and the ASE error are small, then the SVE error is
also small. Moreover, if the conditions of Theorem 2 are
satisfied, then the asymptotic SVE error only depends on
the asymptotic variance approximation error.

The estimated state variance computed from the estimated
average states is given by

x̂v(t) =
1

n
ẑTa(t)QTJnQẑa(t). (11)

Since the ASE error ζa = za − ẑa, we have

x̂v =
1

n

(
zTaQ

TJnQza + ζTaQ
TJnQζa − 2zaQ

TJnQζa

)
and since x2 = σ +Qza, we have

xv =
1

n

(
σTσ + zTaQ

TJnQza
)

where we used the facts: σTJnσ = σTσ and σTJnQza = 0.
Therefore, the SVE error ξv = xv − x̂v can be written as

ξv =
1

n

(
σTσ + (2za − ζa)

TQTJnQζa

)
. (12)

The above expressions contains two summands, first is the
square of the norm of state variance approximation error
‖σ(t)‖22 and the second is proportional to the ASE error
ζa(t). If the optimization problems (7) and (10) admit a
solution that yields a small cost, then the state variance
approximation error and the ASE error will also be small.
Consequently, the SVE error will be small.

VI. SIMULATION EXAMPLE

We consider a linear compartmental system, [13], where
each compartment is a node with a state xi(t) ∈ R≥0

that represents some physical quantity. The nodes V are
connected via an underlying graph G and the rate of change
of node i’s state equals the difference between the inflow
to i and the outflow from i, i.e., ẋi(t) = f in

i (t) − f out
i (t)

where f in
i (t) and f out

i (t) represent the flow-in and the flow-
out, respectively, and are given by

f in
i =

∑
j∈N↓i

aijxj(t) + b+ilu
+
l (t),

f out
i =

∑
h∈N↑i

ahixi(t) + b−ilu
−
l (t)

with N ↓i and N ↑i the in-neighbors and the out-neighbors
of node i, respectively; u+

l (t) ∈ R≥0, u−l (t) ∈ R≤0 are
the positive and the negative inputs, respectively, b+il , b

−
il ∈

{0, 1} are the scalars that determine if the input-l is applied
at node i.

The state matrix A = A(G) − D↑(G), where A(G) and
D↑(G) are the weighted adjacency and out-degree matrices of
the graph G, respectively. We generate a graph G of 55 nodes
by an Erdos-Renyi model with a probability of a directed
edge between any pair of nodes equal to 0.15. The number
of measured nodes m = 5 and the number of unmeasured
nodes n = 50. We choose the number of clusters to be k = 5.
We consider the input vector to be u(t) = [ u1(t) u2(t) ]T,
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Fig. 3: (a). The state trajectories x2(t) of the 50 unmeasured
nodes in the example network system. The colors of the trajec-
tories correspond to the 5 clusters identified by Algorithm 2. (b)
Average state estimation of the identified clusters. The colored solid
trajectories show the average states of the clusters za(t) and black
dashed trajectories show the estimated average states ẑa(t).

where each input ul(t) = u+
l (t)−u−l (t) with u+

l (t), u−l (t) ∈
[0, 1] represent a random, discontinuous signal. The inputs
are directly applied to 10% of nodes chosen in a uniformly
random way.

The state trajectories of the system are shown in Fig. 3(a),
where the trajectories of the same color correspond to the
clusters identified by Algorithm 2. We obtain the optimal
tuning parameter α∗ = 1.8879 from Algorithm 3, where Ξτ
is computed at every iteration with τ = 10. The estimation
of the average states are shown in Fig. 3(b). Notice that the
estimation of the four average states shown as green, blue,
red, and yellow is very accurate, whereas the estimation of
the average state shown as magenta is not very accurate.
This can be due to the fact that the cluster represented
by magenta has only one node, which is an outlier node
since its trajectory is far from the states of other nodes. The
average state observer is designed to optimally estimate the
average states of a cluster of several nodes, and not the states
of individual nodes. Another reason can be the fact that
we optimize a single parameter α in problem (10), which
changes the eigenvalues of RαQ with an equal proportion.
After obtaining an optimal α∗, if the spectrum eig(RαQ)
contains a very small eigenvalue, then the corresponding
estimated average state trajectory will not be accurate, as
shown in the figure.

The plot of the actual and the estimated state variance
is shown in Fig. 4(a) and the percentage state variance
estimation error in Fig 4(b). We see that the state variance
estimation is very accurate, which is due to the following
reasons: (i) The variance approximation is very accurate
because of the state trajectories of the identified clusters are
very close to each other. (ii) The average state estimation
is very accurate because of the optimal tuning parameter
α∗. From the discussion that follows after the SVE error
equation (12), we conclude that the accuracy of state variance
approximation and average state estimation results in the
accuracy of state variance estimation.

VII. CONCLUDING REMARK

We presented a methodology to estimate the state vari-
ance, which is a nonlinear functional of the state vector
that provides a measure of the square deviation of state
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Fig. 4: (a) The actual state variance xv(t) plotted with black solid
line vs. the estimated state variance x̂v(t) plotted with red dotted
line. (b) Percentage variance estimation error.

trajectories around their average mean. The methodology
comprises two steps: (i) Offline: Run Algorithm 2 to identify
k clusters of network nodes such that the gain from the
input to the average deviation vector is minimized. Then,
run Algorithm 3 to obtain an optimal tuning parameter
for an average state observer that estimates the average
states of the clusters. (ii) Online: Compute the estimated
state variance from the output of the average state observer.
Our proposed methodology is computationally tractable for
large-scale systems and can be generalized to estimate any
nonlinear functional or higher moments (e.g., skewness) of
the state vector.
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