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Abstract— In this work we present a novel extension of soft
actor critic, a state of the art deep reinforcement algorithm.
Our method allows us to combine traditional controllers with
learned neural network policies. This combination allows us to
leverage both our own domain knowledge and some of the ad-
vantages of model free reinforcement learning. We demonstrate
our algorithm by combining a hand designed linear quadratic
regulator with a learned controller for the acrobot problem.
We show that our technique outperforms other state of the art
reinforcement learning algorithms in this setting.

I. INTRODUCTION

Advances in machine learning have allowed researchers to
leverage the massive amount of compute available today in
order to better control robotic systems. The result is that
modern model-free reinforcement learning has been used
to solve very difficult problems. Recent examples include
controlling a 47 DOF humanoid to navigate a variety of
obstacles [1], dexterously manipulating objects with a 24
DOF robotic hand [2], and allowing a physical quadruped
robot to run [3], and recover from falls [4].

Despite this, these algorithms can struggle on certain low
dimensional problems from the nonlinear control literature.
Namely the acrobot [5] and the cart pole pendulum. These
are both under-actuated mechanical systems that have unsta-
ble fixed points in their unforced dynamics (see section II-B).
Typically, the goal is to bring the system to this fixed point
and keep it there. In this paper we focus on the acrobot as
we found less examples of model free reinforcement learning
performing well on this task.

It is not uncommon to see some variation of these systems
tackled in various reinforcement benchmarks, but we have
found these problems have usually been artificially modified
to make them easier. For example the very popular OpenAI
Gym benchmarks [6] includes an acrobot task. But the
objective is only to get the system in the rough area of the
unstable fixed point, and the dynamics are integrated with
a fixed time-step of .2 seconds, which makes the problem
much easier and unrepresentative of a physical system. We
have found that almost universally, modern model free rein-
forcement learning algorithms fail to solve a more realistic
version of the task. Notably, the Deep Mind control suite [7]
includes the full acrobot problem, and all but one algorithm
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Fig. 1: System diagram for the new technique proposed in
this paper. Rounded boxes represent learned neural networks,
squared boxes represent static, hand crafted functions. The
local controller is a hand designed LQR, the swing-up
controller is obtained via reinforcement learning, and the
gating function is trained as a neural network classifier

that they tested (the exception being [8]) learned nothing, the
average return after training was the same as before training.

Despite this, there are many traditional model based solu-
tions [5], [9], that can solve this problem well. In this work
we do not seek to improve upon the model based solutions
to this problem, but to extend to the class of problems that
model free reinforcement learning methods can be used to
solve. We believe the methods used here to solve the acrobot
can be extended to other problems, such as making robust
walking policies.

One of the primary reasons why this problem is difficult
for RL is that the region of state space that can be brought
to the unstable fixed point is very small, even with generous
torque limits. An untrained RL agent explores by taking
random actions in the environment. Reaching the region of
attraction is rare, we found that for our system, random
actions will reach the basin of attraction for a well designed
LQR in about 1% of trials. However an RL agent doesn’t
have access to a well designed LQR at the start of training,
in addition to reaching the region where stabilization is pos-
sible, the agent must also stabilize the acrobot for the agent
to receive a strong reward signal. This results in successful
trials in this environment being extremely rare, and therefore
training is in-feasibly slow and sample inefficient.

Our solution to add a predesigned balancing controller into
the system, this is comparatively easy to design, and can be
done with a linear controller. Our contribution is a novel way
to combine this balancing controller with an algorithm that
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is learning the swing-up behavior. We simultaneously learn
the swing-up controller, and a function that switches between
the two controllers.

A. Related Work

Work done by Randolov et. al. [10] is closely related to our
own. In that work they construct a local controller, an LQR,
and combine it with a learned controller to swing-up and
balance an inverted double pendulum (similar to the acrobot
we study but with actuators at both joints). The primary
differences between our work and theirs is that they hard
code the transition between their two controllers. In contrast
we learn our transition function online and in parallel with
our swing-up controller.

Work done by Yoshimoto et. al. [11], like ours, learns the
transition function between controllers in order to swing-
up and balance an acrobot. However, unlike our work they
limit the controllers they switch between to pre-computed
linear functions. In contrast our work simultaneously learns
a nonlinear swing-up controller and the transition between a
learned and pre-computed balance controller.

Wiklednt et. al [12] too swing-up and balance an acrobot
using a combined neural network and LQR. However they
only learn to swing-up from a single initial condition,
whereas our method learns to solve the task from any initial
position.

Doya [13] also learns many controllers using reinforce-
ment learning, and adaptively switches between them. How-
ever unlike our work, the switching function is not learned
using reinforcement learning, but is instead selected ac-
cording to which of the controllers currently makes best
prediction of the state at the current point in state space.
We believe our model free updates will avoid the model bias
that can be associated with such approaches. Furthermore
our work allows for combining learned controllers with hand
designed controllers, such as the LQR.

II. BACKGROUND

A. Nomenclature

We formulate our problem as a Markov decision process,
M = (S,A,R). At each time step t, Our agent receives
the current state st ∈ S and chooses an action at ∈ A.
It then receives a reward according to the reward function
rt = R(st, at, st+1). The goal is to find a policy π : S →
p(A = a|s) that satisfies:

(1)π∗ = arg max
π

E

[ ∞∑
t=0

γtR(st, at, st+1)

]

B. Acrobot

The acrobot is described in Figure 2. It is a double inverted
pendulum with a motor only at the elbow. We use the
parameters from Spong [5]:

TABLE I: Mass and inertial parameters used in simulation

Parameter Value Units
m1,m2 1 Kg
l1, l2 1 m
lc1, lc2 .5 m
I1 .2 Kg*m2

I2 1.0 Kg*m2

Fig. 2: Diagram for the acrobot system

The state of this system is st = [θ1, θ2, θ̇1, θ̇2]. The action
at = τ , is the torque at the elbow joint. The goal we wish to
achieve is to take this system from any random initial state,
to the upright state gs = [π/2, 0, 0, 0], which we will refer to
as the goal state. To achieve this goal, we seek the maximum
of the following reward function:

(2)rt = l1 sin(θ1) + l2 sin(θ1 + θ2)

This was motivated by the popular Acrobot-v1 environment
[14], We found empirically that for our algorithm this reward
signal led to the same solutions as the more typical ‖st −
gs‖. However we found that some of the other algorithms
we compared to perform better with the sinusoidal reward
function.

We implement the system in python (all source code
is provided, see footnote on page one), the dynamics are
implemented using Euler integration with a time-step of
.01 seconds, and the control is updated every .2 seconds.
We experimented with smaller timesteps and higher order
integrators, generally we found these made the balancing
task easier, but made the wall clock time for the learning
much slower.

C. Soft Actor Critic

Soft actor critic (SAC) is an off policy deep reinforcement
learning algorithm shown to do well on control tasks with
continuous actions spaces [15]. To aid in exploration, rather
than directly optimize the discounted sum of future rewards,
SAC attempt to find a policy that optimizes a surrogate
objective:

(3)J soft = E

[ ∞∑
t=0

γt
(
Rt + αH(π(·|st))

)]
Where H is the entropy of the policy.
SAC introduces several neural networks for the training.

We define a soft value function Vφ(st), a neural network



defined by weights φ, which approximate Jsoft given the
current state. Next we define two soft Q functions Qρ1(st, at)
and Qρ2(st, at) which approximate Jsoft given both the
current state and the current action. Using two Q networks
is a trick that aids the training by avoiding overestimating
the Q function. We must also define a target soft value
function Vφ(st), which follows the value function via polyak
averaging:

(4)V
φ
+(st) = cpyVφ(st) + (1− cpy)Vφ

With cpy a fixed hyper parameter. We also define Πθ, a
neural network that outputs µθ(st) and log(σθ(st)) which
define the probability distribution of our policy πθ. The
action is given by:

(5)at = tanh(µθ(st) + σθ(st)εt)

where εt is drawn from N(0, 1).
SAC also make use of a replay buffer D which stores

the tuple (st, at, rt) after policy rollouts. When it is time to
update we sample randomly from this buffer, and use those
samples to compute our losses and update our weights.

With this we can define the losses for each of these
networks (originated from [15])

The loss for our two Q functions is:

(6)LQ = Est,at∼D
[

1

2

(
Qρ(st, at)− Q̂(st, at)

)2]
where

(7)Q̂(st, at) = r(st, at) + γEst+1

[
Vφ(st+1)

]
Our policy seeks to minimize:

(8)Lπ = Est∼D,εt∼N(0,1) [log πθ(fθ(εt, st)|st)
−Qρ1(st, fθ(εt, st)]

And our value function:

(9)LV = E
st∼D

[
1

2

(
Vφ(st)− V̂φ(st)

)2]
Where

(10)V̂φ = Eat∼πθ
[
Qmin(st, at)− logπθ(at|st)

]
And Qmin = min(Qρ1(st, at), Qρ2(st, at))

SAC starts by doing policy roll outs, recording the state,
action, reward, and the active controller at each time step. It
stores these experiences in the replay buffer. After enough
trials have been run, we run our update step. We sample from
the replay buffer, and use these sampled states to compute
the losses above. We then run one step of Adam [16] to
update our network weights. We repeat this update nu times
with different samples. Finally we copy our weights to our
target network and repeat until convergence (or some other
stopping metric).

III. SWITCHED SOFT ACTOR CRITIC

Our primary contribution is to extend SAC in two key
ways, we call the modified algorithm switched soft actor
critic (SSAC). The first modification is a change to the
structure of the learned controller in order to inject our do-
main knowledge into the learning. Our controller consists of
three distinct components. The gate function, the balancing
controller, and the swing-up controller. The gate, Gγ : S →
[0, 1], is a neural network parameterized by weights γ which
takes the observations at each time step and outputs a number
gt representing which controller it thinks should be active.
gt ≈ 1 implies high confidence that the balancing controller
should be active, and gt ≈ 0 implies the swing-up controller
is active. This output is fed through a standard switching
hysteris function, to avoid rapidly switching on the class
boundary, parameters given in the appendix. The swing-up
controller can be seen as the policy network from vanilla
SAC, the action then is determined by equation (5). The
parameters for these networks are given in the appendix.
The balancing controller is a linear quadratic regulator C :
S → A about the acrobot’s unstable equilibrium. We use the
LQR designed by Spong [5]:

Using

Q =


1000 −500 0 0
−500 1000 0 0

0 0 1000 −500
0 0 −500 1000

 , R =
(
.5
)

The resulting control law is:

u = −Ks

with

K = [−1649.8,−460.2,−716.1,−278.2]

These three functions together form our policy, πθ. Al-
gorithm 1 demonstrates how the action is computed at each
timestep.

We learn the basin of attraction for the regulator by
framing it as a classification problem, our neural network
takes as input the current state, and outputs a class prediction
between 0-1. A one implying that the LQR is able to stabilize
the system, and a zero implying that it cannot. We then define
a threshold function T (s), as a criteria for what we consider
a successful trial:

(11)T (s) = ‖st − gs‖ < εthr ∀t ∈ {Ne − b, ..., Ne}

Here s is understood to be an entire trajectory of states,
Ne is the length of each episode, ethr and b hyper parameters
with values given in the appendix. We are following the
convention of a programming language here, (11) returns
one when the inequality holds, and zero otherwise. To gather
data, we sample a random initial condition, do a policy roll
out using the LQR, and record the value of 11 as the class
label.

To train the gating network we minimize the binary cross
entropy loss:



LG = E
γ
− [cwyi log(Gγ(si)) + (1− yi) log(1−Gγ(si))]

(12)

Where yi is the class label for the ith sample, cw is a class
weight for positive examples. we set cw = nt

np
w where nt

is the total number of samples, np is the number of positive
examples, and w is a manually chosen weighting parameter
to encourage learning a conservative basin of attraction.
We found that the learned basin was very sensitive to this
parameter, a value of .01 empirically works well. Note that
unlike the other losses above, the data here is not computed
over a sample but is instead computed over the entire replay
buffer. We found the gate was prone to ”forgetting” the basin
of attraction early in the training otherwise. This also allows
us to update the gate infrequently compared to the other
networks, and so the total impact on wall clock time is
modest.

The second extension is a modification of the replay
buffer D. We do this by constructing D from two separate
buffers, Dn and Dr. Only roll outs that ended in a successful
balance (as defined by equation (11)) are stored in Dr. The
other buffer stores all trials, the same as the unmodified
replay buffer. Whenever we draw experience from D, with
probability pd we sample from Dn, and with probability
(1 − pd) we sample from Dr. We found this to speed up
learning dramatically, as even with the LQR and a decent
gating function in place, the swing-up controller finds the
basin of attraction only in a tiny minority of trials.

Algorithm 1 Do-Rollout(Gγ ,Πθ, K)

1: s = r = a = g = r = {}
2: Reset environment, collect s0
3: for t ∈ {0, ..., T} do
4: gt = hyst(Gγ(st))
5: if (gt) == 1 then
6: at = −Kst
7: else
8: Sample εt from N(0, 1)
9: at = β tanh(µθ(st) + σθ(st) ∗ εt)

10: Take one step using at, collect {st+1, rt}
11: s = s

⋃
st, r = r

⋃
rt

12: a = a
⋃
at, g = g

⋃
gt

13: return s, a, r, g

IV. RESULTS

A. Training

To train SSAC we first start by training the gate exclu-
sively, using the supervised learning procedure outlined in
section III This allows us to form an estimate of the basin of
attraction before we try to learn to reach it. We trained the
gate for 1e6 timesteps, and then trained both in parallel using
algorithm 2 for another 1e6 timesteps. The policy, value,
and Q functions are updated every 10 episodes, and the gate
every 1000. The disparity is because, as mentioned earlier,

Algorithm 2 Switched Soft Actor Critic

1: Initialize network weights θ, φ, γ, ρ1, ρ2 randomly
2: set φ = φ
3: for n ∈ {0, ..., Ne} do
4: s, r, a, g = Do-Rollout(Gγ ,Πθ,K)
5: if T (s) then
6: Store s, r, a in Dn

7: Store s, r, a in Dr

8: Store s, g, T (s) in Dg

9: if Time to update policy then
10: sample sr, ar, rr from D
11: Q̂ ≈ R+ γVφ(S)

12: Qmin = min(Qρ1(sr, ar), Qρ2(sr, ar))
13: V̂ ≈ Qmin − αH(πθ(A|S))
14: Run one step of Adam on LQ(sr, qr, rr)
15: Run one step of Adam on Lπ(sr)
16: Run one step of Adam on LV (sr)
17: φ = qφ+ (1− q)φ
18: if Time to update gate then
19: Run one step of Adam on LG using all samples

in Dg

the gate is updated using the entire replay buffer, while all
the other losses are updated with one sample batch from the
buffer. Hyperparameters were selected by picking the best
performing values from a manual search, which are reported
in the appendix.

In addition to training on our own version of SAC and
Switched SAC we also examined the performance of several
algorithms written by OpenAI and cleaned up by the com-
munity [17]. We examine PPO and TRPO, two popular trust
region methods. A2C was included to compare to a non trust
region, modern policy gradient algorithm. We also include
TD3, which has been shown in the literature to do well on
the acrobot and cartpole problems [18]

Stable baselines includes hyperparameters that were al-
gorithmically tuned for each environment. For algorithms
where parameters for Acrobot-v1 were available we chose
those, some algorithms were missing tuned Acrobot-v1 ex-
amples, and for those we used parameters for Pendulum-v0,
simply because it is another continuous, low dimensional
task. Note we don’t expect the hyper-parameters to impact
the learned policy’s score in this case, only how fast learning
occurs. Reported rewards are averaged over 4 random seeds.
Every algorithm makes 2e6 interactions with the environ-
ment. Also note that this project was largely inspired by
spending a large amount of time manually tuning these
parameters to work on this task (with no success better than
what we see here). Figure 3 shows the reward curve for our
algorithm and the algorithms from stable baselines. Table II
shows the mean and standard deviation for the final rewards
obtained by all algorithms.



Fig. 3: Reward curve for SSAC and the other algorithms we
compare to. the solid line is the smoothed average of episode
reward, averaged over four random seeds. The shaded area
indicates the best and worst rewards at each epoch across
the four seeds. SSAC is shown starting later to account for
the time training the gating function alone.

Algorithm
(implementation)

Mean Reward ± Standard
Deviation

SSAC (Ours) 92.12 ± 2.35
SAC 73.01 ± 11.41
PPO 0.43 ± 8.89
TD3 78.67 ± 61.85
TRPO 17.63 ± 3.39
A2C 2.57 ± 3.63

TABLE II: Rewards after training for across learning algo-
rithms. This table shows results after 2 million environment
interactions

As we can see, for this environment, with the number
of steps we have allotted, our approach outperforms the
algorithms we compared to, with TD3 making it the closest
to our performance. This is a necessarily flawed comparison.
These algorithms are meant to be general purpose, so it is
unfair to compare them to something designed for a partic-
ular problem. But that is part of the point we are making,
that adding just a small amount of domain knowledge can
improve performance dramatically.

B. Analyzing performance

To qualitatively evaluate the performance of our learned
agent we examine the behavior during individual episodes.
SSAC gives us a deterministic controller (we can set εt
from 5 to zero). We chose the initial condition s0 =
(−π/2, 0, 0, 0) and record a rollout. The actions are dis-
played in figure 4, and the positions in 5.

We have also found that despite achieving relatively high
rewards, the other algorithms we compare to often fail
to meet the balance criteria (11). We often see solutions
where the first link is constantly rotating, with the second
link constantly vertical. To demonstrate this, as well as to

Fig. 4: Torque exerted during the sampled episode

Fig. 5: Observations during the sampled episode

demonstrate our algorithms robustness, we run roll outs
with the trained agents across a grid of initial conditions,
recording if the trajectory satisfies (11) or not. We compare
our method with TD3, which was the best performing model
free method we could find on this task. Figure 6 show the
results, when these initial conditions were run for SSAC,
it satisfied (11) for every initial condition.

V. CONCLUSIONS

We have presented a novel control design methodology
that allows engineers to leverage their domain knowledge,
while also reaping many of the benefits from recent ad-
vances in deep reinforcement learning. In our case study
we constructed a policy to swing-up and balance an acrobot
while only needing to manually design a linear controller for
the balancing task. We believe this method of control will
be straightforward to apply to the double or triple cartpole
problems, which to our knowledge no model free algorithm
is reported as solving. We also think that this general
methodology can be extended to more complex problems,
such as legged locomotion. In that case the linear controller
here could be a nominal walking controller obtained via



Fig. 6: Balance map for TD3, X and Y indicate the initial
position for the trial, a black dot indicates that the trial started
from that point satisfies equation (11), and red indicates the
converse. when these initial conditions were run for SSAC,
it satisfied (11) for every initial condition

trajectory optimization, and the learned controller could be
a recovery controller to return to the basin of attraction of
this nominal controller.
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APPENDIX

Hyperparameters
Hyperparameter Value
Episode length (Ne) 50
Exploration steps 5e4
Initial policy/value learning rate 1e-3
Steps per update 500
Replay batch size 4096
Policy/value minibatch size 128
Initial gate learning rate 1e-5
Win criteria lookback (b) 10
Win criteria threshold (εthr) .1
Discount (γ) .95
Policy/value updates per epoch 4
Gate update frequency 5e4
Needle lookup probability pn .5
Entropy coefficient (α) .05
Polyak constant (cpy) .995
Hysteresis on threshold .9
Hysteresis off threshold .5

Network Architecture

The policy, value, and Q networks are all made of four
fully connected layers, with 32 hidden nodes and Relu
activations. The gate network is composed of two hidden
layers with 32 nodes each, also with Relu activations, the last
output is fed through a sigmoid to keep the result between
0-1.
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