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Distributed Learning Model Predictive Control for Linear Systems*
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Abstract— This paper presents a distributed learning model
predictive control (DLMPC) scheme for distributed linear time
invariant systems with coupled dynamics and state constraints.
The proposed solution method is based on an online distributed
optimization scheme with nearest-neighbor communication. If
the control task is iterative and data from previous feasible iter-
ations are available, local data are exploited by the subsystems
in order to construct the local terminal set and terminal cost,
which guarantee recursive feasibility and asymptotic stability,
as well as performance improvement over iterations. In case
a first feasible trajectory is difficult to obtain, or the task is
non-iterative, we further propose an algorithm that efficiently
explores the state-space and generates the data required for the
construction of the terminal cost and terminal constraint in the
MPC problem in a safe and distributed way. In contrast to other
distributed MPC schemes which use structured positive invari-
ant sets, the proposed approach involves a control invariant set
as the terminal set, on which we do not impose any distributed
structure. The proposed iterative scheme converges to the global
optimal solution of the underlying infinite horizon optimal
control problem under mild conditions. Numerical experiments
demonstrate the effectiveness of the proposed DLMPC scheme.

I. INTRODUCTION

Complex systems composed of multiple subsystems are

present in many control applications. The large scale and

spatial distribution of these systems often make the control

by a centralized unit intractable due to limitations in compu-

tation and communication. Research has therefore focused

on proposing design schemes for local controllers which

compute control actions for the individual subsystems based

on only local information in decentralized schemes, and on

communicated information from neighboring subsystems in

distributed control schemes. One line of research has focused

on exploiting the interconnection structure of the system

in order to design interconnected controllers based on a

convex reformulation involving linear matrix inequalities in

a scalable way [1]. If constraints need to be accounted for,

distributed model predictive control (DMPC) techniques can

be employed. They can mainly be categorized into non-

cooperative, such as tube-based [2], and cooperative schemes

[3], [4], [5], [6]. The latter often involve distributed opti-

mization techniques [7] where the subsystems communicate
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local information and agree on a solution, thus solving the

optimization problem cooperatively.

The main challenge in DMPC schemes is to enable

distributed computation by decomposing the optimization

problem into subproblems for the individual subsystems.

Most of the DMPC approaches in the literature therefore

impose the distributed structure of the system on the terminal

set and cost function of the MPC problem [2], [4], [5], [8],

[9], [10]. In particular, they first design a structured terminal

controller and cost based on Lyapunov stability and then

design structured positive invariant sets under this terminal

controller, satisfying the constraints. Two aspects in these

schemes can lead to conservatism: (1) Imposing structure on

the terminal controllers and terminal sets, and (2) computing

positive invariant sets for one specific choice of terminal

controller which is fixed in the design phase, lead to a

possibly small inner approximation of the maximal control

invariant set. In order to mitigate the conservatism introduced

by the imposed structure, some works have proposed to adapt

the terminal sets based on the states of the subsystems in

operation [9], [10], [5], [11]. In [6], the stabilizing terminal

controller is also computed online within the MPC problem.

In [12], a data-driven MPC scheme, Learning MPC

(LMPC), was introduced, where previously seen data are

exploited in order to construct the terminal components of

the MPC problem. In [13] this framework was extended to

uncertain systems, and it was shown how the LMPC scheme

can be used to iteratively enlarge the domain of the policy.

In this paper, we propose a distributed LMPC (DLMPC)

scheme, which is a significant extension to [12]. The contri-

butions of the paper are the following:

• We present a novel DLMPC scheme for linear sys-

tems able to handle coupled dynamics, coupled state

constraints and coupled cost functions. The main im-

provement w.r.t. existing DMPC approaches is fully

distributed computations without imposing any structure

on the terminal cost function or constraint set. This

is achieved by exploiting previously seen local data

by the individual subsystems in order to build local

data driven terminal sets and terminal cost functions. A

consensus on specific parameters in the construction of

the local costs and constraints is achieved by distributed

optimization which guarantees that the local terminal

sets are a control invariant set and the sum of the

local terminal cost functions is a Lyapunov function

for the global system. This can considerably reduce

conservatism w.r.t. DMPC schemes that rely on finding

a positive invariant terminal set under a fixed structured

stabilizing terminal controller.
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• For iterative control tasks, given a first feasible trajec-

tory, the proposed scheme provides recursive feasibility

and asymptotic stability. Furthermore, we prove that

the proposed DLMPC has a non-increasing control

performance over iterations and, under mild conditions,

converges to the global centralized optimal solution.

• For non-iterative control tasks, or if an initial feasible

trajectory is difficult to obtain, we further present an

algorithm that by iteratively performing the proposed

DLMPC scheme with changing starting conditions leads

to an enlargement of the domain of the DLMPC policy.

This can be used to safely explore the state space and

to generate the required data in a sample efficient and

distributed way.

The paper is structured as follows. Section II introduces

the model of the distributed systems and the control task

considered. Section III provides a brief review of the LMPC

in [14]. A decomposed formulation of the LMPC according

to the distributed system structure is presented in Section IV.

The fully distributed solution is proposed in Section V. Sec-

tion VI provides numerical experiments before Section VII

concludes the paper.

Notation Let R denote the set of real numbers. N and N+

denote the set of non-negative and positive natural numbers.

We denote the transpose of a vector v ∈ R
n as v⊤, and its

Euclidean norm as ‖v‖. The matrix M = diag(M1, ...,Mm)
is the block-diagonal matrix with submatrices Mi on its

diagonal. The symbol < is used to indicate elementwise

inequality. The identitiy matrix of dimension n is denoted

as In and the vector of all ones is denoted as 1.

II. PROBLEM FORMULATION

In this section, we present the model of the distributed

systems considered in this paper, and then state the control

problem formulation.

A. Dynamically Coupled Constrained Linear Systems

We consider the discrete-time linear time-invariant system

with dynamics given by

xt+1 = Axt +But, (1)

where xt ∈ R
n and ut ∈ R

m are the system state and input

at time t ∈ N. The system matrices A and B are assumed to

be known. The system states and inputs are subject to linear

constraints

xt ∈ X , ut ∈ U , (2)

which are formulated as

Gxt ≤ g, Lut ≤ l, (3)

with G, L, g, and l given matrices and vectors, respectively.

We consider systems in (1) which have a structure that

admits a decomposition into subsystems N = {1, ...,M}
which may be coupled in their state dynamics. The state of

the ith subsystem is xi,t ∈ R
ni , and we assume that the ith

input ui,t ∈ R
mi affects only the i-th state. Thus, the system

states and inputs are partitioned as

xt =
[

x⊤
1,t . . . x⊤

M,t

]⊤
, ut =

[

u⊤
1,t . . . u⊤

M,t

]⊤
, (4)

For each subsystem i ∈ N , we define the set of neigh-

boring subsystems Ni ⊆ N which contains all those subsys-

tems that are coupled to subsystem i over the dynamics,

constraints or cost. We define the state vector xNi,t ∈
R

nNi containing the local states of subsystem i and its

neighboring subsystems in Ni, which can be expressed as

xNi,t = XNi
xt, with XNi

being a projection matrix, i.e., a

binary matrix XNi
∈ {0, 1}nNi

×n. Similarly, the projection

matrices Xi ∈ {0, 1}ni×n and Ui ∈ {0, 1}mi×m, are defined

such that xi,t = Xixt and ui,t = Uiut. The dynamics of

subsystem i is then given as

xi,t+1 =
∑

j∈Ni

Aijxj,t +Biui,t, ∀i ∈ N , (5)

with

ANi
= XiAX

⊤
Ni

, Bi = XiBU⊤
i . (6)

The local state and input constraints are defined as

xNi,t ∈ XNi
= {xNi,t ∈ R

nNi : GNi
xNi
≤ gNi

},

ui,t ∈ Ui = {ui,t ∈ R
mi : Liui ≤ li},

(7)

with Li = UiLU
⊤
i and li = Uil, and GNi

= XNi
GX⊤

Ni
and

gNi
= XNi

g.

B. Control Problem Formulation

Let us consider system (1). We are given an iterative

task, where the trajectories of the subsystems start at the

same initial states at each iteration. We will discuss the case

of non-iterative tasks in Section V-C. In the following, we

denote the iteration by a superscript q and the initial state at

iteration q by

x
q
i,0 = xi,S , ∀i ∈ N , (8)

where the overall initial state x
q
0 = xS is defined as a stacked

vector similar to (4).

The goal is to solve the following infinite horizon optimal

control problem (IHOCP) at each iteration

J∗
0→∞(xS) = min

u0,u1,...

∞
∑

t=0

h(xt, ut)

s.t. xt+1 = Axt +But, ∀t ≥ 0

xt ∈ X , ∀t ≥ 0

ut ∈ U , ∀t ≥ 0

x0 = xS .

(9)

In the following, we consider problems that involve de-

composable stage costs in (9), i.e., where h(xt, ut) is given

as a sum of local stage costs hi(xNi,t, ui,t) as

h(xt, ut) =

M
∑

i=1

hi(xNi,t, ui,t). (10)



We assume that the local stage costs hi(·, ·) are continuous,

jointly convex and satisfy










hi(xNi,F , 0) = 0,

hi(x
q
Ni,t

, u
q
i,t) ≥ 0, ∀ x

q
Ni,t
∈ R

nNi\{xNi,F},

∀ u
q
i,t ∈ R

mi\{0},

(11)

where the final state xF is a feasible equilibrium for system

(1) under no input, i.e., AxF = xF .

Remark 1: While the local stage costs hi(xNi,t, ui,t) can

account for coupling between the subsystems, this formula-

tion includes the special case of completely separable cost

functions with local stage costs given as hi(xi,t, ui,t).
Remark 2: A specific choice of the stage cost h(xt, ut)

can be the quadratic function

h(xt, ut) = x⊤
t Qxt + u⊤

t Rut,

with positive semi-definite and positive definite weighting

matrices Q ∈ R
n×n and R ∈ R

m×m, respectively. In this

case, the local stage costs are given by

hi(xNi,t, ui,t) = x⊤
Ni,t

QNi
xNi,t + u⊤

i,tRiui,t,

with QNi
and Ri such that the global weighting matrices

Q and R are given by Q =
∑

i∈N X⊤
Ni

QNi
XNi

and R =
∑

i∈N U⊤
i RiUi. A completely separable quadratic stage cost

is then defined as

hi(xi,t, ui,t) = x⊤
i,tQixi,t + u⊤

i,tRiui,t, (12)

with Qi such that Q =
∑

i∈N X⊤
i QiXi and Ri as before.

III. BACKGROUND ON LMPC

We review the LMPC problem formulation for the global

system in (1) from [14]. For this, we define the vectors that

collect all inputs applied to system (1) and its resulting states

for all time steps t of iteration q as

uq = [uq⊤
0 , u

q⊤
1 , ..., u

q⊤
t , ...]⊤,

xq = [xq⊤
0 , x

q⊤
1 , ..., x

q⊤
t , ...]⊤.

(13)

A. Convex Safe Set

In order to guarantee stability of MPC laws, an N -step

controllable set to a control invariant set can be used. Com-

puting such a set is usually numerically challenging or even

intractable for nonlinear systems or large scale distributed

systems. To alleviate this problem, we will as [12] exploit

previously seen trajectories that successfully completed the

iterative task. Since they represent a subset of the maximal

stabilizable set, the sampled safe set SSq is defined over the

realized trajectories of the system from previous iterations

SSq =

{

⋃

l∈T q

∞
⋃

t=0

xl
t,

}

, (14)

where T q collects all iteration indices from previous suc-

cessful iterations, i.e., which were feasible and converged to

xF , defined as

T q =
{

l ∈ [0, q] : lim
t→∞

xl
t = xF

}

. (15)

Because of the convexity of the constraints X and U , any

convex combination of the elements in the safe set SSq is

again a control invariant set for system (1), i.e., for any

element in the convex safe set

CSq = conv(SSq)

=

{

∑

l∈T q

∞
∑

t=0

αl
tx

l
t : αl

t ≥ 0,
∑

l∈T q

∞
∑

t=0

αl
t = 1, xl

t ∈ SSq

}

,

(16)

there exists a sequence of control inputs that steers the system

(1) to xF [15]. If all previous successful trajectories are taken

into account, then it holds that the sets are growing over the

iterations, i.e., T q−1 ⊆ T q and therefore

CSq−1 ⊆ CSq. (17)

B. Terminal Cost

For the qth realized trajectory xq and associated input

sequence uq in (13), the cost-to-go from time t onwards is

given by

J
q
t→∞(xq

t ) =
∞
∑

k=t

h(xq
k, u

q
k). (18)

The performance of the qth trajectory is defined as the cost

from time t = 0, i.e.,

J
q
0→∞(xq

0) =

∞
∑

t=0

h(xq
t , u

q
t ). (19)

The barycentric function [16] is used as the terminal cost

in the LMPC for linear systems in [12]. It is defined as

V q,∗(x) = min
α

q

q
∑

l=0

∞
∑

t=0

αl
tJ

l
t→∞(xl

t)

s. t.

q
∑

l=0

∞
∑

t=0

αl
t = 1

q
∑

l=0

∞
∑

t=0

αl
tx

l
t = x,

αl
t ≥ 0, ∀t ∈ N,

(20)

with xl
t being the realized state at time t of the lth iteration,

and where α
q comprises all αl

t, ∀l ∈ {0, ..., q}, ∀t ∈ N. The

function V q,∗ thus assigns to every point in the convex safe

set the corresponding convex combination of minimum costs-

to-go along the previous trajectories in the safe set.

Remark 3: In practical applications, the iterations will

have a finite time duration. For simplicity, we adopt the

infinite time formulation in this paper.

An LMPC [12] for a centralized linear system then solves

at each time step t the following finite horizon optimal



control problem (FHOCP),

J
LMPC,q
t→t+N (xq

t ) =

min
xt,N ,ut,N−1,αq−1

[

t+N−1
∑

k=t

h(xk|t, uk|t) + V q−1,∗(xk+N |t)

]

s.t. xk+1|t = Axk|t +Buk|t,

xk|t ∈ X ,

uk|t ∈ U , k = t, ..., t+N−1 (21)

xt|t = x
q
t ,

xt+N |t ∈ CS
q−1,

with
xt,N = [x⊤

t|t, ..., x
⊤
t+N |t]

⊤,

ut,N−1 = [u⊤
t|t, ..., u

⊤
t+N−1|t]

⊤.
(22)

Let us denote the optimal solution to (21) by

x
∗
t,N = [x∗⊤

t|t , ..., x
∗⊤
t+N |t]

⊤,

u
∗
t,N−1 = [u∗⊤

t|t , ..., u
∗⊤
t+N−1|t]

⊤.
(23)

At time t, the first input is applied to the system, i.e., u
q
t =

u
∗q
t|t, and the problem (21) is solved again for the next time

step in a receding horizon fashion.

Under the assumption that at iteration q = 1 the convex

safe set is non-empty, i.e., CSq−1 = CS0 6= ∅, recursive and

iterative feasibility, asymptotic stability and non-decreasing

performance over the iterations are proved in [14].

IV. DLMPC

In the following, we present the problem formulation of

DLMPC, which extends the LMPC approach to distributed

systems.

Let us consider the coupled constrained linear distributed

system from (1). We define the vectors that collect all inputs

applied to subsystem i in (5) and its resulting states for all

time steps t of iteration q as

u
q
i = [uq⊤

i,0 , u
q⊤
i,1 , ..., u

q⊤
i,t , ...]

⊤,

x
q
i = [xq⊤

i,0 , x
q⊤
i,1 , ..., x

q⊤
i,t , ...]

⊤.
(24)

We further define the local sampled safe sets for subsystems

i ∈ N over the realized trajectories of the subsystem from

all successful previous iterations up to q as

SS
q
i =

{

⋃

l∈T q

∞
⋃

t=0

xl
i,t,

}

, (25)

with T q as defined before for (14). Moreover, we note that

we can decompose the safe set from (16) into the following

local convex safe sets

CSqi =

{

∑

l∈T q

∞
∑

t=0

αl
i,tx

l
i,t :

αl
i,t ≥ 0,

∑

l∈T q

∞
∑

t=0

αl
i,t = 1, xl

i,t ∈ SS
q
i

}

,

(26)

where the coefficients αl
i,t, ∀l ∈ {0, ..., q − 1}, ∀t ≥ 0 will

be optimized over in problems (28) and (30).

We note the following relation of the convex safe set CSq

in (16) and the local convex safe sets CSqi in (26), which

will be important for the decomposition of the problem in

(21):
x = [x⊤

1 , ..., x
⊤
M ]⊤ ∈ CSq ⇐⇒

xi ∈ CS
q
i , α

q
i = α

q
j , ∀i 6= j, i, j ∈ N ,

(27)

with α
q
i comprising αl

i,t, ∀l ∈ {0, ..., q − 1}, ∀t ≥ 0 in (26).

Based on the assumption before that the global system is

decomposable into M coupled subsystems, the global LMPC

problem in (21) can equivalently be decomposed into the

following subproblems

J
LMPC,q
i,t→t+N (xq

i,t) =

min
xNi,t,N

,
ui,t,N−1,

α
q−1

i

[

t+N−1
∑

k=t

hi(xNi,k|t, ui,k|t) + V
q−1,∗
i (xi,t+N |t)

]

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t,

xNi,k|t ∈ XNi
,

ui,k|t ∈ Ui, k = t, ..., t+N−1 (28)

xNi,t|t = xNi,t,

xi,t+N |t ∈ CS
q
i ,

with
xNi,t,N = [x⊤

Ni,t|t
, ..., x⊤

Ni,t+N−1|t]
⊤,

ui,t,N−1 = [u⊤
i,t|t, ..., u

⊤
i,t+N−1|t]

⊤,
(29)

with α
q−1
i comprising αl

i,t, ∀l ∈ {0, ..., q − 1}, ∀t ∈ N, and

with V
q−1,∗
i (xi,k+N |t) being defined as in (20), but with

J l
t→∞(xl

t) replaced by

J l
i,t→∞(xl

i,t) =

∞
∑

k=t

hi(x
l
Ni,k

, ul
i,k).

In order to guarantee that the decomposed problem in (28)

is an exact reformulation of the global problem in (21), i.e.,

to guarantee that they have the same solutions, the following

consensus constraints need to be introduced

α
q−1
i = α

q−1
j , ∀i, j ∈ N , i 6= j,

xNi,t,N = XNi
xt,N , ∀i ∈ N , t ≥ 0,

(30)

with xt,N the planned state trajectory of the global system as

defined in (22). The consensus constraint in the first line of

(30) ensures the condition in (27), and the one in the second

line ensures that overlapping parts of state variables from

neighboring subsystems in xNi,t,N , i.e., variables of different

subsystems that have the same physical meaning, are the

same. The local FHOCPs in (28) are solved in a receding

horizon fashion, i.e., the first local inputs u
q
i,t = u

∗q
i,t|t are

applied to the subsystems at time t. The next section presents

a distributed solution method to solve the subproblems (28).

V. DISTRIBUTED SYNTHESIS FOR DLMPC

In this section, we present a distributed solution method

for the local decomposed subproblems in (28) coupled over

the consensus constraints in (30). Various distributed opti-

mization algorithms can be employed [7]. We propose a



distributed solution scheme based on the alternating direction

method of multipliers (ADMM) because of its fast conver-

gence in practice [8], [17]. A consensus algorithm involving

a central coordinator [17] could be implemented, which

requires communication to every subsystem and therefore

might not be tractable in practice. We propose a scheme,

where only nearest-neighbor communication and no global

coordination is required. A similar scheme has been pre-

sented before for distributed controller synthesis of large-

scale systems in [18].

A. Distributed Synthesis for DLMPC

Let us define the local variable vector of subsystem i as

si = [x⊤
Ni,t,N

, α
q−1⊤
i , u⊤

i,t,N−1]
⊤, (31)

and the projection matrices Eij , which project si onto those

variables over which a consensus needs to be achieved

between subsystem i and its neighboring subsystems j ∈ Ni,

i.e., Eijsi = Ejisj is the consensus constraint from (30) for

subsystem i with j. The decomposed problem in (28) and

(30) can now be formulated as the following M subproblems

for all i ∈ N

min
si

J
q
i,t→t+N (si) + gi(si)

s.t. Eijsi = Ejisj , ∀j ∈ Ni.
(32)

with J
q
i,t→t+N (si) being the cost function in (28), and gi(si)

being the indicator function for the constraints in (28), i.e.,

gi(si) =

{

0 if si satisfies the constraints in (28),

+∞ otherwise.

In order to derive the ADMM steps, we formulate the

augmented Lagrangian, which allows a decomposition into

the following sum of local terms

Lρ =
∑

i∈N

Lρ,i, (33)

with

Lρ,i = J
q
i,t→t+N (si) + gi(si)

+
∑

j∈Ni

(

λ⊤
ij (Eijsi − Ejisj) +

ρ

2
‖Eijsi − Ejisj‖

2
2

)

.

(34)

The modified ADMM update steps are summarized in Al-

gorithm 1. The derivation can be found in [18]. The up-

date steps require communication only between neighboring

subsystems, i.e., subsystems that are coupled through their

dynamics, constraints, or costs.

The DLMPC for iterative tasks, with distributed solution

of the subproblems by Algorithm 1, is given in Algorithm 2.

B. Properties of the DLMPC

Next, we present our main result on the properties of

Algorithm 2. We make the following assumptions.

Assumption 1: We have access to feasible trajectories x
q
i

at iteration q = 0 converging to xi,F for all subsystems

Algorithm 1: Distributed computation of local input

u
q
i,t = u

∗q
i,t|t for subsystem i at time t of iteration q

Input: Iteration q, time t, ρ > 0, set of neighboring

subsystems Ni, current subsystems states x
q
i,t,

initial values s
(0)
i , ∀i ∈ N

1 for i ∈ N do

2 Initialization: Set κ← 0, λ
(0)
i ← 0;

3 while not converged do

4 Communicate Eij s
(κ)
i to neighboring nodes

j ∈ Ni;

5 λ
(κ+1)
i ← λ

(κ)
i + ρ

∑

j∈Ni
(Tij s

(κ)
i − Tji s

(κ)
j );

6

s
(κ+1)
i ←argmin

si

{

J
q
i,t→t+N (si)+gi(si)+s⊤i λ

(κ+1)
i

+ρ
∑

j∈Ni

‖Tij si −
Tij s

(κ)
i + Tji s

(κ)
j

2
‖2

}

;

7 end

8 κ← κ+ 1;

9 Set s∗i = sκi ;

10 Return u
∗q
i,t|t from s∗i ;

11 end

Output: local inputs u
q
i,t, ∀i ∈ N

Algorithm 2: DLMPC

Input: Initial states xi,S , target states xi,F , sets of

neighboring subsystems Ni, initial successful

feasible trajectories x
0
i,t, u

0
i,t with CS0i and

J0
i,t→∞(xi,t), ∀xi,t ∈ x

0
i,t, ∀i ∈ N , qmax

1 for iteration q = 1 to qmax do

2 for i ∈ N do

3 while xi,t 6= xi,F do

4 Solve local problem (32) via Algorithm 1;

5 Apply local input u
q
i,t = u

∗q
i,t|t;

6 Obtain local state x
q
i,t;

7 end

8 Update CSqi by adding x
∗
i,t;

9 Compute and save J
q
i,t→∞(xq

i,t), ∀x
q
i,t ∈ x

∗
i,t;

10 end

11 q = q + 1;

12 end

Output: Closed-loop trajectories x
∗
i,t, u

∗
i,t, ∀i ∈ N

i ∈ N , and therefore the convex safe sets at iteration q = 1,

CSq−1
i = CS0i , are non-empty.

Assumption 2: We assume that the local cost functions

J
q
i,t→t+N (·)+gi(·) in (32) are closed, proper and convex for

all subsystems i ∈ N , and that the unaugmented Lagrangian

Li = J
q
i,t→t+N (si) + gi(si) +

∑

j∈Ni

λ⊤
ij (Eijsi − Ejisj)

has a saddle point, and that the ADMM update steps in

Algortihm 1 are feasible.



In addition to the classical MPC properties, namely, per-

sistent feasibility in each iteration, and asymptotic stability

of the equilibria xi,F , the following properties hold for the

DLMPC in Algorithm 2.

Theorem 1: Consider system (1), with distributed struc-

ture (5) and (7). Let Assumptions 1 and 2 hold. Then, the

DLMPC in Algorithm 2 has the following properties:

1) The DLMPC is feasible for all t ≥ 0 and at every

iteration q ≥ 1. The equilibrium points xi,F are asymp-

totically stable for the closed-loop coupled subsystems

under the DLMPC law.

2) The iteration cost J
q
0→∞(xS) of the closed-loop sys-

tem does not increase with the iteration index q, i.e.,

J
q+1
0→∞ ≤ J

q
0→∞.

3) If the closed-loop system under the DLMPC converges

to the steady-state inputs u∞
i = lim

q→∞
u
q
i and the related

steady-state trajectories x∞
i = lim

q→∞
x
q
i , for all subsys-

tems i ∈ N , and the conditions from [12, Theorem 3]

are satisfied, then, u∞
i and x∞i are global optimal

solutions for the IHOCP (9).

Proof: The properties of Theorem 1 have been proven

in [12] and [14] for a single system. It therefore suffices

to show that the proposed decomposed problem solved in

Algorithm 2 is an exact reformulation of the global cen-

tralized problem and that the distributed solution method in

Algorithm 1 converges to the global optimal solution.

It can easily be seen that the local subproblems in (28)

together with the consensus constraints in (30), and their

reformulation into the subproblems in (32) are exact reformu-

lations of the global problem in (21). This follows from the

decomposability of the cost function in (10) and the structure

of the system in (5) and (7), together with the definitions of

CSqi and V
q,∗
i in (26) and (28) with the consensus constraints

in (30). For linear system dynamics and convex constraints,

the problems (both the global and the local ones) are convex

and therefore admit a global optimal solution.

The proposed distributed solution method in Algorithm 1

is equivalent to the update steps of consensus ADMM in

[17]. This equivalence has been shown in the derivation

of the steps of Algorithm A.1 in [19]. Under Assump-

tion 2, the residuals Eijsi − Ejisj , ∀j ∈ Ni, ∀i ∈ N
in Algorithm 1 asymptotically converge to zero and the

cost
∑

i∈N (Jq
i,t→t+N (·) + gi(·)) from (32) asymptotically

converges to the global optimal solution. This is true in each

time step and therefore J
q
0→∞(xS) =

∑

i∈N J
q
i,0→∞(xi,S)

converges to the global optimal solution. With the previous

results, this is equivalent to the global optimal solution of

the global centralized problem (21).

Therefore, the proofs in [12] and [14] for a single system

can be applied to the global centralized problem and thus

the properties in Theorem 1 hold.

Note that the properties in Theorem 1 hold for the

global system in (1), i.e., for the ensemble of all coupled

subsystems. In particular, property 2) guarantees a decrease

in the iteration cost J
q
0→∞(xS) =

∑

i∈N J
q
i,0→∞(xi,S) of

the sum of costs of all subsystems over iterations, rather

than a decrease in the iteration costs J
q
i,0→∞(xi,S) of the

individual subsystems. Similarly, the optimal cost function

JLMPC
t→t+N (·) =

∑

i∈N JLMPC
i,t→t+N (·), is a Lyapunov function

for the equilibrium point xF of the closed loop system

(1) rather than the individual cost functions JLMPC
i,t→t+N (·)

for the individual subsystems. Furthermore, Algorithm 1

enables a distributed implementation of the global terminal

constraint set CSq−1 on which no distributed structure is

imposed. The approach presented in this paper therefore

captures the couplings between the subsystems and thus

reduces conservatism w.r.t. other approaches of distributed

MPC in the literature which impose structure on the terminal

cost or terminal constraint sets.

The size of the decomposed local FHOCPs in (28) are of

the size of the individual subsystems and are independent

of the number of subsystems. Since only nearest-neighbor

communication is required in Algorithm 1, also the solution

method scales well with the number of subsystems. The

number of data points for the construction of the convex

safe sets in (26) grows in each iteration with adding the

most recent closed loop trajectories to the safe sets in (25).

In order to reduce the required computational effort, the set

of data points can be truncated, i.e., not all previously seen

data points need to be included in the safe sets in (25).

For example only the most recent trajectories, or only the

previous trajectory can be chosen to be included.

C. Safe and Efficient Data Generation and Domain Enlarge-

ment of the DLMPC Policy

In order to use Algorithm 2 for a (possibly iterative) task,

data from at least one set of successful feasible trajectories of

the subsystems are required to construct the local terminal

sets and cost functions, which guarantee the properties in

Theorem 1. While successful feasible trajectories might be

easy to obtain for distributed systems in some applications,

such as by locally or manually controlling multiple loosely

coupled subsystems in a non-optimal way, in other applica-

tions, such as for tightly coupled subsystems with safety-

critical constraints, these data might be difficult to generate.

We therefore propose in the following a distributed algorithm

which allows the safe and efficient generation of the data

required for the computation of the terminal sets and costs

in Algorithm 2. We present this data generation method for a

control task from given initial states xdes
i,0 to the target states

xi,F of the subsystems. Let us define the following FHOCP,

which is similar to the one in (28) except for a different cost

function, and with the initial states xi,0 being optimization

variables

min
xNi,t,N

,
ui,t,N−1,

α
q−1

i

‖xq
i,0 − xdes

i,0 ‖
2
2

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t, k = 0, ..., N−1

xNi,k|t ∈ XNi
, k = t, ..., t+N−1

ui
k|t ∈ Ui, k = t, ..., t+N−1, (35)

xi,t+N |t ∈ CS
q−1
i ,



Algorithm 3: Efficient and safe distributed data genera-

tion for the DLMPC policy

Input: Terminal states xi,F , sets of neighboring

systems Ni, desired initial states xdes
i,0 , ∀i ∈ N ,

rmax

1 Initialize: Set CS0i = xi,F ;

2 Set iteration count r = 1;

3 for i ∈ N do

4 while ‖xr
i,0 − xdes

i,0 ‖
2
2 ≤ ǫ and r ≤ rmax do

5 Solve (35) to obtain xr
i,0;

6 Compute x
∗
i,t, u

∗
i,t via Algorithm 2 with inputs:

xi,S = xr
i,0, CS0i = CSr−1

i , J0
i,t→∞ = Jr

i,t→∞,

qmax = 1, until line 7 of Algorithm 2, then

break;

7 Update CSri by x
∗
i,t;

8 Compute and save Jr
i,t→∞(xi,t), ∀xi,t ∈ x

∗
i,t;

9 r = r + 1;

10 end

11 Set CSi = CS
r
i ;

12 end

Output: CSi containing successful feasible trajectories

from xdes
i,0 to xi,F , ∀i ∈ N

with xNi,t,N , ui,t,N−1, α
q−1
i as in (29), and where the

consensus constraints in (30) have to hold. Note that no initial

successful feasible trajectories x
0
i,t need to be available.

Instead, we use only the target states xi,F as initial feasible

trajectories and therefore define CS0i = xi,F .

Iteratively solving (35) and computing the DLMPC closed-

loop trajectories by Algorithm 2 enlarges the domain of the

DLMPC policy and converges to feasible trajectories starting

at xi,0 = xdes
i,0 and ending in xi,0 = xi,F , which can used as

the input to Algorithm 2. These steps are summarized in the

following Algorithm 3

Remark 4: Algorithm 3 can also be used to compute a

larger domain of the DLMPC policy. If no specific initial

states xdes
i,0 are given, instead of the cost function ‖xq

i,0 −
xdes
i,0 ‖

2
2 in (35), a different cost function can be used, for

example to compute the initial states xi,0 for all subsystems

i ∈ N as the points furthest in the direction of interest at

the borders of the convex safe sets CSqi .

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical examples to demon-

strate the methods of the DLMPC scheme in Algorithm 2

and the data generation in Algorithm 3.

We consider a system of three dynamically coupled sub-

systems with coupled state constraints. The subsystems have

two states each, i.e., xi = [xi1, xi2]
⊤, ∀i ∈ N . The overall

system state is given by x = [x⊤
1 , x⊤

2 , x⊤
3 ]

⊤ ∈ R
6, and

the input vector by u = [u1, u2, u3]
⊤ ∈ R

3. The system

matrices of the global system are given by

A =

[

A11 A12 0

0 A22 A23

A31 0 A33

]

, B = diag(B11, B22, B33) ,

(36)

with

A11 =

[

1 0.5

0 1.1

]

, A22 =

[

1.05 0.6

0 1

]

, A33 =

[

1 0.55

0 1.05

]

,

A12 = A23 = A31 = −

[

0.1 0.2

0 0.3

]

,

(37)

−0.9 ≤ x11 − x21 ≤ 0.9,

−0.9 ≤ x21 − x31 ≤ 0.9,

−3 ≤ ui ≤ 3

−5 ≤ xik ≤ 5, ∀i ∈ N , k ∈ {1, 2}.

(38)

A. Data Generation

First, we generate the feasible trajectories required as

inputs to Algorithm 2, by making use of Algorithm 3. We

choose the following desired initial states

x
des,1
1,0 = [−5, 0]⊤, x

des,2
1,0 = [4, 0]⊤,

x
des,1
2,0 = [−4.5, 0]⊤, x

des,2
2,0 = [4.5, 0]⊤,

x
des,1
3,0 = [−4, 0]⊤, x

des,2
3,0 = [5, 0]⊤.

(39)

We iteratively compute the inital states xi,0 as those states

closest to x
des,1
i,0 and x

des,2
i,0 , in an alternating way, thus

enlarging the domain of the DLMPC policy in both the

negative and positive xi1 directions within the feasible region

of the state space.

Remark 5: Note that if no specific initial states x
des,1
i,0 and

x
des,2
i,0 are defined, a similar result of domain enlargement is

achieved by changing the cost function in (35) to x
q
i,0 and

−xq
i,0, respectively.

Figure 1 shows the enlargement of the convex hulls of

the safe sets, CSqi , of the three subsystems over iterations

q = 0 to 4 of Algorithm 3. At iteration 4, the given initial

states x
des,1
i,0 and x

des,2
i,0 have been reached, i.e., closed-loop

trajectories from x
des,1
i,0 to xi,F and from x

des,2
i,0 to xi,F under

the DLMPC law have been generated.

B. Iterative Control Task

We consider now the control task to steer the coupled

subsystems in (36) from x
des,1
i,0 as in (39) to xi,F = [0, 0]⊤.

The cost function is given as in (12) with Qi = Ini
and

Ri = Imi
. We generate the first feasible trajectory by

a distributed MPC with time horizon N = 15, without

terminal sets and constraints, and with Qi = 0.1Ini
and

Ri = Imi
. In real, possibly safety-critical, applications a

feasible trajectory could be obtained by manual control of

the subsystems, or with the data generation in Algorithm 3,

as illustrated in Section VI-A. Table I shows the performance

improvement over iterations of Algorithm 2 with a time

horizon of N = 4. Figure 2 shows the resulting closed-

loop trajectories. It is interesting to note that while the

iteration costs of subsystems 2 and 3 are decreasing over the

iterations, the one of subsystem 1 is increasing. As noted

before, Theorem 1 guarantees that the sum, i.e., the iteration

cost of the overall system is guaranteed to be non-increasing.
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Fig. 1: Domain enlargement for desired initial states x
des,1
i,0 ,

x
des,2
i,0 : CSqi of subystems i = 1 (solid red —– ), i = 2

(dashed green - - - ), i = 3 (dotted blue ...... ) over iterations

q = 1, 2 ( ◦ ), q = 3, 4 ( ∗ ), starting with CS0i = [0, 0]⊤.

Iteration 0 1 2 3 4

Sys. 295.63 216.96 216.41 216.31 216.28

Subsys. 1 112.47 87.97 88.07 88.22 88.31

Subsys. 2 113.05 76.52 76.10 75.90 75.78

Subsys. 3 70.11 52.47 52.23 52.19 52.19

5 6 7 8 9 10

216.26 216.26 216.25 216.25 216.25 216.25∗

88.36 88.38 88.40 88.41 88.42 88.42

75.72 75.68 75.66 75.64 75.63 75.63

52.19 52.19 52.19 52.20 52.20 52.20

TABLE I: Iteration Costs ∗converged to the global optimal

solution (computed for the centralized system with N =
200).

VII. CONCLUSION

A distributed learning model predictive control scheme

was presented, which exploits data in order to construct the

terminal cost and constraints of the DMPC problem without

imposing the distributed structure of the system. The required

computation is done online in a distributed way. It was shown

how the scheme can be used to safely explore the state-space

and generate the required data or exploit data from iterative

control tasks. In addition to recursive feasibility and asymp-

totic stability, performance improvement over iterations and

convergence to the global centralized optimal solution under

mild conditions are guaranteed.
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