
ar
X

iv
:2

00
8.

10
15

7v
1 

 [
m

at
h.

O
C

] 
 2

4 
A

ug
 2

02
0

A Newton Tracking Algorithm with Exact Linear Convergence Rate

for Decentralized Consensus Optimization

Jiaojiao Zhang∗, Qing Ling†, and Anthony Man-Cho So∗

Abstract—This paper considers the decentralized consensus
optimization problem defined over a network where each node
holds a second-order differentiable local objective function. Our
goal is to minimize the summation of local objective functions
and find the exact optimal solution using only local computation
and neighboring communication. We propose a novel Newton
tracking algorithm, where each node updates its local variable
along a local Newton direction modified with neighboring and
historical information. We investigate the connections between
the proposed Newton tracking algorithm and several existing
methods, including gradient tracking and second-order algo-
rithms. Under the strong convexity assumption, we prove that it
converges to the exact optimal solution at a linear rate. Numerical
experiments demonstrate the efficacy of Newton tracking and
validate the theoretical findings.

I. INTRODUCTION

In this paper, we focus on the decentralized consensus op-

timization problem defined over an undirected and connected

network with n nodes, in the form of

x∗ = arg min
x∈Rp

n∑

i=1

fi(x). (1)

Here, fi : Rp → R ∪ {+∞} is a convex and second-order

differentiable function privately owned by node i. Every agent

aims to obtain an optimal solution x∗ to (1) via local com-

putation and communication with its neighbors. Decentralized

consensus optimization problem in the form of (1) arises in

various applications, such as resource allocation [1]–[3], smart

grid control [4], [5], federate learning [6]–[8], decentralized

machine learning [9]–[11], and so on.

Decentralized consensus optimization methods have been

extensively studied in the literature. Among the first-order

methods, a popular algorithm is decentralized gradient descent

(DGD) [12]–[14]. However, DGD has to employ a diminishing

step size to obtain an exact optimal solution. With a fixed

step size, DGD converges fast but only to a neighborhood of

an optimal solution [14]. There are other first-order methods

which use fixed step sizes but still converge to an exact optimal

solution, including EXTRA [15], decentralized ADMM [16],

[17], exact diffusion [18], NIDS [19], and gradient tracking

[20]–[24]. Take gradient tracking as an example, each node

maintains a local estimate of global gradient descent direction

using neighboring and historical information, and uses it to

correct the convergence error in DGD.

Qing Ling is supported in part by NSF China Grants 61573331 and
61973324, and Fundamental Research Funds for the Central Universities.

Jiaojiao Zhang and Anthony Man-Cho So are with Department of Systems
Engineering and Engineering Management, The Chinese University of Hong
Kong.

Qing Ling is with School of Data and Computer Science and Guangdong
Province Key Laboratory of Computational Science, Sun Yat-Sen University.

Although the first-order algorithms enjoy the advantage

of low iteration-wise computational complexity, second-order

methods are still attractive due to their faster convergence

speeds, and hence lower communication costs. Some works

such as [25]–[27] penalize the implicit consensus constraints

to the objective function. Hence, these penalized second-order

algorithms can employ unconstrained optimization techniques,

but only converge to a neighborhood of an optimal solution.

The penalty parameter trade-offs the convergence error and

convergence speed. Primal-dual methods are effective to han-

dle this accuracy-speed trade-off. This leads to the second-

order methods operating in the primal-dual domain [28]–

[30], which achieve exact convergence with linear rates. There

exist other second-order methods with superlinear convergence

rates under stricter conditions [31], [32]. For example, [31]

proposes the distributed averaged quasi-Newton method for

a master-slave network, but the initialization is required to

be close enough to an optimal solution so as to guarantee

locally superlinear convergence. The work of [32] runs a finite-

time set-consensus inner loop at each iteration of the Polyak’s

adaptive Newton method, and achieves globally superlinear

convergence.

In this paper, we propose a novel second-order Newton

tracking algorithm, in which each node updates its local vari-

able along a local Newton direction modified with neighboring

and historical information. As its name suggests, Newton

tracking inherits the idea of gradient tracking, but improves

its convergence speed through utilizing the second-order infor-

mation. We investigate the connections between the proposed

Newton tracking algorithm and several existing methods, in-

cluding gradient tracking and second-order algorithms. Under

the strong convexity assumption, we prove that it converges

to the exact optimal solution at a linear rate. Numerical

experiments demonstrate the efficacy of Newton tracking and

validate the theoretical findings.

Notations. I ∈ R
np×np, In ∈ R

n×n and Ip ∈ R
p×p

denote identity matrices with different sizes. 0 ∈ R
np and

0p ∈ R
p denote all-zero vectors with different sizes. 1n ∈ R

n

is an all-one vector. λmax(·), λmin(·) and λ̂min(·) denote the

largest, smallest, and smallest nonzero eigenvalues of a matrix,

respectively.

II. PROBLEM FORMULATION AND ALGORITHM

DEVELOPMENT

In this section, we rewrite the decentralized consensus

optimization problem (1) to an equivalent constrained form,

and propose the Newton tracking algorithm to solve it.

http://arxiv.org/abs/2008.10157v1


A. Problem Formulation

Consider a bidirectionally connected network of n nodes.

Two nodes are neighbors if they are connected with an edge.

Define Ni as the set of neighbors of node i and let xi ∈ R
p be

the local copy of decision variable x kept at node i. Since the

network is bidirectionally connected, the optimization problem

in (1) is equivalent to

{x∗
i }

n
i=1 := argmin

{xi}
n
i=1

n∑

i=1

fi (xi) , (2)

s.t. xi = xj , ∀j ∈ Ni, ∀i.

Indeed, the constraint in (2) enforces the consensus condition

x1 = · · · = xn for any feasible solution of (2). When the

consensus condition is satisfied, the objective functions in (1)

and (2) are equivalent, such that the optimal local variables

x∗
i of (2) are all equal to the optimal argument x∗ of (1), i.e.,

x∗
1 = · · · = x∗

n = x∗.

B. Algorithm Development

Let us introduce a nonnegative mixing matrix W ∈ R
n×n

whose (i, j)-th element wij ≥ 0 represents the weight that

node i assigns to node j. The weight wij = 0 if and only

if j /∈ Ni ∪ {i}. The mixing matrix W is further required to

satisfy the following assumption.

Assumption 1: The mixing matrix W is symmetric and

doubly stochastic, i.e., W = WT and W1n = 1n. The null

space of In −W is span (1n).
When the underlying network is bidirectionally connected,

the mixing matrix W satisfying Assumption 1 can be gener-

ated using various techniques, such as those introduced in [33].

According to the Perron-Frobenius theorem [34], Assumption

1 means that the eigenvalues of W lie in (−1, 1] and W has

a single eigenvalue at 1.

At time t of our proposed Newton tracking algorithm, each

node i keeps a local copy xt
i ∈ R

p and a vector ut
i ∈ R

p that

estimates the negative Newton direction ut, as

ut
i ≈ ut ,

(

1

n

n∑

i=1

∇2fi(x̄
t)

)−1(

1

n

n∑

i=1

∇fi(x̄
t)

)

,

where x̄t , 1
n

∑n
i=1 x

t
i is the average of local copies. Each

node i updates xt+1
i from xt

i through descending along the

direction −ut
i with unit step size. Since it is unaffordable

to compute the exact Newton direction in a decentralized

manner, we propose to estimate the Newton direction by a

novel Newton tracking technique.

To be specific, the proposed Newton tracking algorithm

starts with x0
i = 0p and u0

i =
(
∇2fi(0p) + ǫIp

)−1
∇fi(0p),

then proceeds with

xt+1
i =xt

i − ut
i, (3)

ut+1
i =(∇2fi(x

t+1
i ) + ǫIp)

−1 (4)
[
(∇2fi(x

t
i) + ǫIp)u

t
i +∇fi(x

t+1
i )−∇fi(x

t
i)

+ 2α(xt+1
i −

∑

j∈Ni

wijx
t+1
j )− α(xt

i −
∑

j∈Ni

wijx
t
j)
]
,

where ǫ > 0 and α > 0 are parameters. Comparing −ut+1
i

with the true Newton direction, we have two observations. (i)

The exact global Hessian 1
n

∑n
i=1 ∇

2fi(x̄
t+1) is replaced by

the regularized local Hessian ∇2fi(x
t+1
i ) + ǫIp. The regu-

larization parameter ǫ is necessary because the local Hessian

∇2fi(x
t+1
i ) may be unreliable, especially in the beginning

stage of the algorithm. (ii) The exact gradient 1
n

∑n
i=1 ∇fi(x̄

t)
is replaced by three terms that are locally computable. The

first term (∇2fi(x
t
i) + ǫIp)u

t
i involves the previous local

Hessian and estimated Newton direction. The second term

∇fi(x
t+1
i ) − ∇fi(x

t
i) is the difference between the current

and previous gradient directions. The third term 2α(xt+1
i −

∑

j∈Ni
wijx

t+1
j ) − α(xt

i −
∑

j∈Ni
wijx

t
j) extrapolates the

current and previous consensus errors.

Now we manipulate (4) to better illustrate the idea of

Newton tracking. From (4) we have

(∇2fi(x
t+1
i ) + ǫIp)u

t+1
i (5)

=(∇2fi(x
t
i) + ǫIp)u

t
i +∇fi(x

t+1
i )−∇fi(x

t
i)

+ 2α(xt+1
i −

∑

j∈Ni

wijx
t+1
j )− α(xt

i −
∑

j∈Ni

wijx
t
j).

Summing up (5) over i = 1, . . . , n and invoking the double

stochasticity of W , we have

n∑

i=1

(
∇2fi(x

t+1
i ) + ǫIp

)
ut+1
i (6)

=

n∑

i=1

(
∇2fi(x

t
i) + ǫIp

)
ut
i +

n∑

i=1

(
∇fi(x

t+1
i )−∇fi(x

t
i)
)
.

When the algorithm is initialized such that
∑n

i=1 ∇fi(x
0
i ) =∑n

i=1

(
∇2fi(x

0
i ) + ǫIp

)
u0
i , summing up (6) from time 0 to

time t yields

n∑

i=1

(
∇2fi(x

t
i) + ǫIp

)
ut
i =

n∑

i=1

∇fi(x
t
i).

In comparison, the global Newton direction −ut satisfies

n∑

i=1

∇2fi(x̄
t)ut =

n∑

i=1

∇fi(x̄
t).

When the local variable pairs (xt
i, u

t
i) are similar across the

nodes, we observe that xt
i is close to x̄t and ut

i tracks a

regularized Newton direction.

The recursion (3)-(4) can be written in a compact form.

Define x , [x1; . . . ;xn] ∈ R
np and u , [u1; . . . ;un] ∈ R

np

as the stacks of local variables. Define the aggregate function

f : Rnp → R as f(x) = f(x1, · · · , xn) =
∑n

i=1 fi(xi) that

sums up all the local functions fi (xi). The gradient of f(x)
is ∇f(x) = [∇f1(x1); . . . ;∇fn(xn)] ∈ R

np. The Hessian

of f(x), denoted by ∇2f(x) ∈ R
np×np, is a block diagonal

matrix whose i-th diagonal block is ∇2fi(x). Define H ,

∇2f(x) + ǫI ∈ R
np×np and W , W ⊗ Ip ∈ R

np×np as the

Kronecker product of the weight matrix W and the identity

matrix Ip. The recursion (3)-(4) can be written as

xt+1 =xt − ut, (7)

ut+1 =(Ht+1)−1
[
Htut +∇f

(
xt+1

)
−∇f

(
xt
)

(8)

+ α(I −W)(2xt+1 − xt)
]
.



The algorithm is initialized as x0 = 0 and u0 = (∇2f(0) +
ǫI)−1∇f(0).

III. CONNECTIONS WITH EXISTING APPROACHES

This section investigates the connections of the proposed

Newton tracking algorithm with several existing approaches,

such as gradient tracking and primal-dual methods.

A. Connection with Gradient Tracking

The recursion of gradient tracking [21] is given by

xt+1 = Wxt − αyt, (9)

yt+1 = Wyt +∇f(xt+1)−∇f(xt), (10)

where x,y ∈ R
np. To see the connection between gradient

tracking and Newton tracking, we rewrite (9)-(10). First, write

xt+1 = Wxt−αyt as xt+1 = xt− [(I−W)xt+αyt]. Then,

define rt = (I − W)xt + αyt ∈ R
np. Replacing y with r

shows that (9)-(10) are equivalent to

xt+1 =xt − rt, (11)

rt+1 =Wrt + α[∇f(xt+1)−∇f(xt)] (12)

+ (I−W)(xt+1 −Wxt).

Similar to the update of ut+1 in (8), the update of rt+1 in

(12) also involves three parts: the previous direction rt, the

difference between current and previous gradient directions

α[∇f(xt+1) − ∇f(xt)], and the combination of current and

previous consensus errors (I−W)(xt+1 −Wxt). The major

difference between ut+1 and rt+1 is that the former utilizes

the current and previous Hessians, which help improve the

convergence speed, especially when the local objective func-

tions are ill-conditioned.

B. Connection with Primal-dual Algorithms

The proposed Newton tracking algorithm has a primal-dual

interpretation. Note that the null space of In−W is span (1n),
so is the null space of its square root (In − W )

1

2 . Because

(I−W)
1

2 = (In −W )
1

2 ⊗ Ip, (I−W)
1

2x = 0 if and only if

x1 = · · · = xn. The optimization problem (2) is equivalent to

x∗ , argmin
x

f(x), (13)

s.t. (I−W)
1

2x = 0.

The augmented Lagrangian L(x,v) of (13) is

L(x,v) = f(x) + 〈v, (I −W)
1

2x〉+
α

2
xT (I−W)x, (14)

where v ∈ R
np is the dual variable. Therefore, the augmented

Lagrangian method to solve (13) is given by

xt+1 = argmin
x

L(x,vk), (15)

vt+1 = vt + α(I−W)
1

2xt+1. (16)

However, solving (15) is nontrivial. First, f(x) is a general

objective function such that (15) does not have a closed-form

solution. Second, even if f(x) is quadratic, the topology-

dependent quadratic term α
2x

T (I − W)x makes the closed-

form solution not implementable in a decentralized manner.

Motivated by these observations, we quadratically approximate

f(x) and linearly approximate α
2x

T (I−W)x both around xt,

and then add a proximal term ǫ
2‖x − xt‖2 to the objective

function of (15). This way, the update of xt+1 is given by the

solution to

min
x

〈

▽f(xt)+(I−W)
1

2vt + α(I −W)xt,x− xt
〉

+
1

2
(x− xt)T▽2f(xt)(x − xt) +

ǫ

2
‖x− xt‖2,

which is

xt+1 = xt (17)

−
(
Ht
)−1

[

∇f
(
xt
)
+ (I−W)

1

2vt + α(I−W)xt
]

.

Next, we show that (17) and (16) initialized by x0 = 0 and

v0 = 0 are equivalent to (7)-(8) initialized by x0 = 0 and

u0 = (∇2f(0) + ǫI)−1∇f(0). By (17), the two recursions

have the same x1 = −(∇2f(0) + ǫI)−1∇f(0). Also by (17),

we have

Htxt+1 = Htxt (18)

−
[

∇f
(
xt
)
+ (I−W)

1

2vt + α(I −W)xt
]

,

Ht+1xt+2 = Ht+1xt+1 (19)

−
[

∇f
(
xt+1

)
+ (I−W)

1

2vt+1 + α(I −W)xt+1
]

,

Subtracting (18) from (19) and substituting the dual update

(16) to eliminate the terms (I−W)
1

2vt and (I−W)
1

2vt+1,

we have

Ht+1xt+2 =
[
Ht +Ht+1 − 2α(I−W)

]
xt+1

−
[
Ht − α(I−W)

]
xt −

[
∇f

(
xt+1

)
−∇f

(
xt
)]

,

which is equivalent to

Ht+1xt+2 −
[
Ht+1 − α(I−W)

]
xt+1 (20)

=Htxt+1 −
[
Ht − α(I −W)

]
xt − α(I−W)xt+1

−
[
∇f

(
xt+1

)
−∇f

(
xt
)]

.

Defining st , Htxt+1 − [Ht − α(I−W)]xt, we rewrite

(20) as

st+1 =st − α(I−W)xt+1 −
[
∇f

(
xt+1

)
−∇f

(
xt
)]

. (21)

From the definition of st, it holds

xt+1 = xt − (Ht)−1
[
α(I−W)xt − st

]
. (22)

Further defining qt , α(I−W)xt − st = Ht(xt−xt+1), we

rewrite (22) and (21) as

xt+1 =xt − (Ht)−1qt, (23)

qt+1 =qt +∇f
(
xt+1

)
−∇f

(
xt
)

(24)

+ α(I −W)(2xt+1 − xt).

Observe that (23)-(24) are equivalent to (7)-(8) in the sense of

ut = (Ht)−1qt.

Remark 1: There is an existing primal-dual second-order

algorithm called ESOM that also quadratically approximates

the augmented Lagrangian when solving (15) [29]. However,

unlike the proposed Newton tracking algorithm, ESOM does



not linearize the topology-dependent quadratic term α
2x

T (I−
W)x, which, as we have indicated earlier, makes the closed-

form solution not implementable in a decentralized manner. In

fact, the primal update of ESOM is given by

xt+1 =xt −
(
▽2f(x) + α(I−W) + ǫI

)−1
(25)

[
∇f

(
xt
)
+ (I−W)

1

2vt + α(I−W)xt
]
.

In (25), computing the inverse of ▽2f(x) + α(I − W) + ǫI
requires multiple rounds of communication and computation.

Therefore, ESOM introduces an inner loop to approximately

solve (25), which leads to extra communication and computa-

tion costs [29].

IV. CONVERGENCE ANALYSIS

Since the Newton tracking recursion (7)-(8) is equivalent

to the primal-dual iteration in (17) and (16), once we show

that the primal-dual iteration in (17) and (16) exhibits a linear

convergence rate, then so does the Newton tracking recursion

(7)-(8). In the analysis, we need the following assumption.

Assumption 2: The local objective functions fi(xi) are

twice differentiable. The eigenvalues of Hessians ∇2fi(xi) are

bounded by positive constants µf , Lf ∈ (0,∞), i.e.

µfIp � ∇2fi (xi) � LfIp, (26)

for all xi ∈ R
p and i = 1, . . . , n.

The lower bound in (26) implies that the local objective

functions fi(x) are strongly convex with constant µf > 0.

The upper bound implies that the local gradients ∇fi(x) are

Lipschitz continuous with constant Lf . Note that the aggregate

objective function ∇2f(x) is a block diagonal matrix whose

i-th diagonal block is ∇2fi(x). Therefore, the bounds on the

eigenvalues of Hessians ∇2fi(x) in (26) also hold for the

aggregate Hessian, i.e.

µfI � ∇2f(x) � LfI,

for all x ∈ R
np. Thus, the aggregate objective function f(x) is

also strongly convex with constant µf and its gradients ∇f(x)
are Lipschitz continuous with constant Lf .

Our analysis involves the optimal primal-dual pair (x∗,v∗)
of (13). According to the KKT condition of (13), we have

▽f(x∗) + (I−W)
1

2v∗ = 0, (27)

(I−W)
1

2x∗ = 0 or (I−W)x∗ = 0. (28)

Lemma 1: Consider the equivalent Newton tracking iteration

in (17) and (16). The primal-dual iterate satisfies

∇f
(
xt+1

)
−∇f (x∗) + (I−W)

1

2

(
vt+1 − v∗

)
(29)

+ ǫ
(
xt+1 − xt

)
+ et = 0,

where et is defined as

et ,∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)

(30)

− α(I−W)(xt+1 − xt).

The result in Lemma 1 shows the relationship of the primal-

dual pairs (xt,vt) and (xt+1,vt+1) with the optimal primal-

dual pair (x∗,v∗). The arguments used in the proof of Lemma

1 are similar to ones used in [29].

Proof 1: By the definition of et, (17) can be rewritten as

∇f
(
xt+1

)
+ (I−W)

1

2vt + α(I−W)xt+1 (31)

+ ǫ
(
xt+1 − xt

)
+ et = 0.

Combining (27) and (28) with (31), we have

∇f
(
xt+1

)
−∇f (x∗) + (I−W)

1

2

(
vt − v∗

)
(32)

+ α(I−W)
(
xt+1 − x∗

)
+ ǫ
(
xt+1 − xt

)
+ et = 0.

Observe that vt in (32) can be further replaced by vt+1. To be

specific, substituting (28) into (16) and then regrouping terms,

we know that vt can be represented as

vt = vt+1 − α(I−W)
1

2

(
xt+1 − x∗

)
. (33)

Substituting (33) into (32) yields (29).

Observe that the term et can be interpreted as the error

introduced by approximation at time t, which motivates us to

find an upper bound for ‖et‖. In the following lemma, we

provide an upper bound for ‖et‖ in terms of
∥
∥xt+1 − xt

∥
∥.

Lemma 2: Consider the equivalent Newton tracking iteration

in (17) and (16), and recall the definition of the error vector

et in (30). If Assumption 2 holds, then ‖et‖ is bounded by
∥
∥et
∥
∥ ≤ κ

∥
∥xt+1 − xt

∥
∥ . (34)

where κ , 2Lf + αλmax(I−W).
Proof 2: By the triangle inequality, ‖et‖ is bounded by

‖et‖ ≤ ‖∇f
(
xt
)
−∇f

(
xt+1

)
‖ (35)

+ ‖∇2f
(
xt
) (

xt+1 − xt
)
‖+ ‖α(I−W)(xt+1 − xt)‖.

By Assumption 2, ‖∇f (xt)−∇f
(
xt+1

)
‖ ≤ Lf‖xt+1−xt‖.

As the largest eigenvalue of ∇2f (xt) and I − W are Lf

and λmax(I − W), respectively, we know ‖∇2f (xt)
(
xt+1

−xt) ‖ ≤ Lf‖xt+1 − xt‖ and ‖α(I − W)(xt+1 − xt)‖ ≤
λmax(I−W)‖xt+1−xt‖. Substituting these inequalities into

(35) completes the proof.

The result in (34) demonstrates that the error et introduced

by approximation becomes zero as the sequence of iterates xt

approaches the optimal solution x∗, which will be shown in

Theorem 1.

Given the preliminary results in Lemmas 1 and 2, we are

ready to establish the linear convergence of the proposed New-

ton tracking method. To do so, we define vectors ζ, ζ∗ ∈ R
2np

and a matrix G ∈ R
np×np as

ζt =

[
xt

vt

]

, ζ∗ =

[
x∗

v∗

]

, G =

[
Q 0

0 1
α
I

]

,

where Q , ǫI − α(I −W). Note that Q is positive definite

when ǫ − αλmax(I −W) > 0. In the following theorem, we

show that the sequence ‖ζt − ζ∗‖G converges to zero at a

linear rate.

Theorem 1: Consider the equivalent Newton tracking iter-

ation in (17) and (16). Suppose that the parameters ǫ and α

satisfy λmin(Q) = ǫ − αλmax(I − W) >
4L2

f

µf
. Then, the

sequence of ‖ζt − ζ∗‖
2
G satisfies

∥
∥ζt+1 − ζ∗

∥
∥
2

G
≤

1

1 + δ′

∥
∥ζt − ζ∗

∥
∥
2

G
, (36)



where

δ′ =min







µfδ

(1 + δ)
[

ǫ+
βφL2

f

αλ̂min(I−W)

] ,

αδ2(ǫ− αλmax(I−W))λ̂min(I−W)
βǫ2

(β−1) +
βφ(2Lf+αλmax(I−W))2

(φ−1)






. (37)

Therein, β > 1 and φ > 1 are arbitrary constants, and

δ , 1−
4L2

f

µfλmin(Q)
= 1−

4L2
f

µf (ǫ − αλmax(I−W))
> 0.

Proof 3: Step 1. By reorganizing (17), we get

ǫ(xt − xt+1) + ▽2f(xt)
(
xt − xt+1

)

−
[

∇f
(
xt
)
+ (I−W)

1

2vt + α(I−W)xt
]

= 0.

Thus, it holds

〈
x∗ − xt+1, ǫ(xt − xt+1) + ▽2f(xt)

(
xt − xt+1

)
(38)

−
[

∇f
(
xt
)
+ (I−W)

1

2vt + α(I −W)xt
]〉

= 0.

Substituting the dual update vt = vt+1−α(I−W)
1

2xt+1 and

regrouping the terms, we can rewrite (38) to

〈

x∗ − xt+1, (ǫI− α(I−W))
︸ ︷︷ ︸

,Q

(xt − xt+1)

〉

(39)

−
〈
x∗ − xt+1,∇f

(
xt
)〉

−
〈

x∗ − xt+1, (I−W)
1

2vt+1
〉

+
〈
x∗ − xt+1,▽2f(xt)(xt − xt+1)

〉
= 0.

For the first term at the left-hand side of (39), we have

〈
x∗ − xt+1,Q(xt − xt+1)

〉
(40)

=
1

2

(
‖x∗ − xt+1‖2Q + ‖xt − xt+1‖2Q − ‖x∗ − xt‖2Q

)
.

For the second term at the left-hand side of (39), according to

the µf -strong convexity of f , we have

〈
x∗ − xt+1,∇f

(
xt
)〉

(41)

=
〈
x∗ − xt+1,∇f

(
xt+1

)〉

+
〈
x∗ − xt+1,∇f

(
xt
)
−∇f

(
xt+1

)〉

≤f(x∗)− f
(
xt+1

)
−

µf

2

∥
∥x∗ − xt+1

∥
∥
2

+
〈
x∗ − xt+1,∇f

(
xt
)
−∇f

(
xt+1

)〉
.

Substituting (41) and (40) into (39), we get

1

2

(
‖x∗ − xt+1‖2Q + ‖xt − xt+1‖2Q − ‖x∗ − xt‖2Q

)
(42)

−f(x∗) + f
(
xt+1

)
+

µf

2

∥
∥x∗ − xt+1

∥
∥
2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)

〉

−
〈

x∗ − xt+1, (I−W)
1

2vt+1
〉

≤ 0.

After being regrouped, (42) becomes

f(x∗)− f
(
xt+1

)

︸ ︷︷ ︸

(i)

+
〈

x∗ − xt+1, (I−W)
1

2vt+1
〉

︸ ︷︷ ︸

(ii)

(43)

−
1

2

(
‖x∗ − xt+1‖2Q − ‖x∗ − xt‖2Q

)

≥
1

2
‖xt − xt+1‖2Q +

µf

2

∥
∥x∗ − xt+1

∥
∥
2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)

〉
.

Step 2. We proceed to simplify (43). According to the dual

update (16), vt+1 = vt + α(I −W)
1

2xt+1 and consequently
〈
v∗ − vt+1,−(I−W)

1

2xt+1
〉

=

〈

v∗ − vt+1,
vt − vt+1

α

〉

=
1

2α

(
‖vt+1 − vt‖2 − ‖v∗ − vt‖2 + ‖v∗ − vt+1‖2

)
.

Reorganizing the terms, we have
〈
v∗,−(I−W)

1

2xt+1
〉

︸ ︷︷ ︸

(i′)

+
〈
vt+1, (I−W)

1

2xt+1
〉

︸ ︷︷ ︸

(ii′)

(44)

+
1

2α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)

=
1

2α
‖vt+1 − vt‖2.

Next, we sum up (43) and (44). The summation of (i) and

(i′) can be simplified as

f(x∗)− f(xt+1) +
〈
v∗,−(I−W)

1

2xt+1
〉

(45)

=L̂(x∗,v∗)− L̂(xt+1,v∗) ≤ 0,

where L̂(x,v) = f(x) + 〈v, (I − W)
1

2x〉 is the Lagrangian

of (13). The inequality holds because (x∗,v∗) is the saddle

point of L̂(x,v). The summation of (ii) and (ii′) is
〈
x∗ − xt+1, (I−W)

1

2vt+1
〉
+
〈
vt+1, (I−W)

1

2xt+1
〉

=
〈
x∗, (I−W)

1

2vt+1
〉
= 0. (46)

Note that in deriving both (45) and (46), we utilize the

consensus condition (I − W)
1

2x∗ = 0. With (45) and (46),

the summation of (43) and (44) is

1

2

(
‖x∗−xt‖2Q − ‖x∗−xt+1‖2Q

)
(47)

+
1

2α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)

≥
1

2
‖xt−xt+1‖2Q +

1

2α
‖vt+1 − vt‖2 +

µf

2

∥
∥x∗ − xt+1

∥
∥
2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)

〉
.

It is the µf -strong convexity of f that brings the quadratic

term
µf

2 ‖x∗ − xt+1‖2 in (47), which enables us to establish

the linear convergence. Indeed, by Cauchy-Schwarz inequality,

for any θ > 0 we have
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)

〉

≥ −
1

θ
‖∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)‖2

− θ‖x∗ − xt+1‖2. (48)



By Lipschitz continuity of ∇f , it holds

−
1

θ
‖∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)‖2

≥−
2

θ
‖∇f

(
xt+1

)
−∇f

(
xt
)
‖2 −

2

θ
‖▽2f(xt)(xt − xt+1)‖2

≥−
4L2

f

θ
‖xt − xt+1‖2. (49)

Thus, combining (48) and (49) yields
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)
+ ▽2f(xt)(xt − xt+1)

〉

≥ −θ‖x∗ − xt+1‖2 −
4L2

f

θ
‖xt − xt+1‖2. (50)

substituting (50) into (47), we obtain

‖x∗−xt‖2Q − ‖x∗−xt+1‖2Q (51)

+
1

α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)

≥‖xt−xt+1‖2Q +
1

α
‖vt+1 − vt‖2 + µf

∥
∥x∗ − xt+1

∥
∥
2

− θ‖x∗ − xt+1‖2 −
4L2

f

θ
‖xt − xt+1‖2

=‖xt−xt+1‖2
(Q−

4L2

f
θ

I)
+

1

α
‖vt+1 − vt‖2

+ (µf − θ)
∥
∥x∗ − xt+1

∥
∥
2
.

Step 3. To prove the linear convergence, the parameters in

(51) are required to satisfy






λmin(Q)−
4L2

f

θ
> 0,

µf − θ > 0.

(52)

Hence, (52) is attainable when

δ , 1−
4L2

f

µfλmin(Q)
> 0, (53)

which holds since λmin(Q) = ǫ − αλmax(I −W) >
4L2

f

µf
by

hypothesis.

When δ > 0, then (52) holds true if we choose θ =
µf

1+δ
.

Substituting this specific θ and the definition of δ, we can

rewrite (51) to

‖x∗−xt‖2Q − ‖x∗−xt+1‖2Q (54)

+
1

α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)

≥δ2λmin(Q)‖xt−xt+1‖2 +
1

α
‖vt+1 − vt‖2

+
µfδ

1 + δ

∥
∥x∗ − xt+1

∥
∥
2
.

To establish the linear convergence in (36), we need to show

that ‖ζt − ζ∗‖
2
G −

∥
∥ζt+1 − ζ∗

∥
∥
2

G
≥ δ′

∥
∥ζt+1 − ζ∗

∥
∥
2

G
. Given

(54), it is enough to show that

δ′

α

∥
∥vt+1 − v∗

∥
∥
2
+ δ′

∥
∥xt+1 − x∗

∥
∥
2

Q
(55)

≤δ2λmin(Q)‖xt−xt+1‖2 +
1

α
‖vt+1 − vt‖2

+
µfδ

1 + δ

∥
∥x∗ − xt+1

∥
∥
2
.

We proceed to find an upper bound for
∥
∥vt+1 − v∗

∥
∥
2

in terms of the summands at the right-hand side of (55).

For ∇f
(
xt+1

)
− ∇f (x∗) + (I − W)

1

2

(
vt+1 − v∗

)
+

ǫ
(
xt+1 − xt

)
+ et = 0 in (29), we utilize Cauchy-Schwarz

inequality twice to obtain

∥
∥vt+1 − v∗

∥
∥
2

I−W
≤

βǫ2

β − 1
‖xt+1 − xt‖2 (56)

+ βφ‖∇f
(
xt+1

)
−∇f (x∗) ‖2 +

βφ

φ− 1
‖et‖2,

where β > 1 and φ > 1 are parameters introduced in using

Cauchy-Schwarz inequality. By Lipschitz continuity of ∇f ,

it holds that ‖∇f
(
xt+1

)
− ∇f (x∗) ‖2 ≤ L2

f‖x
t+1 − x∗‖2.

By (35), we have ‖et‖2 ≤ κ2
∥
∥xt+1 − xt

∥
∥
2
. Therefore, (56)

implies that

∥
∥vt+1 − v∗

∥
∥
2

I−W

≤

(
βǫ2

β − 1
+

βφκ2

φ− 1

)

‖xt+1 − xt‖2 + βφL2
f‖x

t+1 − x∗‖2.

Further, considering that vt+1 and v∗ both lie in the column

space of (I−W)
1

2 , we have

∥
∥vt+1 − v∗

∥
∥
2
≤

1

λ̂min(I−W)
(57)

{(
βǫ2

β − 1
+

βφκ2

φ− 1

)

‖xt+1 − xt‖2 + βφL2
f‖x

t+1 − x∗‖2
}

.

Note that λ̂min(I−W) > 0 because I−W � 0. We also find

an upper bound for
∥
∥xt+1 − x∗

∥
∥
2

Q
as

∥
∥xt+1 − x∗

∥
∥
2

Q
≤ λmax(Q)

∥
∥xt+1 − x∗

∥
∥
2
. (58)

By substituting the upper bounds in (57) and (58) into (55),

we obtain a sufficient condition for (36), given by

λmax(Q)δ′
∥
∥xt+1 − x∗

∥
∥
2
+

δ′

αλ̂min(I−W)
{(

βǫ2

β − 1
+

βφκ2

φ− 1

)

‖xt+1 − xt‖2 + βφL2
f‖x

t+1 − x∗‖2
}

≤δ2λmin(Q)‖xt−xt+1‖2 +
1

α
‖vt+1 − vt‖2

+
µfδ

1 + δ

∥
∥x∗ − xt+1

∥
∥
2
. (59)

Regrouping the terms, we know that (59) is equivalent to

(

µfδ

1 + δ
− δ′λmax(Q)−

δ′βφL2
f

αλ̂min(I−W)

)

∥
∥xt+1 − x∗

∥
∥
2

+

(

δ2λmin(Q)−
δ′βǫ2/(β − 1)

αλ̂min(I−W)
−

δ′βφκ2/(φ− 1)

αλ̂min(I−W)

)

∥
∥xt+1 − xt

∥
∥
2
+

1

α

∥
∥vt+1 − vt

∥
∥
2
≥ 0. (60)

Recall that if (60) is satisfied, then (59) holds, and hence

(55) and (36) are also true. To get (60), we need to make sure



that the coefficients in (60) are non-negative. Thus, (60) holds

if δ′ satisfies

δ′ ≤ min







µfδ

(1 + δ)
[

λmax(Q) +
βφL2

f

αλ̂min(I−W)

] , (61)

αδ2λmin(Q)λ̂min(I−W)
βǫ2

(β−1) +
βφκ2

(φ−1)

}

.

By the definition of Q = ǫI− α(I−W), we have

λmin(Q) = ǫ − αλmax(I−W) >
4L2

f

µf

> 0,

λmax(Q) = ǫ− αλmin(I−W) = ǫ > 0.

Substituting these connections and the definition of κ = 2Lf

+αλmax(I−W) to (61), we eventually find the largest δ′ to

satisfy (61), as in (37).

Theorem 1 establishes the linear convergence of sequence

‖ζt − ζ∗‖
2
G, where the factor of linear convergence is 1

1+δ′
.

When λmax(I − W) increases, δ monotonically decreases

and δ′ monotonically decreases. On the other hand, when

λ̂min(I−W) increases, δ′ also monotonically increase. These

observations indicate the impact of network topology on the

convergence speed. Since Q is positive definite under the

parameter setting, G is also positive definite such that xt

converges linearly to x∗.

V. NUMERICAL EXPERIMENTS

We consider the application of Newton tracking for solving

a decentralized logistic regression problem in the form of

x∗ = argmin
x∈Rp

ρ

2
‖x‖2 +

n∑

i=1

mi∑

j=1

ln
(
1 + exp

(
−
(
oT
ijx
)
pij

))
,

where node i has access to mi training samples (oij ,pij) ∈
R

p ×{−1,+1}; j = 1, . . . ,mi. We add a regularization term
ρ
2‖x‖

2 with ρ > 0 to the loss function for avoiding over-

fitting. In the numerical experiments, we randomly generate

the elements in oij following the normal distribution and

the elements in pij following the uniform distribution. We

randomly generate
τn(n−1)

2 undirected edges for the network

of n nodes, where τ ∈ (0, 1] is the connectivity ratio, while

guarantee that the network is connected.

To evaluate performance of the compared algorithms, the

optimal logistic classifier x∗ is pre-computed through cen-

tralized gradient descent. The performance metric is relative

error, defined as ‖xt − x∗‖ /
∥
∥x0 − x∗

∥
∥. We conducted the

experiments with Matlab R2016b, running on a laptop with

Intel(R) Core(TM) i7 CPU@1.80GHz, 16.0 GB of RAM, and

Windows 10 operating system.

A. Comparison with Second-order Methods

We compare Newton tracking with second-order algorithms

including NN-K [25], ESOM-K [29] and DQM [28]. In every

iteration of NN-K and ESOM-K , the nodes need to execute a

0 100 200 300 400 500 600

Number of iterations

10-10

10-5

100

R
el

at
iv

e 
er

ro
r

NN-0
NN-1
NN-2
DQM
ESOM-0
ESOM-1
ESOM-2
Newton tracking

Fig. 1. Relative errors of Newton tracking, DQM, NN-K , and ESOM-K
versus number of iterations.

0 100 200 300 400 500 600

Number of communication rounds

10-10

10-5

100

R
el

at
iv

e 
er

ro
r NN-0

NN-1
NN-2
DQM
ESOM-0
ESOM-1
ESOM-2
Newton tracking

Fig. 2. Relative errors of Newton tracking, NN-K , ESOM-K and DQM
versus rounds of communications.

K+1-round inner loop to compute the inverse of a topology-

dependent matrix in the forms of α▽2f(x) + (I − W) and

▽2f(x) + α(I−W) + ǫI, respectively.

In the first experiment, we set the number of nodes as n =
10 and the connectivity ratio as τ = 0.5. Each node holds 12
samples, i.e., mi = 12, for all i. The dimension of sample

vectors oij is p = 8. We set the regularization parameter ρ =
0.001.

We run NN-K , ESOM-K , and DQM with fixed hand-

optimized step sizes. The step sizes of DQM is α = 0.3. The

parameters of ESOM-0, ESOM-1 and ESOM-2 are α = 3.3
and ǫ = 3. For NN-K , a smaller step size improves accuracy

but leads to slow convergence, while a larger step size accel-

erates the convergence at the cost of low accuracy. Therefore,

for NN-0, NN-1 and NN-2 we set α = 0.001, α = 0.008,

and α = 0.02, respectively. For Newton tracking, we set the

parameters the same as ESOM, i.e., α = 3.3 and ǫ = 3.

Fig. 1 illustrates the relative error versus the number of

iterations. Observe that NN-K converges to the neighbor-

hoods of optimal argument. Among the exact decentralized

algorithms, the proposed Newton tracking algorithm has the

best performance compared with the other algorithms and

converges linearly, which validates the theoretical result in

Theorem 1.

Newton tracking and DQM require one round of communi-

cation per iteration. For other algorithms, NN-K and ESOM-



0 500 1000 1500 2000

Number of iterations

10-10

100
R

el
at

iv
e 

er
ro

r
n = 50 mi = 10 p = 20

gradient tracking
EXTRA
DLM
Newton tracking

0 5 10 15 20

Runtime (s)

10-10

100

R
el

at
iv

e 
er

ro
r

n = 50 mi = 10 p = 20

gradient tracking
EXTRA
DLM
Newton tracking

Fig. 3. Relative errors of Newton tracking, gradient tracking, EXTRA and
DLM when n = 50, mi = 10 and p = 20.

0 500 1000 1500 2000

Number of iterations

10-10

100

R
el

at
iv

e 
er

ro
r

n = 100 mi = 10 p = 40

gradient tracking
EXTRA
DLM
Newton tracking

0 10 20 30 40 50 60

Runtime (s)

10-10

100

R
el

at
iv

e 
er

ro
r

n = 100 mi = 10 p = 40

gradient tracking
EXTRA
DLM
Newton tracking

Fig. 4. Relative errors of Newton tracking, gradient tracking, EXTRA and
DLM when n = 100, mi = 10 and p = 40.

K require K + 1 rounds. Fig. 2 illustrates the relative error

versus the rounds of communication. Observe that although

ESOM-1 and ESOM-2 perform well as depicted in Fig.

1, they become worse in Fig. 2 because more rounds of

communication are required in each iteration. In terms of the

communication cost, the proposed Newton tracking algorithm

is still the best.

B. Comparison with First-order Methods

We compare Newton tracking with the first-order

algorithms, including gradient tracking [21], EXTRA

[15] and DLM [17]. We respectively rewrite these three

algorithms as their equivalent updates: (gradient tracking)

xt+2 = 2Wxt+1 − W2xt − α
[
∇f

(
xt+1

)
−∇f (xt)

]
,

(EXTRA) xt+2 = (I + W)xt+1 − (I + W)xt/2 −
α
[
∇f

(
xt+1

)
−∇f (xt)

]
and (DLM) xt+2 =

(I− αDLo) (2x
t+1 − xt) − D

[
∇f

(
xt+1

)
−∇f (xt)

]
,

where D = diag{1/(2αdi + ǫ)}, and di is the degree of node

i. Lo is the oriented Laplacian defined in [17].

In this section we conduct the experiments under two larger

networks. In the second (third) experiments we set the number

of nodes as n = 50 (100), the number of samples on each

agent as mi = 10 (10) for all i and the dimension of sample

vectors as p = 20 (40). The other settings are the same as

subsection V-A.

We run all the algorithms with fixed hand-optimized step

sizes. The step sizes of gradient tracking and EXTRA in

the second (third) experiments are α = 0.16 (0.6) and

α = 0.07 (1.6), respectively. The parameters of DLM in

the second (third) experiments are α = 0.1 (0.008) and

ǫ = 0.1 (0.001). For Newton tracking, the parameters in

the second (third) experiments are α = 1.1 (0.08) and

ǫ = 1.2 (0.08).
Fig. 3 illustrates the relative error versus the number of

iterations and runtime, respectively. Observe that the proposed

Newton tracking outperforms the first-order algorithms in

terms of either the number of iterations or runtime. Although

Newton tracking computes the inverse of estimated Hessian

∇2fi(xi)+ ǫIp ∈ R
p×p in each iteration, it calls for relatively

smaller number of iterations compared with the first-order

algorithms, which leads to the shorter runtime. We get similar

results in the third experiments, see Fig. 4.

C. Effect of Network Topology

This section investigates the performance of Netwon track-

ing in four different topologies including line graph, cycle

graph, random graphs with τ = {0.3, 0.5, 0.7}, and complete

graph. The parameters of Newton tracking are set as α = 2.3
and ǫ = 2.4. All the other settings are the same as those in

subsection V-A.

Fig. 5 illustrates the relative errors versus the number of iter-

ations. Observe that the proposed Newton tracking algorithm

has linear convergence rates in all types of graphs. Among

them, complete graph yields the fastest speed. This observation

confirms the convergence rate developed in Theorem 1. To

be specific, for line graph, cycle graph, random graphs with

τ = {0.3, 0.5, 0.7}, and complete graph, we have λ̂min(I −
W) = {0.03, 0.12, 0.17, 0.34, 0.43, 1.00} and λmax(I−W) =
{1.30, 1.33, 1.16, 1.15, 1.10, 1.00}, respectively. According to

the definition of δ′ in (61), the complete graph with the largest

λ̂min(I −W) and the smallest λmax(I −W) has the largest

δ′, and hence the fastest convergence speed.

VI. CONCLUSIONS

This paper proposed a novel Newton tracking algorithm

to solve the decentralized consensus optimization problem.



0 100 200 300 400

Number of iterations

10-10

10-5

100
R

el
at

iv
e 

er
ro

r
Line
Cycle
Random τ=0.3
Random τ=0.5
Random τ=0.7
Complete

Fig. 5. Relative errors of Newton tracking versus number of iterations for line
graph, cycle graph, random graphs with τ = {0.3, 0.5, 0.7}, and complete
graph.

Each node updates its local variable along a modified local

Newton direction, which is calculated with neighboring and

historical information. Newton tracking employs a fixed step

size and, yet, converges to an exact solution. The connec-

tions between Newton tracking and several existing methods,

including gradient tracking and second-order algorithms were

investigated. We proved that the proposed algorithm converges

at a linear rate under the strongly convex assumption. Numeri-

cal experiments demonstrated the efficacy of Newton tracking,

compared with existing algorithms such as gradient tracking,

NN, ESOM, and DQM.

REFERENCES

[1] S. Pu, W. Shi, J. Xu, and A. Nedić, “A push-pull gradient method for
distributed optimization in networks,” in IEEE Conference on Decision

and Control, 2018, pp. 3385–3390.
[2] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Decentralized

resource allocation for video transcoding and delivery in blockchain-
based system with mobile edge computing,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 11, pp. 11 169–11 185, 2019.
[3] D.-T. Ta, K. Khawam, S. Lahoud, C. Adjih, and S. Martin, “LoRa-MAB:

A flexible simulator for decentralized learning resource allocation in IoT
networks,” in IFIP Wireless and Mobile Networking Conference, 2019,
pp. 55–62.

[4] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Transactions on Smart Grid, vol. 4,
no. 3, pp. 1464–1475, 2013.

[5] H. J. Liu, W. Shi, and H. Zhu, “Hybrid voltage control in distribution
networks under limited communication rates,” IEEE Transactions on

Smart Grid, vol. 10, no. 3, pp. 2416–2427, 2019.
[6] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized

federated learning,” in Advances in Neural Information Processing

Systems Workshop on Bayesian Deep Learning, 2018.
[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learn-

ing: Challenges, methods, and future directions,” arXiv preprint

arXiv:1908.07873, 2019.
[8] Y. Zhao, J. Zhao, L. Jiang, R. Tan, and D. Niyato, “Mobile edge com-

puting, blockchain and reputation-based crowdsourcing IoT federated
learning: A secure, decentralized and privacy-preserving system,” arXiv

preprint arXiv:1906.10893, 2019.
[9] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, and J. Liu, “Can decen-

tralized algorithms outperform centralized algorithms? A case study for
decentralized parallel stochastic gradient descent,” in Advances in Neural

Information Processing Systems, 2017.
[10] A. Koppel, S. Paternain, C. Richard, and A. Ribeiro, “Decentralized

online learning with kernels,” IEEE Transactions on Signal Processing,
vol. 66, no. 12, pp. 3240–3255, 2018.

[11] D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimization for
reinforcement learning: From single agent to cooperative agents,” arXiv

preprint arXiv:1912.00498, 2019.

[12] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[13] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[14] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp.
1131–1146, 2014.

[15] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on

Optimization, vol. 25, no. 2, pp. 944–966, 2015.
[16] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear

convergence of the ADMM in decentralized consensus optimization,”
IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[17] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Transactions on

Signal Processing, vol. 63, no. 15, pp. 4051–4064, 2015.
[18] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for

distributed optimization and learning – Part I: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[19] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Transactions on Signal Processing, vol. 67, no. 17, pp. 4494–4506,
2019.

[20] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in IEEE Conference on Decision and Control, 2015, pp.
2055–2060.

[21] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2017.

[22] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems

Letters, vol. 2, no. 3, pp. 315–320, 2018.
[23] Y. Sun, A. Daneshmand, and G. Scutari, “Convergence rate of distributed

optimization algorithms based on gradient tracking,” arXiv preprint

arXiv:1905.02637, 2019.
[24] R. Xin, S. Kar, and U. A. Khan, “Gradient tracking and variance

reduction for decentralized optimization and machine learning,” arXiv

preprint arXiv:2002.05373, 2020.
[25] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton distributed

optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2016.

[26] D. Bajovic, D. Jakovetic, N. Krejic, and N. K. Jerinkic, “Newton-like
method with diagonal correction for distributed optimization,” SIAM

Journal on Optimization, vol. 27, no. 2, pp. 1171–1203, 2017.
[27] F. Mansoori and E. Wei, “A fast distributed asynchronous Newton-based

optimization algorithm,” arXiv preprint arXiv:1901.01872, 2019.
[28] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized

quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–5173,
2016.

[29] ——, “A decentralized second-order method with exact linear conver-
gence rate for consensus optimization,” IEEE Transactions on Signal

and Information Processing over Networks, vol. 2, no. 4, pp. 507–522,
2016.

[30] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-Newton
method for exact consensus optimization,” IEEE Transactions on Signal

Processing, vol. 67, no. 23, pp. 5983–5997, 2019.
[31] S. Soori, K. Mischenko, A. Mokhtari, M. M. Dehnavi, and

M. Gurbuzbalaban, “DAve-QN: A distributed averaged quasi-Newton
method with local superlinear convergence rate,” arXiv preprint

arXiv:1906.00506, 2019.
[32] J. Zhang, K. You, and T. Başar, “Distributed adaptive New-

ton methods with globally superlinear convergence,” arXiv preprint

arXiv:2002.07378, 2020.
[33] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a

graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.
[34] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: Some

of its applications,” IEEE Signal Processing Magazine, vol. 22, no. 2,
pp. 62–75, 2005.


	I INTRODUCTION
	II Problem Formulation and Algorithm Development
	II-A Problem Formulation
	II-B Algorithm Development

	III Connections with Existing Approaches
	III-A Connection with Gradient Tracking
	III-B Connection with Primal-dual Algorithms

	IV convergence analysis
	V Numerical Experiments
	V-A Comparison with Second-order Methods
	V-B Comparison with First-order Methods
	V-C Effect of Network Topology

	VI CONCLUSIONS
	References

