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ABSTRACT

This paper presents the equivariant systems theory and observer design for second order kinematic systems
on matrix Lie groups. The state of a second order kinematic system on a matrix Lie group is naturally posed
on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the
double tangent bundle. We provide a simple parameterization of both the tangent bundle state space and the
input space (the fiber space of the double tangent bundle) and then introduce a semi-direct product group and
group actions onto both the state and input spaces. We show that with the proposed group actions the second
order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is defined and
used to design a nonlinear observer on the lifted state space using nonlinear constructive design techniques. A
simple hovercraft simulation verifies the performance of our observer.

1 Introduction

Observer design for second order kinematic systems is of interest since there are many applications where direct velocity
measurements are not available but where acceleration is measured by an Inertial Measurement Unit (IMU) or can be inferred
from torque or force measurements. However, the majority of observer designs for systems on Lie groups and homogeneous
spaces are developed for first order kinematics. Attitude estimation is naturally posed on the Special Orthogonal group SO(3)
[4, 17, 8, 10] where an IMU directly provides the angular velocity as a measured input. Pose estimation on SE(3) has been
considered [6, 1, 14] in the same framework, as has estimating homographies on the special linear group SL(3) [9, 16] although
the inputs are not directly available and depend on additional parameter estimation. The Simultaneous Localisation and Mapping
(SLAM) problem has also been studied [2, 3, 15] in the same context.

The fact that an IMU measures angular velocity (the first order kinematic input of rotation) and acceleration (the second order
kinematic input for translation) has motivated a number of works that use part first order and part second order kinematic
models. If linear velocity and linear acceleration are measured, either expressed in an inertial frame [5], body-fixed frame [12]
or a combination of both [11], velocity aided attitude estimation can be used to better estimate the attitude and linear velocity
of an accelerated body. Nonlinear observers on Special Euclidean group SE(3) where velocity, acceleration and landmark
measurements are used to achieve local exponential stability result [23, 13] have also been studied. Brás et al. [6] estimates the
pose of an unmanned aerial vehicle with acoustic ranging and inertial sensor and Hua et al. [14] developed a Riccati observer
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with landmark and inertial measurements. However, these work do not exploit the underlying symmetry of the kinematic system
in their observer design. For pure second order kinematics, the authors earlier work considers the case of second order kinematics
on SO(3) [22] and SE(3) [21].

In this paper we consider second order kinematic systems on general matrix Lie groups. The second order kinematics can be
written in left-trivialised form as first order kinematics on the Lie group coupled to velocity kinematics on the Lie-algebra. We
define a symmetry group comprised of a semi-direct product of the system group acting on its own Lie algebra and show that this
group acts transitively on the left trivialised representation of the tangent bundle of the system state space. A key contribution of
the paper is to introduce a velocity input space that acts in both the first and second order components of the system kinematics
modelling the fibre space of the double tangent bundle of the matrix Lie group of the system. The component of the input
velocity that acts in the first order kinematics is virtual (unless there are direct velocity measurements available), however, it is a
core construction to understand the equivariance of the system. We define a novel group action on the input space, and with this
symmetry demonstrate that the full second order kinematics are equivariant. Although the symmetry for the tangent bundle of a
Lie-group has been known since the seventies [7], we believe this is the first paper where equivariance of the natural second order
kinematics has been demonstrated. The equivariance of the system can be exploited to lift the kinematics onto the symmetry
group and from here it is straightforward to build an observer based on constructive nonlinear control techniques. In this paper,
we consider the case where the state can be partially measured. The performance of the proposed observer is demonstrated on a
simulation of a simple hovercraft model equipped with an inertial measurement unit for velocity measurement.

The remainder of the paper consists of seven sections and an appendix. Section 2 discusses preliminaries and notations that will
be used in later part of the paper. Section 3 presents the problem formulation, where the second order system states, kinematics
and output are defined. Section 4 describes the symmetry group and the equivariant group actions on the states and inputs.
Section 5 covers the equivariant lift, origin point and the projected kinematics. Section 6 details the proposed observer on the
symmetry group, along with the convergence proof. Section 7 shows the simulation experiment of a hovercraft moving on a 2D
plane, which verifies the performance of our proposed observer. Finally, the conclusions are drawn in Section 8. The appendix
provides a modified version of Barbalat’s Lemma [20] used in the main convergence proof.

2 Preliminaries and Notation

Let G ⊂ RN×N be a matrix Lie group and let g ⊂ RN×N be its Lie-algebra as a linear subspace of matrix space. Let
Pg : RN×N → g denote the projection of RN×N onto g with respect to the Euclidean trace inner product. That is, for any Γ ∈ g
and any M ∈ RN×N , then

tr
(
Γ>M

)
= tr

(
Γ>Pg(M)

)
.

Define a Lie-group Gn
g = Gn g as a semi-direct product of G with g, with group multiplication given by

(A, a) · (B, b) = (AB, a+ AdA b), (1)

for (A, a) and (B, b) ∈ Gn
g . The group identity is (I4, 0) and group inverse is given by

(A, a)−1 = (A−1,−AdA−1 a). (2)

This group was first proposed by Brockett and Sussmann [7].

The Lie-algebra of Gn
g is denoted gng and has elements (w1, w2) ∈ g× g. We identify the Lie-algebra Gn

g = T(I,0)G
n
g with

the tangent space of Gn
g at the identity.

The group Gn
g is not a matrix group as written and some care must be taken with basic operations such as left and right translation

and computing adjoint operators. In particular, we will need the left differential dL(A,a) : T(I,0)G
n
g → T(A,a)G

n
g in order to

parameterize the tangent space
T(A,a)G

n
g = {dL(A,a)(w1, w2) | (w1, w2) ∈ gng },

and the Adjoint Ad(A,a) : gng → gng to verify equivariance properties of the lifted system.

Lemma 2.1. The differential of left translation on Gn
g at the origin is given by

dL(A,a)

∣∣
(I,0)

[(w1, w2)] = (Aw1,AdA w2). (3)

The Adjoint is given by

Ad(A,a)(w1, w2) =
(

AdA w1,AdA w2 − [AdA w1, a]
)
, (4)

where [·, ·] denotes the Lie-bracket on g.

2
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Proof. Computing the differential of the left translation

D(B,b)

∣∣∣
(I,0)

((A, a) · (B, b))[(w1, w2)]

= D(B,b)

∣∣∣
(I,0)

(AB, a+ AdA b)[(w1, w2)]

= (Aw1,AdA w2).

This proves (3).

In order to demonstrate the result for the Adjoint it is necessary to compute dR(A,a)−1

∣∣
(A,a)

[(Aw1,AdA w2)]. One has

dR(A,a)−1

∣∣
(A,a)

[(Aw1,AdA w2)]

= D(B,b)

(
(B, b) · (A−1,−AdA1 a)

)∣∣
(A,a)

[(Aw1,AdA w2)]

=
(
Aw1A

−1,AdA w2

−Aw1(AdA−1 a)A−1 +A(AdA−1 a)A−1Aw1A
−1)

= (AdA w1,AdA w2 − [AdA w1, a]) .

3 Problem Formulation

The state ξ of second order kinematics of a system on a Lie group G are naturally posed on the tangent bundle TG. By using
the standard left trivialisation of the velocity state, a tangent vector PξVξ ∈ TPξ

G is identified with Vξ ∈ g. In this manner,
the state of our system is posed as an element of the product manifold ξ = (Pξ, Vξ) ∈ G × g corresponding to the element
(Pξ, PξVξ) ∈ TG. We will abuse notation and identify TG ≡ G× g in the sequel and write ξ = (Pξ, Vξ) ∈ TG.

The first order kinematics of Pξ are given by Ṗξ = PξVξ for Vξ ∈ g the Lie-algebra of G. Since Vξ ∈ g lies in a linear vector
space, the second order kinematics can be written

Ṗξ = PξVξ, (5a)

V̇ξ = W, (5b)

where W ∈ Tg ≡ g is the generalised acceleration of the system that we will assume is measured.

A key innovation of this paper is to model the full double tangent bundle T(TG) as input to the second order kinematics. The
double tangent is identified with the tangent of the direct product T(TG) ≡ T(G× g) using identification discussed above. In
turn we identify TG× Tg ≡ g× g with a double copy of the Lie-algebra using left trivialisation in the first part of the direct
product and the identification Tg , g since g is a linear space. Thus, inputs are modeled as elements of a vector space

V = g× Tg = g× g, (6)

where we preserve the Tg notation to make clear the part of the velocity space that is modelling inputs to the second order part
of the kinematics. An element U = (U1, U2) ∈ V in the input space can be thought of as two independent elements U1 ∈ g
and U2 ∈ Tg ≡ g. Note that Vξ ∈ g is part of the state ξ = (Pξ, Vξ) ∈ TG and not part of the input space. For the kinematics
(5) the only measured velocity is W ∈ Tg and hence the input velocity that we will use in the observer implementation is
(U1, U2) = (0,W ) ∈ V. However, modelling U1 as an independent input, even though eventually it will be set to zero, is critical
for the development of the equivariance properties of second order systems. Thus, the system kinematics we will consider are
given by

Ṗξ = Pξ(Vξ + U1), (7a)

V̇ξ = U2. (7b)

The configuration output that we model is a smooth function h : G → N into a smooth manifold N . For simplicity, in the
present paper, we assume that the full configuration state Pξ ∈ G is measured. That is h : G→ G is the identity map, and

y = h(Pξ) = Pξ. (8)

Remark 3.1. In general, the output function can be used to model measurements from the full state space h : TG→ N where
N is a vector space bundle that includes a linear part modeling the velocity measurements. We postpone a full development of
this case to future work.

3
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We will use the compact notation
ξ̇ = f(ξ, U) = (Pξ(Vξ + U1), U2). (9)

for ξ = (Pξ, Vξ) and U = (U1, U2). Note that the kinematics (9) contain a drift term

f((Pξ, Vξ), 0) = (PξVξ, 0)

for U ≡ 0 similar to the drift considered in the authors earlier work on second order attitude kinematics [22]. This is characteristic
of all second order kinematic systems.

4 Symmetry Of System

Physical systems usually have physical models with symmetries that encode the equivariance of the laws of motion. When
viewed through a symmetric transformation of space, the behaviour of the system at one point is the same as the behaviour at
another point in the state space. A system with symmetry allows a global analysis of an observer by analysing the behaviour at
one point in space [19, 18, 22].

4.1 State space symmetry

Right multiplication defines a group action of G on G in a natural manner. Since this action will play a fundamental role as the
symmetry operator in our theory, we introduce specific notation Φ : G×G→ G by

Φ(A,P ) = PA

for the group action.

Lemma 4.1. Define φ : Gn
g × TG→ TG by

φ((A, a), (Pξ, Vξ)) = (PξA,AdA−1(Vξ − a)). (10)

The map φ is a transitive right group action of Gn
g on TG.

Proof. Let (A, a), (B, b) ∈ Gn
g . Then,

φ((A, a),φ((B, b), (Pξ, Vξ)))

= (PξBA,AdA−1B−1(Vξ − b−AdB a))

= (Pξ(BA),Ad(BA)−1(Vξ − (b+ AdB a)))

= φ((B, b) · (A, a), (Pξ, Vξ)).

This demonstrates that the (right handed) group action property holds. It is straightforward to verify that φ((I4, 0), (Pξ, Vξ)) =
(Pξ, Vξ).

To see that φ is transitive, let (Pξ, Vξ) and (P ′ξ, V
′
ξ ) be any elements of TG. Then we can find the group element (Pξ

−1P ′ξ, Vξ −
AdPξ

−1P ′ξ
V ′ξ ) ∈ Gn

g such that

φ((Pξ
−1P ′ξ, Vξ −AdPξ

−1P ′ξ
V ′ξ ), (Pξ, Vξ))

= (PξPξ
−1P ′ξ,AdP ′ξ

−1Pξ
(Vξ − (Vξ −AdPξ

−1P ′ξ
V ′ξ )))

= (P ′ξ, V
′
ξ ).

4.2 Equivariance of second order kinematics

In this section we show that the kinematics (9) are equivariant [19, 18]. To begin, we need to introduce a group action on the
velocity input space.

Lemma 4.2. Define a map ψ : Gn
g × V→ V by

ψ((A, a), (U1, U2)) := (AdA−1(U1 + a),AdA−1 U2). (11)

The map ψ is a right action of Gn
g on V.

4
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Proof. Let (A, a), (B, b) ∈ Gn
g and let (U1, U2) ∈ V. Then we have

ψ((A, a),ψ((B, b), (U1, U2)))

= (AdA−1(AdB−1(U1 + b) + a),AdA−1 AdB−1 U2)

= (Ad(BA)−1(U1 + (b+ AdB a)),Ad(BA)−1 U2)

= ψ((B, b) · (A, a), (U1, U2)).

This shows that the (right handed) group action property holds. It is straightforward to verify that ψ((I4, 0), (U1, U2) = (U1, U2).
Thus, ψ is indeed a right action.

Lemma 4.3. The system defined in (9) is equivariant with respect to the group Gn
g and group actions φ (10) and ψ (11); that is,

dφX [f(ξ, U)] = f(φX(ξ), ψX(U))

for any X ∈ Gn
g , ξ ∈ TG, and v ∈ V.

Proof. Let (A, a) ∈ Gn
g , (Pξ, Vξ) ∈ TG, and (U1, U2) ∈ V be arbitrary. Then we have

dφ(A,a)f((Pξ, Vξ), (U1, U2))

= D(Pξ,Vξ)φ(A,a)(Pξ, Vξ)[(Pξ(Vξ + U1), U2)]

= (Pξ(Vξ + U1)A,AdA−1 U2)

= (PξA(AdA−1(Vξ − a) + AdA−1(U1 + a)),AdA−1 U2)

= f(φ(A,a)(Pξ, Vξ), ψ(A,a)(U1, U2)),

which proves the equivariance condition.

Remark 4.4. This result cannot be shown without exploiting the velocity input U1. That is, in order to demonstrate equivariance
of second order kinematics, it is necessary to model a first order velocity input separate to the velocity state of the system. The
authors believe that this insight is a key contribution of the paper.

5 System Lift

5.1 System Lift onto the Group

The proposed observer state is posed on the symmetry group [19, 18]. This allows the state to be defined with respect to an
arbitrarily chosen origin point while ensuring the same system kinematics is still satisfied. In order to build the observer it is
necessary to find a lift, Λ : TG × V → gng , of the system kinematics into the Lie-algebra gng of the group Gn

g . A function
Λ : TG× V→ gng is a lift [18] if

dφξ[Λ(ξ, U)] = f(ξ, U) (12)

for all A ∈ G, ξ ∈ TG and U ∈ V.

Lemma 5.1. Define a function Λ : TG× V→ gng by

Λ((Pξ, Vξ), (U1, U2)) := (Vξ + U1, [Vξ, U1]− U2), (13)

where the square bracket represents the Lie-bracket on g given by the matrix commutator for a matrix Lie-group. The function Λ
(13) is a lift function for (9) with respect to the symmetry group Gn

g .

Proof. Let (Pξ, Vξ) ∈ TG, (U1, U2) ∈ V, and (A, a) ∈ Gn
g be arbitrary. Compute

dφ(Pξ,Vξ)[Λ((Pξ, Vξ), (U1, U2))]

= D(A,a)

∣∣∣
I,0

(PξA,AdA−1(Vξ − a))[Λ((Pξ, Vξ), (U1, U2))]

= (Pξ(Vξ + U1),−
[
Vξ + U1, Vξ

]
− (
[
Vξ, U1

]
− U2))

= (Pξ(Vξ + U1), U2)

= f((Pξ, Vξ), (U1, U2)),

which verifies (12).

5
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Lemma 5.2. The lift defined in (13) is equivariant with respect to the group Gn
g and group actions φ (10) and ψ (11) [18]. That

is

Ad(A,a) Λ(ξ, U) = Λ(φ(A,a)−1(ξ), ψ(A,a)−1(U)),

for any (A, a) ∈ Gn
g , ξ ∈ TG, and U ∈ V.

Proof. Let X = (A, a) ∈ Gn
g . Recalling Lemma 2.1, direct computation yields

Ad(A,a) Λ(ξ, U)

=
(

AdA(Vξ + U1),

AdA(
[
Vξ, U1

]
− U2)−

[
AdA(Vξ + U1), a

])
= Λ

(
(PξA

−1,AdA(Vξ + AdA−1 a)),

(AdA(U1 −AdA−1 a),AdA U2)
)

= Λ(φX−1(ξ), ψX−1(U)).

5.2 Origin Point and Projected Kinematics

Define the lifted system to be

Ẋ := dLXΛ(ξ, U), (14)

for ξ ∈ TG, U ∈ V and dLX given by Lemma 2.1. Let X = (A, a) ∈ Gn
g be a solution to the lifted system with initial

condition X(0) ∈ Gn
g such that φξ◦(X(0)) = ξ(0), the true initial condition of the second order kinematics.

Fix an arbitrary origin ξ◦ = (Pξ◦ , Vξ◦) ∈ TG. This origin point defines a global parametrization φξ◦ : Gn
g → TG of the state

space TG by the symmetry group Gn
g . From [18, Lemma 4.9], the solution X(t,X(0)) for U = (0,W ) projects back to the

state ξ(t, ξ◦) via the group action

φξ◦(X(t;X(0))) = ξ(t; ξ◦).

Writing this in explicit coordinates, one has

(Pξ, Vξ) = φ(Pξ◦ ,Vξ◦ )(A, a) = (Pξ◦A,AdA−1(Vξ◦ − a)),

(P̂ξ, V̂ξ) = φ(Pξ◦ ,U0), (Â, â) = (Pξ◦Â,AdÂ−1(Vξ◦ − â)).

Substituting for (13) and (14), the explicit form of the lifted kinematics on Gn
g can be written as

Ȧ = A(AdA−1(Vξ◦ − a) + U1), (15a)

ȧ = AdA

([
AdA−1(Vξ◦ − a), U1

]
− U2

)
. (15b)

It is interesting to note that these lifted kinematics do not resemble the system kinematics (5). If one chooses a reference Vξ◦ = 0

and sets U1 ≡ 0 and U2 = W then one recovers Ȧ = −aA and ȧ = −AdAW which at least contains structure similar to the
system kinematics. It is, however, best not to think of the state of lifted system as the physical variables of the system, rather as
transformations that relate a reference to the system variables. This is particularly important when the observer state model is
based on the lifted system and not on the actual system, and thus, the observer state itself cannot be directly related to the system
evolution, only its projection through the group action to a state estimate can be compared with the system state.

6 Observer Design

Our proposed observer has its state on the symmetry group Gn
g and uses the lifted system as its internal model. We use

X̂(t; X̂(0)) ∈ Gn
g to denote the estimate for the lifted system state X(t;X(0)) for unknown X(0). The observer is based on a

pre-observer or internal model (a copy of (15)) with innovation. The innovation takes output y and the observer state X̂ , and
generates a correction term for the observer dynamics with the goal that ξ̂ = φ(X̂, ξ◦) converges to ξ(t, ξ◦).

6
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6.1 Proposed Observer

Let (Pξ◦ , Vξ◦) be the chosen reference point in TG. Let X̂ = (Â, â) ∈ Gn
g , with arbitrary initial condition X̂(0) = (Â0, â0).

Define observer kinematics

˙̂
A = Â(AdÂ−1(Vξ◦ − â) + U1)−∆1Â, (16a)

˙̂a = AdÂ

([
AdÂ−1(Vξ◦ − â), U1

]
− U2

)
−∆2, (16b)

for arbitrary inputs (U1, U2) and innovation terms (∆1,∆2) ∈ g× g that remain to be defined.

Let X = (A, a) be the lifted state and define the group error to be

E = X̂X−1 = (Ã, ã). (17)

The explicit form of (Ã, ã) is

Ã = ÂA−1, ã = â−AdÃ a. (18)

Given that the initial condition for the lifted system is chosen to match the true system then Vξ = AdA−1(Vξ◦ − a). Define
V̂ξ = AdÂ−1(Vξ◦ − â). The dynamics of the group error E = (Ã, ã) are given by

˙̃A = (AdÂ Ṽξ −∆1)Ã, (19a)

˙̃a = AdÂ

([
Ṽξ, U1

])
+
[

AdÃ a,AdÂ Ṽξ −∆1

]
−∆2, (19b)

with Ṽξ = V̂ξ − Vξ.
The goal is to design the innovations ∆1 and ∆2 such that the group error E = (Ã, ã) = (I, 0) is locally asymptotically
stable to (I, 0). This will in turn ensure asymptotic convergence of ξ̂ = φ(X̂, ξ◦) to ξ(t, ξ◦). It is impossible to guarantee the
global asymptotic stability of the error without specific structure for the group G. Indeed, many Lie-groups include topological
obstructions to existence of global smooth stabilisation controls and in these cases the error system will always have critical
points other than the desired equilibria. In practice, the natural structure of Gn

g tends to lead to large (almost global) basins
of attraction for the proposed observer. Nevertheless, in the present paper, the appropriate property is that of local asymptotic
stability.

Proposition 6.1. Consider the lifted kinematic system (15) and consider the observer defined by (16) along with the following
expressions for the innovation terms

∆1 = −k1Pg

(
(I − Ã)Ã>

)
, (20a)

∆2 = AdÂ Pg

([
V̂ξ,AdÂ−1 ∆1

]
+ k2Â

>(I − Ã)Ã>Â−>
)
, (20b)

with k1 and k2 two positive gains and where (Ã, ã) is given by (18). If X = (A, a) and X−1 = (A−1,−AdA a) are bounded
then, the equilibrium E = (Ã, ã) = (I, 0) is locally asymptotically stable.

Proof. Let us consider the following candidate Lyapunov function

L =
1

2
tr
(

(I − Ã)(I − Ã)>
)

+
1

2k2
||Ṽξ||2F . (21)

Differentiating the Lyapunov function, and substituting the proposed innovations ∆1 and ∆2 one obtains

L̇ = tr
(

(− ˙̃A)(I − Ã)>
)

+
1

k2
tr
(
Ṽ >ξ

˙̃Vξ

)
= tr

(
Ṽ >ξ (−Â>(I − Ã)Ã>Â−> +

1

k2

[
AdÂ−1 ∆1, V̂ξ

]
+

1

k2
AdÂ−1 ∆2)

)
+ tr

(
((I − Ã)Ã>)>∆1

)
= −k1 tr

(
((I − Ã)Ã>)>Pg

(
((I − Ã)Ã>)

))
= −k1

∣∣∣∣∣∣Pg

(
(I − Ã)Ã>

)∣∣∣∣∣∣2
F
. (22)

7
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The derivative of the Lyapunov function is negative semi-definite which in turn implies that L is bounded. Since A and A−1 are
also bounded by assumption, it is straightforward to verify that L̈ is also bounded. Applying Barbalat’s lemma it follows that
Pg

(
(I − Ã)Ã>

)
converges to zero. It is easily verified that there exists µ < µ such that

µ‖I − Ã‖2F ≤
∣∣∣∣∣∣Pg

(
(I − Ã)Ã>

)∣∣∣∣∣∣2
F
≤ µ‖I − Ã‖2F ,

in the neighbourhood of the identity. It follows that Ã converges to I .

It remains to show that ã also converges to zero. The proof relies on a modified version of Barbalat’s Lemma shown in the
appendix (Lemma 8.1) [20]. From (19), the derivative of Ã can be rewritten as

˙̃A = N(t) +M(t) (23)

with N(t) = −ãÃ and M(t) = (−(AdÃ Vξ◦ − Vξ◦)−∆1)Ã. It is straightforward to verify that Ṅ(t) is bounded (so that N(t)

is uniformly continuous). Since Ã converges to I and ∆1 converges to 0, one verifies that M(t) converges to zeros and hence,

applying Lemma 8.1, ˙̃A converges to 0 which in turn implies that ã also converges to zero. As for the stability of the equilibrium
E = (I, 0), it is a direct consequence of relations (21) and (22).

7 Simulation

To demonstrate the proposed observer design, we carried out a simulation of a hovercraft moving in the R2 plane, and specialised
the general observer equations to a specific symmetry group. The state of the hovercraft is parametrised by TG , SE(2)×se(2),
representing the pose and velocity of the vehicle. The initial pose and velocity, and the linear and angular acceleration of
the hovercraft were chosen such that the position of the hovercraft satisfied the defining equation of the Lissajous curve
(sin(t), sin(2t)) ∈ R2 for all time t. Such that

U1 =

(
0 0 0
0 0 0
0 0 0

)
, U2 =

(
0 −uang(t) uxlin(t)

uang(t) 0 uylin(t)
0 0 0

)
,

where ulin and uang are the corresponding linear and angular acceleration.

The general observer design proposed in Section 6 was implemented using the symmetry group SE(2)nse(2) to demonstrate the
design for this particular problem. The origin pose and velocity of the observer were arbitrarily chosen. The gains of the observer
were chosen to be k1 = 1.0 and k2 = 1.0. Both the hovercraft motion and the observer equations were implemented using Euler
integration with a time step of dt = 0.001s, and were simulated for a period of 15s. The trajectories of the positions of the
hovercraft and the observer are shown in Figure 1(a). The evolution of the log Lyapunov function, log(L ) where L is defined as
in (21), is shown in Figure 1(b).
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Figure 1: (a) The trajectory of the hovercraft (blue) and its observed trajectory (red). A ? and ◦ are used to mark the start and end
of each trajectory, respectively; (b) The evolution of the Log Lyapunov function showing the local exponential convergence of
the observer error system.

The convergence of the observer trajectory to the hovercraft trajectory shown in Figure 1(a) is influenced by the initial error in the
velocity estimates. This causes the shape of the initial trajectory of the observer to differ significantly from that of the hovercraft.
In Figure 1(b), the local exponential convergence of the observer is clear from the overall linear decrease of the log(L (t)) cost.
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8 Conclusions

In this paper we presented the equivariant systems theory and observer design for second order kinematic systems on matrix Lie
group. More precisely, we identified a symmetry group, its associated equivariant group actions, a system lift, and an observer
that operates on the lifted state space. We also introduce a virtual velocity input that acts on the first order component of the
system kinematics, which is vital for the understanding of the equivariance of the system. The performance of the proposed
observer is analysed using Lyapunov stability analysis. Although global convergence cannot be guaranteed for a general matrix
Lie group, local exponential convergence is observed in a simulation of a simple hovercraft model moving on a 2D plane. This
work can be extended to include more general output function h and the estimation of bias in sensor measurements.

APPENDIX

Lemma 8.1. [20] Let Z(t) denote a solution to the differential equation Ż(t) = N(t) +M(t) with N(t) uniformly continuous
function. Assume that limt→∞ Z(t) = C and limt→∞M(t) = 0, with C constant. Then limt→∞ Ż(t) = 0.
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[8] Håvard Fjær Grip, Thor I Fossen, Tor A Johansen, and Ali Saberi. Attitude estimation using biased gyro and vector
measurements with time-varying reference vectors. IEEE Transactions on Automatic Control, 57(5):1332–1338, 2011.

[9] Tarek Hamel, Robert Mahony, Jochen Trumpf, Pascal Morin, and Minh-Duc Hua. Homography estimation on the special
linear group based on direct point correspondence. In 2011 50th IEEE Conference on Decision and Control and European
Control Conference, pages 7902–7908. IEEE, 2011.

[10] Minh-Duc Hua, Guillaume Ducard, Tarek Hamel, Robert Mahony, and Konrad Rudin. Implementation of a nonlinear
attitude estimator for aerial robotic vehicles. IEEE Transactions on Control Systems Technology, 22(1):201–213, 2014.

[11] Minh-Duc Hua, Tarek Hamel, and Claude Samson. Riccati nonlinear observer for velocity-aided attitude estimation of
accelerated vehicles using coupled velocity measurements. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2428–2433. IEEE, 2017.

[12] Minh-Duc Hua, Philippe Martin, and Tarek Hamel. Stability analysis of velocity-aided attitude observers for accelerated
vehicles. Automatica, 63:11–15, 2016.

[13] Minh-Duc Hua, Mohammad Zamani, Jochen Trumpf, Robert Mahony, and Tarek Hamel. Observer design on the special
euclidean group SE (3). In 2011 50th IEEE Conference on Decision and Control and European Control Conference, pages
8169–8175. IEEE, 2011.

[14] Minh-Due Hua and Guillaume Allibert. Riccati observer design for pose, linear velocity and gravity direction estimation
using landmark position and IMU measurements. In 2018 IEEE Conference on Control Technology and Applications
(CCTA), pages 1313–1318. IEEE, 2018.

[15] Robert Mahony and Tarek Hamel. A geometric nonlinear observer for simultaneous localisation and mapping. In 2017
IEEE 56th Annual Conference on Decision and Control (CDC), pages 2408–2415. IEEE, 2017.

[16] Robert Mahony, Tarek Hamel, Pascal Morin, and Ezio Malis. Nonlinear complementary filters on the special linear group.
International Journal of Control, 85(10):1557–1573, 2012.

[17] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear complementary filters on the special orthogonal group.
IEEE Transactions on automatic control, 53(5):1203–1217, 2008.

9



Equiv. Sys. Theory and Observer Design for 2nd Order Kin. Sys. on Matrix Lie Groups AUTHOR ACCEPTED VERSION

[18] Robert Mahony, Tarek Hamel, and Jochen Trumpf. Equivariant Systems Theory and Observer Design. arXiv:2006.08276
[cs, eess], August 2020.

[19] Robert Mahony, Jochen Trumpf, and Tarek Hamel. Observers for kinematic systems with symmetry. IFAC Proceedings
Volumes, 46(23):617–633, 2013.

[20] A. Micaelli and C. Samson. Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. Technical Report
2097, INRIA, 1993.

[21] Yonhon Ng, Pieter van Goor, and Robert Mahony. Pose observation for second order pose kinematics. In IFAC World
Congress, 2020.

[22] Yonhon Ng, Pieter van Goor, Robert Mahony, and Tarek Hamel. Attitude observation for second order attitude kinematics.
In 2019 58th IEEE Conference on Decision and Control. IEEE, 2019.
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