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Optimal Online Algorithms for One-Way Trading and Online Knapsack

Problems: A Unified Competitive Analysis

Ying Cao, Bo Sun and Danny H.K. Tsang

Abstract— We study two canonical online optimization prob-
lems under capacity/budget constraints: the fractional one-
way trading problem (OTP) and the integral online knapsack
problem (OKP) under an infinitesimal assumption. Under the
competitive analysis framework, it is well-known that both
problems have the same optimal competitive ratio. However,
these two problems are investigated by distinct approaches
under separate contexts in the literature. There is a gap in
understanding the connection between these two problems and
the nature of their online algorithm design. This paper provides
a unified framework for the online algorithm design, analysis
and optimality proof for both problems. We find that the
infinitesimal assumption of the OKP is the key that connects the
OTP in the analysis of online algorithms and the construction
of worst-case instances. With this unified understanding, our
framework shows its potential for analyzing other extensions
of OKP and OTP in a more systematic manner.

I. INTRODUCTION

Online optimization under capacity/budget constraints is a

classical and challenging problem. Two well-known exam-

ples are the one-way trading problem (OTP) and the online

knapsack problem (OKP).

In the OTP, an investor plans to trade a total amount of 1

dollar into yen. The exchange rates pi arrive online and are

bounded, i.e., pi ∈ [L,U ], and the investor must immediately

decide how much to trade at each exchange rate. If xi dollars

are traded at the ith exchange rate pi, pixi is the amount of

yen the investor gains. Let N denote the total number of

exchange rates. The goal is to maximize the amount of yen

traded after processing the N th exchange rate
∑N

i=1 pixi,

while respecting the budget limit
∑N

i=1 xi ≤ 1. It is well-

known that (ln(U/L) + 1)-competitive algorithms can be

designed, e.g., the threat-based algorithm in [1] and the CR-

Pursuit algorithm in [2].

The 0-1 knapsack problem is a classic problem in com-

puter science, where a decision-maker maximizes the total

value of the items selected while the total weight does

not exceed the normalized knapsack capacity limit of 1. In

the OKP, the items come one by one. The value vi and

the weight wi of the ith item are only revealed upon its

arrival. An online decision is made on whether to accept

the item (zi = 1) or not (zi = 0). There exist no online

algorithms with bounded competitive ratios for the OKP in

the general setting [3]. However, (ln(U/L)+ 1)-competitive

algorithms can be designed [4]–[6] under the bounded value-

to-weight ratio assumption (i.e., vi/wi ∈ [L,U ]) and the
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infinitesimal assumption that the weight of each item is

much smaller than the capacity (i.e., maxiwi ≪ 1). The

infinitesimal assumption is a technical simplification, but it

has been shown to hold in practical applications such as

cloud computing systems [6] and is widely accepted in the

literature. In this paper, we make the same assumptions.

Both problems have appeared in numerous applications,

including portfolio selection, cloud resource allocation, key-

word auctions, etc. Thus, considerable attention has been

paid to both problems and their many variants. Unbounded

prices [7] and interrelated prices [8] have been considered for

the OTP recently, and knapsacks with unknown capacity [9]

and removable items [10] are interesting generalizations for

the OKP. Additionally, different arrival models have been

studied, such as stochastic arrivals [11], [12] and random

order [13]. In this paper, we make no assumptions on the

arrival model.

Motivated by the gaps in the understanding of the nature of

challenges in the online algorithm design, we aim to unify

the online algorithms for the OTP and the OKP into one

algorithmic framework, namely, a threshold-based algorithm,

the competitive performance of which mainly depends on the

threshold function. We provide a sufficient condition on the

threshold function that can ensure a bounded competitive

ratio, and design the best possible threshold function based

on this sufficient condition. Finally, we derive the lower

bound of the competitive ratios of the OTP and the OKP.

Although all results match those in the literature, the existing

works approach the results by distinct methods and lack a

systematic way of designing and analyzing related problems.

This paper mainly focuses on the analysis and proofs rather

than on the results. Our contributions are two-fold.

• We unify the online algorithms for the OTP and the

OKP into a threshold-based algorithm and show that the

unified algorithm can achieve the optimal competitive

ratios under a unified competitive analysis.

• We provide new proofs for the lower bound of compet-

itive ratios for the OTP and the OKP. The connection

between these two problems is founded in the construc-

tion of the worst-case instances.

II. A UNIFIED ALGORITHM AND OUR RESULTS

A. Notations

Since the two problems have originally distinct sets of

terms, we unify the notations for the brevity of problem

formulation and clarify the different meanings here. Let xi

denote the amount of dollars traded at the ith exchange rate
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for the OTP, while for the OKP, it represents the capacity

used after processing the ith item wizi. Let bi denote the

exchange rate (i.e., pi) in the OTP and the value-to-weight

ratio of the ith item in the OKP (i.e., vi/wi). The following

optimization problem characterizes the offline problem of the

OTP:

maximize
x

N
∑

i=1

bixi

s.t.

N
∑

i=1

xi ≤ 1,

xi ≥ 0, ∀i ∈ [N ].

(1)

The dual problem of (1) is

minimize
λ

λ

s.t. λ ≥ bi, ∀i ∈ [N ].
(2)

By changing the last constraint of (1) to 0 ≤ xi ≤ wi, the

resulting problem serves as an upper bound of the OKP due

to the LP relaxation, and its dual is

minimize
λ,β

λ+

N
∑

i=1

wiβi

s.t. λ+ βi ≥ bi, ∀i ∈ [N ],

λ ≥ 0, βi ≥ 0, ∀i ∈ [N ],

(3)

where λ and βis are the dual variables of the corresponding

dual programs.

B. A Unified Algorithm

Both the OTP and the OKP target allocating one budget-

constrained resource sequentially. Since the current decision

affects the future decisions through the budget constraint, we

need an estimation of the value of the remaining resource to

facilitate decision-making. We use a threshold function to

estimate the value of resources.

Definition 1. A threshold function φ(y) : [0, 1] → [0,∞)
estimates the marginal cost of a resource at utilization y.

Denote the utilization level after the ith arrival by y(i).
Given φ(y), we can estimate the pseudo-cost of allocating

xi amount of resource by
∫ y(i−1)+xi

y(i−1) φ(δ)dδ. Our unified

algorithm then decides xi that maximizes the pseudo-revenue

bixi −
∫ y(i−1)+xi

y(i−1) φ(δ)dδ. The overall algorithm is sum-

marized in Algorithm 1. S denotes the set of all positive

Algorithm 1 A Unified Algorithm

Initialize: φ(y), y(0) = 0, bi ∈ [L,U ];
for the ith time slot do

1. xi = argmaxx∈S bix−
∫ y(i−1)+x

y(i−1) φ(δ)dδ.

2. Update y(i) = y(i−1) + xi;

3. If y(i) > 1, xi = 0.
end for

real numbers for the OTP and the set {0, wi} for the

OKP, separately. Note that for the OKP, step 1 reduces

to xi =

{

wi, bi ≥ φ(y(i−1))

0, otherwise
, which corresponds to the

update equation in [4]. Algorithm 1 can be easily applied in

the posted-price setting by its nature.

C. Main Results

A standard measure for the performance of an online

algorithm is the competitive ratio. Under the unified notation,

define an arrival instance A as {bi}∀i∈[N ] for the OTP,

and as {bi, wi}∀i∈[N ] for the OKP. Denote the objective

value achieved by the online algorithm and the offline

optimal by ALG(A) and OPT(A), respectively, given the

arrival instance A. If α = maxA
OPT(A)
ALG(A) , then we say the

online algorithm is α-competitive. The competitive ratio of

Algorithm 1 depends only on the choice of the function φ.

We find the sufficient conditions for φ for Algorithm 1 to be

α-competitive in the following theorem.

Theorem 2 (Sufficiency). Algorithm 1 is α-competitive for

both the OTP and the OKP if φ is given by

φ(y) =

{

L y ∈ [0, ω]
ϕ(y) y ∈ [ω, 1]

,

where ω is a budget/capacity utilization level that satisfies
1
α ≤ ω ≤ 1, and ϕ(y) is an increasing function that satisfies

{

ϕ(y) ≥ 1
αϕ

′(y), y ∈ [ω, 1]
ϕ(ω) = L,ϕ(1) ≥ U.

(4)

In the theorem, φ is composed of two segments, one

constant and the other exponential. Note that the functions

used in [4] and [6] satisfy the conditions. However, the basis

of the functions is unknown; the authors do not explain the

intuition behind the functions nor rigorously characterize the

properties of the functions. In contrast, by the following

theorem, we can characterize the performance limit over

the space of all eligible functions and rigorously show the

function that admits the smallest (best) competitive ratio.

Theorem 3. Given L and U , the best competitive ratio that

can be achieved by Algorithm 1 is (ln θ+1), where θ = U/L,

and the corresponding φ∗ is unique.

We show that no other online algorithms can perform

better than Algorithm 1 using the following theorem.

Theorem 4. Given L and U , (ln θ+1) is the lowest possible

competitive ratio for both the OTP and the OKP.

In the next section, we introduce the primal-dual analysis

framework, with which we prove Theorem 2. Subsequently,

we prove Theorem 3 by Gronwall’s inequality. In Section

IV, we show Theorem 4 by adversarial arguments.

III. COMPETITIVE ANALYSIS

A. Primal-Dual Competitive Analysis

Given the arrival instance A, we denote the primal and

dual objective values after processing bn by Pn(A) and

Dn(A), respectively. For simplicity, we drop the parenthesis

and write Pn and Dn hereafter. We briefly introduce the

framework by giving the following lemma.



Lemma 1. An online algorithm is α-competitive if it can de-

termine the primal variables x and construct dual variables

λ based on the primal variables such that

• (Feasible Solutions) x and λ are feasible solutions of

the primal and the dual,

• (Initial Inequality) there exists an index k ∈ [N ] ∪ {0}
such that Pk ≥ 1

αDk,

• (Incremental Inequalities) for i ∈ {k + 1, . . . , N},

Pi − Pi−1 ≥
1

α
(Di −Di−1).

Proof. The primal feasibility is trivial since any online algo-

rithm must first produce a feasible solution to the problem.

It suffices to prove PN ≥ 1
αDN since

ALG = PN ≥
1

α
DN

(a)

≥
1

α
D∗

(b)

≥
1

α
OPT,

where (a) is due to the dual feasibility, and (b) is due to the

weak duality. Suppose there exists a k such that Pi−Pi−1 ≥
1
α (Di − Di−1) holds for all i ∈ {k + 1, . . . , N}, then we

have PN − Pk ≥ 1
α (DN − Dk). Combining this with the

initial inequality leads to PN ≥ 1
αDN . We thus complete

the proof.

Note that the primal-dual competitive analysis framework

that we use is more general than those used in the existing

works, in that the initial inequality starts from k ∈ [N ]∪{0}
rather than the original 0.

Next, we show the proofs of Theorems 2 and 3 for the

OTP, and highlight the differences between them and those

for the OKP.

B. Analysis of OTP

Proof of Theorem 2. (Feasible Solutions) First we show

that the primal and dual solutions given by Algorithm 1 are

feasible:

xi =

{

φ−1(bi)− y(i−1) bi ≥ φ(y(i−1))

0 bi < φ(y(i−1))
, (5)

where φ−1(b) =

{

ω b = L

ϕ−1(b) b > L
. (5) ensures ∀i, xi ≥

0, and φ(1) ≥ U ensures φ−1(U) ≤ 1. Since y(N) =
φ−1(maxi∈[N ] bi), we have y(N) ≤ φ−1(U) ≤ 1. Thus, the

primal solutions are feasible. Construct the dual variables

as λi = φ(y(i)). Since φ(y) is non-decreasing, λN =
φ(y(N)) ≥ φ(y(i)), ∀i ∈ [N ]. Thus, λN is a feasible solution

to the dual.

(Initial Inequality) For the OTP, P0 = 0, D0 = φ(y(0)) =
L > 0. When k ≥ 1, the primal objective at the end of the

kth time slot is Pk =
∑k

i=1 bixi, while the dual objective is

Dk = λk = φ(y(k)).
Since y(0) = 0 and φ(0) = L ≤ bi, ∀i, by (5), we have

x1 = φ−1(b1) =

{

ω b1 = L

ϕ−1(b1) b1 > L
.

Because ϕ(y) is an increasing function, we have x1 ≥ ω ≥
1
α . Since b1 = φ(x1), it follows that

P1 = b1x1 ≥
b1
α

=
1

α
φ(x1) =

1

α
D1.

(Incremental Inequalities) Next we show the incremental

inequalities for i > 1. Note that when xi = 0, Pi = Pi−1

and Di = Di−1. In this case, the incremental inequality

Pi − Pi−1 ≥ 1
α (Di − Di−1) always holds. Thus, we only

need to focus on the case where xi > 0, ∀i > 1, when the

behavior of the algorithm is controlled by the second segment

of φ, which satisfies ϕ(y) ≥ 1
αϕ

′(y) for y ∈ [ω, 1] and two

boundary conditions ϕ(ω) = L and ϕ(1) ≥ U .

The change in the primal objective is given as follows:

Pi − Pi−1 = bixi
(a)
= φ(y(i))xi,

where (a) is due to (5) and y(i) = y(i−1) + xi.

The change in the dual objective is given as follows: Di−
Di−1 = ϕ(y(i)) − ϕ(y(i−1)). By the Cauchy mean value

theorem, for every segment [y(i−1), y(i)], there exists a δi ∈
[y(i−1), y(i)] such that

ϕ(y(i))− ϕ(y(i−1))

y(i) − y(i−1)
= ϕ′(δi).

Since ∀y ∈ [ω, 1], ϕ(y) ≥ 1
αϕ

′(y), and ϕ(y) is increasing,

we have αϕ(y(i)) ≥ αϕ(δi) ≥ ϕ(y(i))−ϕ(y(i−1))
y(i)−y(i−1) . Because

y(i) − y(i−1) > 0, we have ϕ(y(i))(y(i) − y(i−1)) ≥
1
α (ϕ(y

(i))−ϕ(y(i−1))), where the LHS is Pi−Pi−1, and the

RHS is 1
α (Di −Di−1). Thus, Pi − Pi−1 ≥ 1

α (Di −Di−1)
holds for all i > 1.

Therefore, Theorem 2 holds for the OTP.

Theorem 3 characterizes the performance limit of Algo-

rithm 1.

Proof of Theorem 3. (Best Competitive Ratio) By the dif-

ferential form of Gronwall’s Inequality [14], if there exists a

ϕ that satisfies ϕ(y) ≥ 1
αϕ

′(y), y ∈ [ω, 1], where ω ∈ [ 1α , 1],
it is bounded as follows:

ϕ(y) ≤ ϕ(ω) exp

{(
∫ y

ω

αdt

)}

, y ∈ [ω, 1].

Substituting the first boundary condition ϕ(ω) = L,

we have ϕ(y) ≤ L exp
{(

α(y − ω)
)}

, y ∈ [ω, 1]. If

the other boundary condition ϕ(1) ≥ U holds, it

implies L exp
{(

α(1− ω)
)}

≥ U, otherwise ϕ(1) ≤
L exp

{(

α(1− ω)
)}

< U , which incurs infeasibility. From

the inequality above, we have ω ≤ 1 − 1
α ln θ. A necessary

condition for ω ≥ 1
α to hold is 1− 1

α ln θ ≥ 1
α , and thus the

competitive ratio α ≥ ln θ + 1.
(Φ∗ and Its Uniqueness) When α takes the smallest

possible α∗ = ln θ + 1, the corresponding φ∗s satisfy

φ∗(y) =

{

L y ∈ [0, ω]
ϕ∗(y) y ∈ [ω, 1]

,

where ω ∈ [ 1
ln θ+1 , 1] and ϕ∗s are given by
{

ϕ∗(y) ≥ 1
ln θ+1ϕ

∗′(y), y ∈ [ω, 1]

ϕ∗(ω) = L,ϕ∗(1) ≥ U.
(6)



By Gronwall’s inequality, we have

ϕ∗(y) ≤ L exp
(

(ln θ + 1)(y − ω)
)

(7)

(a)

≤ L exp
(

(ln θ + 1)y − 1
)

, y ∈ [ω, 1],

where (a) is due to ω ≥ 1
ln θ+1 . Then we have ϕ∗(1) ≤

L exp(ln θ) = Lθ = U. Combining with the second bound-

ary condition ϕ∗(1) ≥ U , we have ϕ∗(1) = U . Substituting

this into (7), we have ω ≤ 1
ln θ+1 . Because ω ≥ 1

ln θ+1 as

stated in Theorem 2, we have ω = 1
ln θ+1 . Therefore, the

solution space of (6) is equivalent to the solution space of

the following differential inequality with equality boundary

conditions:
{

u(y) ≥ 1
ln θ+1u

′(y), y ∈ [ 1
ln θ+1 , 1]

u( 1
ln θ+1 ) = L, u(1) = U.

(8)

The differential equation counterpart is as follows:
{

v(y) = 1
ln θ+1v

′(y), y ∈ [ 1
ln θ+1 , 1]

v( 1
ln θ+1 ) = L, v(1) = U.

(9)

The unique solution to (9) is v(y) = L
e e

(ln θ+1)y. Suppose u
is a feasible solution to (8), by Gronwall’s inequality, u(y) ≤
v(y), ∀y ∈ [ 1

ln θ+1 , 1]. Next, we are going to show that the

solution of (8) is unique and is exactly v(y).
Suppose u(y) < v(y) for y ∈ I, where I ⊂ [ 1

ln θ+1 , 1]. We

know that for any y ∈ [ 1
ln θ+1 , 1], v

′(y) = (ln θ + 1)v(y).
Thus, for y ∈ I, we have

v′(y) = (ln θ + 1)v(y) > (ln θ + 1)u(y) ≥ u′(y).

Take the integral of u′ over [ 1
ln θ+1 , 1], we have

∫ 1
1

ln θ+1
u′(y)dy = u

∣

∣

1
1

ln θ+1

= U − L, which can also be

expressed as

∫ 1

1
ln θ+1

u′(y)dy =

∫

I

u′(y)dy +

∫

[ 1
ln θ+1 ,1]\I

u′(y)dy

<

∫

I

v′(y)dy +

∫

[ 1
ln θ+1 ,1]\I

u′(y)dy

=

∫ 1

1
ln θ+1

v′(y)dy = v
∣

∣

1
1

ln θ+1

= U − L,

which shows U − L < U − L. Thus, u(y) = v(y) for

y ∈ [ 1
ln θ+1 , 1]. In conclusion, the optimal φ∗ achieving

competitive ratio (ln θ + 1) is unique, and

φ∗(y) =

{

L y ∈ [0, 1
ln θ+1 ]

L
e e

(ln θ+1)y y ∈ ( 1
ln θ+1 , 1]

.

C. Analysis of OKP

We highlight the differences in the analysis of the OKP.

The primal feasibility holds trivially and the dual variables

are constructed as follows:

λ = λN , βi =

{

bi − λi xi = wi

0 xi = 0
,

where λi = φ(y(i−1)). When xi = wi, based on the decision-

making rule (Step 1 in the algorithm), we must have bi ≥
φ(y(i−1)). Therefore, βi ≥ 0, ∀i ∈ [N ]. The constraint of the

dual problem is

λ+ βi − bi =

{

λ− λi ≥ 0 xi = wi

λ− bi ≥ 0 xi = 0
.

Thus, the dual feasibility holds.

Assume that the online algorithm will accept the first k
items, and ω =

∑k
i=1 wi. Also note that λi = L, ∀i ∈ [k].

Then we have

Dk = λk +

k
∑

i=1

wiβi = λk +

k
∑

i=1

wi(bi − λi)

= L(1− ω) +
k

∑

i=1

wibi

≤
1

ω
(

k
∑

i=1

wibi) ≤ α

k
∑

i=1

wibi = αPk.

Thus, there exists k that satisfies the initial inequality.

With regard to the incremental inequalities, we have Pi−
Pi−1 = biwi, Di − Di−1 = ϕ(y(i)) − ϕ(y(i−1)) + wi(bi −

ϕ(y(i−1))
(a)
= wi[ϕ

′(y(i−1)) + bi − ϕ(y(i−1))], where (a) is

due to the fact ϕ′(y(i−1)) = ϕ(y(i))−ϕ(y(i−1))
wi

and wi =

y(i) − y(i−1) (using the infinitesimal weight assumption).

Combining the ODE (4) with the fact that bi ≥ φ(y(i−1)) =
ϕ(y(i−1)), the incremental inequality holds for i ∈ [N ].
Thus, Theorem 2 holds for the OKP. Note that the proof

of Theorem 3 holds generally for the two problems.

IV. LOWER BOUNDS

In this section, we show that the lower bound of the OTP

and that of the OKP coincide. Denote Algorithm 1 with φ∗

by ALGφ∗ . We first present the proofs for the OTP, then call

attention to the differences for the OKP case.

A. Lower Bounds of OTP

Below we find the family of the worst-case sequences

under which ALGφ∗ incurs a ratio of ln θ + 1.

Lemma 2. Given L and U , the family of the worst-case

sequences of ALGφ∗ in the OTP are denoted by {δ̂k}k∈N+ ,

where δ̂k = {b̂1, . . . , b̂k}, b̂i ∈ [L,U ] and the rates satisfy

b̂1 = L, b̂i = b̂i−1 + ǫi−1, i > 1, lim
k→∞

b̂k = U,

where ǫis are infinitesimal positive values. The amount

traded by ALGφ∗ at the exchange rate b̂i is denoted by x̂i,

which satisfies

x̂1 =
1

ln θ + 1
, x̂i =

ln b̂i/b̂i−1

ln θ + 1
, i > 1, lim

k→∞

k
∑

i=1

x̂i = 1.

Proof. The proof of Lemma 2 is in the Appendix.

Proof of Theorem 4. Let ALG be any online algorithm dif-

ferent from ALGφ∗ . We show that ALG cannot achieve a



competitive ratio smaller than ln θ+1 by using an adversarial

argument.

Let δ̂ = {L,L+ ǫ1, . . . , U}. First present b̂1 = L to ALG.

If ALG exchanges x′
1 < x̂1 = 1/(ln θ+1), then we end the

sequence, and on doing so, ALG cannot achieve ln θ + 1,

because
OPT(δ̂1)

ALG(δ̂1)
= 1

x′

1
> ln θ+1. Thus, we can assume that

ALG spends an amount x′
1 ≥ x̂1, in this case, we continue

and present b̂2 to ALG. In general, if after processing the

kth exchange rate, the total amount of dollars spent is less

than
∑k

i=1 x̂i, we immediately end the sequence. Otherwise,

we continue to present b̂k+1, etc.

Let f(k) =
∑k

i=1(x
′
i − x̂i). Let K = {k ∈ N|f(k) < 0},

denote the minimum in K as j, we have

x′
1 ≥ x̂1,

x′
1 + x′

2 ≥ x̂1 + x̂2, . . .
j−1
∑

i=1

x′
i ≥

j−1
∑

i=1

x̂i,

j
∑

i=1

x′
i <

j
∑

i=1

x̂i.

Thus, ALG can gain more by spending exactly the same as

ALGφ∗ at the first (j − 1) exchange rates and by spending

x̃′
j = x′

j +
∑j−1

i=1 (x
′
i − x̂i) at the jth exchange rate. Since

x̃′
j < x̂j , ALG cannot guarantee the competitive ratio of

ln θ + 1. If f(k) ≥ 0 for all k ∈ N+, we have

lim inf
k→∞

f(k) ≥ 0, lim sup
k→∞

f(k) ≥ 0.

Since ALG cannot exceed the capacity limit, we

have limk→∞

∑k
i=1 x

′
i ≤ 1, and we also have

limk→∞

∑k
i=1 x̂k = 1, therefore, we have limk→∞ f(k) ≤

0. For an infinite sequence f(k), the limit exists iff

lim sup f(k) = lim inf f(k) = lim f(k),

so we have limk→∞ f(k) = 0. By the Abel transformation,

we have
∑k

i=1 b̂i(x
′
i− x̂i) =

∑k−1
i=1 f(i)(b̂i− b̂i+1)+f(k)b̂k

(a)

≤ f(k)b̂k, where (a) is due to the monotonicity of {b̂i}.

Thus, the performance gap between ALG and ALGφ∗ for

this infinite exchange rate sequence is limk→∞

∑k
i=1 b̂i(x

′
i−

x̂i) ≤ limk→∞ f(k)b̂k = 0.
Therefore, any online algorithm for the OTP cannot

achieve a better competitive ratio than ALGφ∗ . The lowest

possible competitive ratio is ln θ + 1.

B. Lower Bounds of OKP

We show that with a slight modification, {δ̂k}k∈N+ are

also the worst-case sequences for the OKP.

Consider a family of the value-to-weight ratio sequences

{Ib} indexed by b ∈ [L,U ]. Ib is composed of a continuum

of subsequences, with the ratios in the ith subsequence all

being b̂i, i ∈ N+, where b̂i ≤ b, which is given in Lemma

2. The length of each subsequence is sufficiently large so

that it can fulfill the capacity of the knapsack even if it is

presented alone. Note that given Ib, the resource allocation

strategy is analogous to the OTP case. The offline optimal

solution is to only select from the subsequence with b̂i = b
until reaching the capacity limit, whereas ALGφ∗ will select

a value-to-weight ratio as long as it is no less than φ∗(y),
where y is the current capacity utilization level. Therefore,

{Ib}b∈[L,U ] are the worst-case sequences for the OKP.

With regards to the proof of Theorem 4, one can replace

the worst sequence δ̂ with IU , present a subsequence instead

of an arrival at a time to ALG, and act adversarially in the

same way in response to the decisions made by ALG, and

the results still hold.

V. CONCLUSION

We provide a unified threshold-based algorithm for two

well-known online problems, namely, the one-way trading

problem and the online knapsack problem. We show the

sufficient conditions for the algorithm to have a bounded

competitive ratio for both problems via a unified competitive

analysis. We reveal the threshold function that can achieve

the best (smallest) competitive ratio, show that it matches the

lower bounds, and present new proofs for the lower bounds

for both problems. This is the first work that introduces the

connections between the OTP and the OKP and provides

a unified algorithmic framework for both of them, and we

believe there is much more to be explored in this direction,

i.e., unifying the online algorithm design.

APPENDIX

Proof of Lemma 2. Denote any strictly-increasing sequence

with length k by δk = {b1, . . . , bk}. We can simply focus on

the strictly-increasing sequences, because ALGφ∗ only trades

something when the current exchange rate is the new high

observed. Any normal sequences can be transformed into

a strictly-increasing sequence by keeping the exchange rate

higher than all of its predecessors and omitting the rest, and

the optimal in hindsight is not affected by this transformation.

By (5), we have

x1 = φ∗−1(b1) =
ln(b1e/L)

ln θ + 1
,

xi = φ∗−1(bi)− φ∗−1(bi−1)

=
ln(bi/bi−1)

ln θ + 1
, i ≥ 2.

Denote the total amount of yen ALGφ∗ trades for δk by

ALG(δk) and the offline optimal amount by OPT(δk). We

have OPT(δk) = bk, and

ALG(δk) =

k
∑

i=1

bixi =
b1 ln(b1e/L) +

∑k
i=2 bi ln(bi/bi−1)

ln θ + 1
.

Let rk(b1, . . . , bk) =
b1 ln(b1e/L)+

∑
k

i=2 bi ln(bi/bi−1)

bk
. Thus,

the competitive ratio for ALGφ∗ can be expressed as

max
{b1,...,bk,k}

OPT(δk)

ALG(δk)
=

ln θ + 1

min
{b1,...,bk,k}

rk(b1, . . . , bk)
.



Because ALGφ∗ can achieve ln θ + 1 with φ∗ by Theorem

3, we know that min
{b1,...,bk,k}

rk = 1. Next, we look for

{b1, . . . , bk} that minimize rk(b1, . . . , bk) for each k. When

k = 1, r1(b1) = ln(b1e/L) ≥ 1, therefore, δ̂1 = {L},

x̂1 = 1
ln θ+1 and

OPT(δ̂1)

ALG(δ̂1)
= ln θ + 1. When k = 2,

r2(b1, b2) =
b1 ln(b1e/L) + b2 ln(b2/b1)

b2
.

The first order derivatives are

∂r2
∂b1

=
ln(b1e/L) + 1− b2/b1

b2
,

∂r2
∂b2

=
b2 − b1 ln(b1e/L)

b2
2 .

We notice that ∂r2/∂b1 and ∂r2/∂b2 cannot be zero simul-

taneously. This means that r2 has no critical points, and the

minimum value of r2 on [L,U ]×[L,U ] must be on one of the

four boundary points. It turns out that r2 reaches minimum

when (b1, b2) = (L,L). We need to find a close neighbor to

(L,L) with b2 > b1 and whose value does not increase too

much. Notice that ∂r2/∂b1
∣

∣

(L,L)
> 0, ∂r2/∂b2

∣

∣

(L,L)
= 0,

increasing b2 to b2 + ǫ with infinitesimal positive ǫ should

incur the least inaccuracy, thus, δ̂2 = {L,L + ǫ} and
OPT(δ̂2)

ALG(δ̂2)
→ (ln θ + 1)− as ǫ → 0+. For general k ≥ 3,

rk(b1, . . . , bk) =
b1 ln(b1e/L) +

∑k
i=2 bi ln(bi/bi−1)

bk
.

The first order derivatives are:

∂rk
∂b1

=
ln(b1e/L) + 1− b2/b1

b2
,

∂rk
∂bk

=
bk − bk−1rk−1(b1, . . . , bk−1)

bk
2 ,

∂rk
∂bi

=
ln(bi/bi−1) + 1− bi+1/bi

bk
, i = 2, . . . , k − 1.

A commonality is that, ∂rk/∂bk and ∂rk/∂bk−1 cannot

be zero at the same time, and rk reaches minimum when

bi = L, i ∈ [k]. The increasing sequence closest to the

minimum point is {L,L+ ǫ1, . . . , L+
∑k−1

i=1 ǫi}, where ǫis

are infinitesimal positive values, and we have
OPT(δ̂k)

ALG(δ̂k)
→

(ln θ + 1)− as
∑k−1

i=1 ǫi → 0+. Actually, each δ̂k is the

prefix of δ̂m,m ≥ k. From these observations, we claim

that as long as the exchange rate sequence increases slowly

enough from L, it is the worst-case sequence for ALGφ∗ .

To verify the claim, let b̂k be L+
∑k−1

i=1 ǫi, we have

ALG(δ̂k) =

k
∑

i=1

b̂ixi

=
L

ln θ + 1
+

k
∑

i=2

b̂i

( ln
(

b̂i

)

− ln
(

b̂i−1

)

ln θ + 1

)

=
L

ln θ + 1
+

∫ b̂k

L

γ ·
d ln(γ)

ln θ + 1
=

b̂k
ln θ + 1

,

and thus

OPT(δ̂k)

ALG(δ̂k)
= max

{b1,...,bk,k}

OPT(δk)

ALG(δk)
= ln θ + 1.

Since the exchange rate is upper bounded by U , by the

monotone convergence theorem, we have

lim
k→∞

b̂k = U,

and thus limk→∞

∑k
i=1 x̂i = 1.
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