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Abstract— We consider a robust filtering problem where the
nominal state space model is not reachable and different from
the actual one. We propose a robust Kalman filter which solves a
dynamic game: one player selects the least-favorable model in a
given ambiguity set, while the other player designs the optimum
filter for the least-favorable model. It turns out that the robust
filter is governed by a low-rank risk sensitive-like Riccati
equation. Finally, simulation results show the effectiveness of
the proposed filter.

I. INTRODUCTION

Kalman filtering is widely used. However, it leads to poor
performances in some applications. This is because the filter
is based on a nominal model which is usually different than
the actual one. To address such a weakness, robust versions
based on the standard Kalman filter have been considered,
[1]–[5].

Risk sensitive Kalman filters [6]–[9] address the model
uncertainty by replacing the standard quadratic loss func-
tion by an exponential quadratic loss function. The latter
severely penalizes large errors. Such severity is tuned by the
so called risk sensitivity parameter. Later on, it has been
proved that risk sensitive Kalman filtering is equivalent to a
minimax game, [10]–[12]: one player (called nature) selects
the least-favorable model in a given set (called ambiguity
set), while the other player designs the optimum filter for
the least-favorable model. Here, the ambiguity set is a ball,
in the Kullback-Leibler (KL) divergence topology, about the
nominal model. The radius of this ball depends on how much
uncertainty the nominal model contains.

A modern formulation of risk sensitive filters is repre-
sented by robust Kalman filters where the model uncertainty
is expressed incrementally, [13]–[18]. More precisely, the
ambiguity set is specified at each time step: in this way
the nature cannot concentrate all the uncertainty in one
specific time step. These filters are built from a robust
static estimation problem showing that the Bayes estimator is
optimal with respect to the ambiguity set formed by the KL
divergence, [19]. Interestingly, these results can be extended
to ambiguity sets formed by the τ -divergence, [20], [21].
These robust Kalman filters, however, are well defined only
in the case that the dynamic game involves non-degenerate
probability densities. Such a condition is guaranteed by
assuming that the nominal state space model is reachable
and observable.
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The contribution of this paper is to extend this robust
Kalman filtering approach in the case that reachability is
not assumed. In this case the dynamic game could involve
degenerate Gaussian probability densities, i.e. their covari-
ance matrices are low-rank. It turns out that the resulting
robust Kalman filter is governed by a low-rank risk sensitive-
like Riccati iteration. Although low-rank and singular Riccati
iterations have been studied in the literature, e.g. [22]–[24],
our iteration appears to be new.

The outline of the paper is as follows. Section II regards
the low-rank robust static estimation problem showing the
optimality of the Bayes estimator. The latter is then used
to derive the low-rank robust Kalman filter in Section III.
Some simulations are presented in Section IV which show
that the proposed filter outperforms the Kalman filter in the
case of model uncertainty. Finally, the conclusions and the
future work are discussed in Section V.

We warn the reader that the present paper only reports
some preliminary result regarding the robust estimation under
model uncertainty in the case that reachability is not as-
sumed. In particular, all the proofs and most of the technical
assumptions needed therein are omitted and will be published
afterwards.

Notation: The image of matrix K is denoted by Im(K).
Given a symmetric matrix K: K > 0 (K ≥ 0) means that
K is positive (semi) definite; σmax(K) is the maximum
eigenvalue of K. The symbol diag (d1, · · · , dn) denotes the
diagonal matrix whose entries in the main diagonal are
d1 . . . dn. x ∼ N (m,K) means that x is a Gaussian random
variable with mean m and covariance matrix K.

II. LOW-RANK ROBUST STATIC ESTIMATION

We consider a robust static estimation problem where
we want to estimate a random vector x, taking values in
Rn, given the observation vector y, taking values in Rp,
and whose joint probability distribution is degenerate. More
precisely, let z :=

[
xT yT

]T
and f(z) ∼ N (mz,Kz)

denote the nominal probability density function of z where
mz ∈ Rn+p and Kz ∈ Rn+p×n+p are such that

mz =

[
mx

my

]
, Kz =

[
Kx Kxy

Kyx Ky

]
.

We assume that Kz is such that rank(Kz) = r + p with
r < n and Ky > 0. Moreover, let f̃(z) ∼ N (m̃z, K̃z) be the
actual probability density function where rank(K̃z) = r+p.
Accordingly,

f(z) =
[
(2π)r+p det+ (Kz)

]−1/2

× exp

[
−1

2
(z −mz)

T
K+

z (z −mz)

] (1)
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and

f̃(z) =
[
(2π)r+p det+

(
K̃z

)]−1/2

× exp

[
−1

2
(z − m̃z)

T
K̃+

z (z − m̃z)

] (2)

where K+
z and K̃+

z are the pseudo-inverse of Kz and K̃z ,
respectively, and det+ is the pseudo-determinant. Notice
that the supports of fz and f̃z are, respectively, the r + p-
dimensional affine subspaces

A = {mz + v, v ∈ Im (Kz)}
Ã = {m̃z + v, v ∈ Im(K̃z)}.

To measure the mismatch between f(z) and f̃(z) we intro-
duce the KL-divergence between these degenerate probabil-
ity density functions. In order to do that, we have to impose
A = Ã, indeed such divergence is not able to measure
“deterministic” discrepancies between the nominal and the
actual model. The latter condition is equivalent to impose
that

Im (Kz) = Im(K̃z), ∆mz ∈ Im (Kz)

where ∆mz = m̃z−mz . Under the aforementioned assump-
tion, the KL-divergence is defined as

D(f̃ , f) =

∫
A

ln

(
f̃(z)

f(z)

)
f̃(z)dz. (3)

Substituting (1) and (2) in (3), it is not difficult to see that

D(f̃ , f) =
1

2

[
∆mT

zK
+
z ∆mz + ln det+(Kz)

− ln det+(K̃z) + tr
(
K+

z K̃z

)
− (r + p)

]
.

(4)

Lemma 1. Let f(z) ∼ N (mz,Kz) and f̃(z) ∼ N (m̃z, K̃z)
be degenerate Gaussian probability density functions with the
same r + p-dimensional support A. Let

U = {m̃z ∈ Rn+p s.t. m̃z −mz ∈ Im(Kz)}
V = {K̃z ∈ Rn+p×n+p s.t. Kz = KT

z , Im(Kz) = Im(K̃z)}.

Then, D(f̃ , f) is strictly convex with respect to m̃z ∈ U and
K̃z ∈ V . Moreover, D(f̃ , f) ≥ 0 and equality hold if and
only if f = f̃ .

Assume that the nominal density f is known while the
actual one f̃ , having the same support of f , is not. Next, we
design a robust estimator x̂ = g0(y) of x according to the
worst probability density f̃(z) belonging to the ambiguity
set which is a ball

B = {f̃ ∼ N (m̃z, K̃z) s.t. D(f̃ , f) ≤ c}

where c is the mismodeling budget hereafter called tolerance.
More precisely, we aim to solve the following minimax
problem

(f̃0, g0) = arg min
g∈G

max
f̃∈B

J(f̃ , g) (5)

where

J(f̃ , g) =
1

2
Ef̃

[
‖H(x− g(y))‖2

]
=

1

2

∫
A
‖H(x− g(y))‖2f̃(z)dz;

H ∈ Rq×n with q ≤ r and full row rank; G is the set of
estimators for which Ef̃

[
‖H(x− g(y))‖2

]
is bounded with

respect to all the Gaussian densities in B.

Theorem 1. Let f be a Gaussian (possibly degenerate)
density defined as in (1) with Ky > 0. Assume that
Im(HT ) ⊆ Im(P ) with

P := Kx −KxyK
−1
y Kyx. (6)

Then, the least favorable Gaussian density f̃0 is with mean
vector and covariance matrix

m̃0
z = mz =

[
mx

my

]
, K̃0

z =

[
K̃x Kxy

Kyx Ky

]
so that, only the covariance of x is perturbed. Then, the
optimal robust estimator is the Bayes estimator

g0(y) = G0 (y −my) +mx (7)

with G0 = KxyK
−1
y . The nominal posterior covariance

matrix of x given y is given by (6), while the least favorable
one is:

P̃ := K̃x −KxyK
−1
y Kyx.

Then, we have

P̃ = (P+ − λ−1HTH)+.

Moreover, there exists a unique Lagrangian multiplier λ >
σmax(Q) > 0, such that c = D(f̃0, f) where

Q := HHT (HP+HT )−1HHT .

Remark: In the case that P > 0 then f is a non-degenerate
density. In such a case, Theorem 1 still holds and: the
pseudo-inverse is replaced by the inverse; moreover, HTH
can be chosen as the identity matrix. In the latter case, we
recover the robust static estimation problem proposed in [19].

III. LOW-RANK ROBUST KALMAN FILTER

We consider a nominal Gauss-Markov state space model
of the form: {

xt+1 = Atxt +Btvt
yt = Ctxt +Dtvt

(8)

where At ∈ Rn×n, Bt ∈ Rn×n+p, Ct ∈ Rp×n, Dt ∈
Rp×n+p; xt and yt are the state vector and the observation
vector, respectively. vt is normalized white Gaussian noise.
We assume that DtD

T
t > 0 that is all the components of the

observation process are affected by a full rank p-dimensional
noise. Let zt :=

[
xTt+1 yTt

]T
, so the nominal conditional

transition probability density function of the nominal state
space model is φt(zt|xt) ∼ N

(
mzt|xt

,Kzt|xt

)
with

mzt|xt
=

[
At

Ct

]
xt, Kzt|xt

=

[
BtB

T
t BtD

T
t

DtB
T
t DtD

T
t

]
.



Notice that Kzt|xt
is not necessarily positive, i.e. φt(zt|xt)

could be degenerate. Indeed no assumption on Bt has been
made. Then, we assume at time t the a priori conditional
density of xt given Yt−1 := {y0 . . . yt} is

f̌t (xt|Yt−1) ∼ N (x̂t, P̃t) (9)

with rank(P̃t) = rt. Therefore, we obtain the pseudo-
nominal density

ft (zt|Yt−1) =

∫
Ǎt

φt (zt|xt) f̌t (xt|Yt−1)dxt

where Ǎt denotes the support of f̌t. Then, it is not difficult
to see that ft (zt|Yt−1) ∼ N (mzt ,Kzt) with

mzt =

[
At

Ct

]
x̂t, Kzt =

[
Kxt+1 Kxt+1yt

Kytxt+1
Kyt

]
where the conditional covariance matrix Kzt takes the para-
metric form

Kzt =

[
At

Ct

]
P̃t

[
AT

t CT
t

]
+

[
Bt

Dt

] [
BT

t DT
t

]
.

(10)
Notice that the support of ft (zt|Yt−1) is the affine subspace

At := {mzt + wt, wt ∈ Im (Kzt)} .

Let φ̃t(zt|xt) be the actual least favorable density of zt
given xt. Then, the marginal density is

f̃t (zt|Yt−1) =

∫
Ǎt

φ̃t (zt|xt) f̌t (xt|Yt−1)dxt.

In what follows, we assume φ̃t is Gaussian, accordingly the
pseudo-actual density f̃t(zt|Yt−1) ∼ N (m̃zt , K̃zt) is Gaus-
sian. In order to measure the mismatch between ft(zt|Yt−1)
and f̃t(zt|Yt−1) using the KL-divergence we impose that
f̃t(zt|Yt−1) has the same support of ft(zt|Yt−1). Accord-
ingly, Im(K̃zt) = Im(Kzt) and ∆mzt := m̃zt − mzt ∈
Im(Kzt). Under the above assumptions, we assume that the
actual density belongs the following ambiguity set

B̃t = {f̃t ∼ N (m̃zt , K̃zt) s.t. D(f̃t, ft) ≤ ct}. (11)

It is worth noting that the model uncertainty in (11) is
expressed incrementally. In plain words, the tolerance ct
represents the mismodeling budget allowed at time t. Then,
we consider as robust one step-ahead predictor x̂t+1 of xt+1

given Yt, the solution to the following minimax game

x̂t+1 = argmin
gt∈Gt

max
f̃t∈Bt

J̄t(f̃t, gt) (12)

where

J̄t(f̃t, gt) =

∫
At

‖Ht (xt+1 − gt (yt))‖2 f̃t (zt|Yt−1) dzt,

Ht ∈ Rq×n with q ≤ r is a square root of the projection
matrix having the same image of Pt+1, i.e. HT

t Ht is the
projection matrix such that Im(HT

t Ht) = Im(Pt+1), where

Pt+1 := Kxt+1
−Kxt+1,yt

K−1
yt
Kyt,xt+1

. (13)

In the case that Pt+1 > 0, then Ht is an orthogonal
matrix and thus ‖Ht(xt+1−gt(yt))‖2 = ‖(xt+1−gt(yt))‖2.
Accordingly, the minimax problem in (12) boils down to the
one in [13].

Remark: Condition (9) means that, using the terminology
coined by Hansen and Sargent [25], the maximizer in (12) is
operating under commitment, i.e. the maximizer is required
to commit all the least favorable model components at early
stages with the estimating player.

To solve Problem (12) we use Theorem 1. Indeed, replac-
ing f , f̃ , g, H by ft, f̃t, gt, Ht, respectively, it is not difficult
to see that all the assumptions are satisfied. In particular the
condition on Ht is satisfied and we have

Kyt
= CtP̃tC

T
t +DtD

T
t ≥ DtD

T
t > 0.

Then, the least favorable density is f̃0
t (zt|Yt−1) ∼

N (mzt , K̃zt) where

K̃zt =

[
K̃xt+1

Kxt+1,yt

Kyt,xt+1 Kyt

]
.

Then, the nominal posterior covariance of xt+1 given Yt has
been defined in (13) and the the least favorable one is

P̃t+1 = K̃xt+1 −Kxt+1,ytK
−1
yt
Kyt,xt+1 .

Moreover,

P̃t+1 =
(
P+
t+1 − λ

−1
t+1H

T
t Ht

)+
where λt > σmax(HtH

T
t (HtP

+
t+1H

T
t )−1HtH

T
t ) is the

unique solution of the following equation

γt(Pt+1, λt) :=
1

2

{
lndet+(Pt+1)− lndet+(P̃t+1)

+ tr
[
P+
t+1P̃t+1 − Irt+1

]}
= ct.

Moreover, the robust estimator is

x̂t+1 = Atx̂t +Gt (yt − Ctx̂t) .

where Gt = Kxt+1,yt
K−1

yt
and by equation (10), we get the

parametric form of Gt and Pt+1

Gt = (AtP̃tC
T
t +BtD

T
t )(CtP̃tC

T
t +DtD

T
t )−1

Pt+1 = AtP̃tA
T
t −Gt(CtP̃tC

T
t +DtD

T
t )GT

t +BtB
T
t . (14)

Algorithm 1 Low-rank robust Kalman filter at time t

Require: yt, x̂t, P̃t, ct
1: Gt = (AtP̃tCt +BtD

T
t )T (CtP̃tC

T
t +DtD

T
t )−1

2: x̂t+1 = Atx̂t +Gt (yt − Ctx̂t)

3: Pt+1 = AtP̃tA
T
t −Gt

(
CtP̃tC

T
t +DtD

T
t

)
GT

t +BtB
T
t

4: Select HT
t Ht as projection matrix with image Im(Pt+1)

5: Find λt s.t. γt(Pt+1, λt) = ct
6: P̃t+1 =

(
P+
t+1 − λ

−1
t HT

t Ht

)+
Algorithm 1 summarizes the robust Kalman filter that we

obtain. It is worth noting that steps 3 and 6 represent a risk
sensitive-like Riccati iteration which is well defined also in



the case that P̃t is low-rank. Notice that θt := λ−1
t represents

the time-varying risk sensitivity parameter. In the situation
that ct = 0, i.e. the actual model corresponds to the nominal
model, then we have θt = 0 and thus Pt = P̃t; in particular,
(14) become the usual Riccati equation and thus we obtain
the standard Kalman filter.

IV. SIMULATION RESULTS

We consider the linear time-invariant model{
xt+1 = Axt +Bvt
yt = Cxt +Dvt

(15)

where

A =

 1.1 0.1 0.1
0 0.6364 −0.6364
0 0.6364 0.6364

 , B =

 1 0
0 0
0 0

 ,
C =

[
1 0 0

]
, D =

[
0 1

]
,

and x0 ∼ N
(

0, P̃0

)
with

P̃0 =

 1 0 0
0 0 0
0 0 1

 .
Notice that the pair (A,B) is stabilizable, but not reachable.
Finally, the pair (A,C) is observable.

First, we compare Pt and P̃t by using the robust Kalman
filter (RKF) of section III and the Kalman filter (KF).
More precisely, we consider two values of the tolerance for
RKF: c1 = 5 · 10−2, c2 = 8 · 10−2 and we denote the
corresponding robust filters as RKF1 and RKF2, respectively.
Figure 1 shows the trace of Pt over the time horizon [0, 90].

0 10 20 30 40 50 60 70 80 90

1.6

1.8

2

2.2

2.4

2.6

2.8

KF

RKF1

RKF2

Fig. 1. Trace of Pt for KF, RKF1 with c = 5 · 10−2, and RKF2 with
c = 8 · 10−2. Recall that P̃t = Pt for KF.

Clearly tr(Pt) of KF converges to a constant value because
the nominal model is stabilizable and observable, indeed
it is well known that the corresponding Riccati equation
converges to a unique solution. In regard to RKF1 and
RKF2, tr(Pt) converges for both. Moreover, the larger c
is, the more tr(Pt) is different from the one of KF. It is

worth noticing that rank(Pt) = 2 for KF, RKF1 and RKF2.
Figure 2 shows the minimum nonnull eigenvalue of Pt: we

0 10 20 30 40 50 60 70 80 90
10-10

10-8

10-6

10-4

10-2

100

KF
RKF1
RKF2

Fig. 2. Minimum nonnull eigenvalue of Pt as a function of t for KF,
RKF1 with c = 5 · 10−2, and RKF2 with c = 8 · 10−2.

notice that rank(Pt) → 1 as t → ∞ for all the filters.
This is clearly expected from KF because the corresponding
algebraic Riccati equation admits a unique solution with
rank equal to one. It is also worth noting that the highest
convergence rate to the rank one solution is given by KF,
while the larger c is, the slower the convergence rate is.
Figures 3 and 4 show the trace of P̃t and its minimum
nonnull eigenvalue as a function of t. Similar observations
can be made also in this case. Finally, Figure 5 shows the

0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

3.5

4

4.5

KF
RKF1
RKF2

Fig. 3. Trace of P̃t for KF, RKF1 with c = 5 · 10−2, and RKF2 with
c = 8 · 10−2. Recall that P̃t = Pt for KF.

risk sensitivity parameter θt as a function of t. As expected,
it converges to a constant value and the larger c is, the larger
θt is.

Next, we evaluate the performance of RKF2 and KF
assuming that the actual model corresponds to (15). Let
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Fig. 4. Minimum nonnull eigenvalue of P̃t as a function of t for KF,
RKF1 with c = 5 · 10−2, and RKF2 with c = 8 · 10−2.
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0.24
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RKF2

Fig. 5. Risk sensitivity parameter θt as a function of t for RKF1 with
c = 5 · 10−2, and RKF2 with c = 8 · 10−2.

et+1 := xt+1−x̂t+1 be the prediction error using a predictor
of the form

x̂t+1 = Ax̂t +G′t(yt − Cx̂t). (16)

Then, it is not difficult to see that et+1 = (A − G′tC)et +
(B − G′tD)vt. Thus, et is a process with zero mean and
with covariance matrix Vt := E[ete

T
t ]. The latter is given by

solving the following Lyapunov equation

Vt+1 = (A−G′tC)Vt(A−G′tC)T +(B−G′tD)(B−G′tD)T .

Figure 6 shows tr(Vt) for RKF2 and KF. As expected, KF
performs better than RKF2. Indeed, the former has been
designed to be optimal for (15).

Finally, we compare the performance of RKF2 and KF
using the actual model

ξt+1 = Ãξt + B̃εt

yt = C̃ξt + D̃εt
(17)

0 10 20 30 40 50 60 70 80 90
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2.4

2.5

KF
RKF

Fig. 6. Scalar variance of the prediction error for KF and RKF2 with
c = 8 · 10−2 under the assumption that the actual model coincides with
the nominal model.

where

Ã =


1.1 0.1 0.1 0.1033 0.0663 0.0295
0 0.6364 −0.6364 0 0 0
0 0.6364 0.6364 0 0 0
0 0 0 0.4365 0.2131 0.1503
0 0 0 0 0.6364 −0.6364
0 0 0 0 0.6364 0.6364



B̃ =


1.182 0

0 0
0 0

1.4188 −0.92
0 0
0 0


C̃ =

[
1 0 0 −0.0868 −0.0557 −0.0247

]
D̃ =

[
−0.2821 1.0956

]
,

ξt =
[
xTt ηTt

]T
, and εt is normalized white Gaussian

noise. Note that xt is the actual state, while ηt is a per-
turbation process. Model (17) is a perturbed version of (15).
Indeed, the green parts in Ã, B̃, C̃, D̃ correspond to the non-
perturbed parts of matrices A, B, C and D; the red parts in
Ã, B̃, C̃, D̃ correspond to the perturbed parts of matrices A,
B, C and D; the blue parts are the terms coupling xt and
yt with the perturbation process ηt. Consider a predictor of
the form (16). Let et = xt − x̂t denote the prediction error
of such a predictor under the actual model in (17). Since the
submatrices in Ã and C̃ corresponding to A and C are not
perturbed, then it is not difficult to see that

ξ̃t+1 = (Ã− G̃′tC̃)ξ̃t + (B̃ − G̃′tD̃)εt

where ξt := [ eTt ηTt ]T , G̃′t = [ (G′t)
T 0 ]T . Thus, et

is a process with zero mean and with covariance matrix
Vt := E[ete

T
t ]. The latter is given by solving the following

Lyapunov equation

Πt+1 = (Ã−G̃′tC̃)Πt(Ã−G̃′tC̃)T +(B̃−G̃′tD̃)(B̃−G̃′tD̃)T



0 10 20 30 40 50 60 70 80 90
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Fig. 7. Scalar variance of the prediction error for KF and RKF2 with
c = 8 · 10−2 under the assumption that the actual model is different from
the nominal one.

and

Πt =

[
Vt ?
? ?

]
.

Figure 7 shows tr(Vt) for RKF2 and KF. In this case the
former performs better than the latter.

V. CONCLUSIONS

In this paper, we consider a robust static estimation
problem in the case that the nominal density is Gaussian
and possibly degenerate. We apply such a result to design a
robust Kalman filter which can be used also in the case that
the reachability assumption does not hold. Of course, there
are many aspects that have not taken into account yet. More
precisely, in our research agenda now there are the following
questions that we are addressing:

• The least favorable model has been assumed to be
Gaussian. However, in view of the results in [19], we
believe our conclusions also holds in the case that
the ambiguity set contains non-Gaussian probability
densities.

• The minimax problem also provides the least favorable
density f̃0

t . Under the assumption that ft and f̃t are non-
degenerate, Levy & Nikoukhah showed that it is possi-
ble to characterize the corresponding dynamic model in
a finite simulation horizon, [13]. Our conjecture is that
it is possible to adapt these arguments to our case.

• The simulation results show that the robust Kalman
filter seems to converge in the case of constant parame-
ters. Drawing inspiration from the non-degenerate case
in [26], [27], we believe it is possible to prove that
the risk sensitive-like Riccati iteration in Algorithm 1
(steps 3 and 6) converges provided that the tolerance
is sufficiently small and the system is stabilizable and
detectable.
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