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Scalable Synthesis of Minimum-Information Linear-Gaussian

Control by Distributed Optimization

Murat Cubuktepe, Takashi Tanaka, and Ufuk Topcu

Abstract—We consider a discrete-time linear-quadratic Gaus-
sian control problem in which we minimize a weighted sum of the
directed information from the state of the system to the control
input and the control cost. The optimal control and sensing
policies can be synthesized jointly by solving a semidefinite
programming problem. However, the existing solutions typically
scale cubic with the horizon length. We leverage the structure in
the problem to develop a distributed algorithm that decomposes
the synthesis problem into a set of smaller problems, one for each
time step. We prove that the algorithm runs in time linear in the
horizon length. As an application of the algorithm, we consider a
path-planning problem in a state space with obstacles under the
presence of stochastic disturbances. The algorithm computes a
locally optimal solution that jointly minimizes the perception and
control cost while ensuring the safety of the path. The numerical
examples show that the algorithm can scale to thousands of
horizon length and compute locally optimal solutions.

I. INTRODUCTION

We revisit the problem of minimum-information control of

linear-Gaussian systems [1]–[7], where the trade-off between

the best achievable control performance and the required

sensor data rate is studied. Such a trade-off is relevant to

the utility-privacy trade-off in multi-party control systems [8]–

[11]. It also plays a crucial role in the network control systems

design [11]–[13].

The work most related to this paper is [6], where the

authors formulated the minimum-information linear-Gaussian

control problem as a sensor-controller joint design problem.

They showed that the optimal controller can be obtained as

the solution to Riccati equations, while the optimal sensor

is obtained as the solution to the so-called Gaussian se-

quential rate-distortion (SRD) problem [5], [14]. They further

showed that the Gaussian SRD problem can be formulated

as a semidefinite programming problem (SDP), which can be

solved by interior-point methods in polynomial time [15], [16].

However, the computation typically requires O(T 3) time with

horizon length T if the structure of the SDP is not exploited,

and an interior-point method may not scale to large horizon

lengths.

Our first contribution in this work is to exploit the structure

of the Gaussian SRD problem to derive a distributed algorithm,

which facilitates the sensor design for a large horizon length.

We propose a distributed algorithm based on ADMM [17]–

[21], which allows us to design sensors on problems with large

horizon length. The structure in the problem enables us to de-

velop a distributed algorithm that, given a linear time-varying
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dynamical system and data rate constraints, decomposes the

original SDP problem to smaller SDP problems, one for each

time step. The algorithm then solves the smaller SDP problems

in parallel at each iteration. We prove that our algorithm runs

in time linear with the horizon length.

Our second contribution is to apply our algorithm to the

minimum-sensing path-planning problem, which incorporates

the perception cost into a path-planning problem [22]–[27]. A

path-planning problem with a similar spirit has been recently

considered in [28]. Conventionally, path planning is performed

by a global path search (via grid-based algorithms such as

A* [29] and randomized algorithms such as RRT [23], [30]),

followed by path-smoothing and feedback control design for

path following. In this paper, we provide a path-smoothing

algorithm that refines a given initial trajectory by computing

a locally optimal solution. Our algorithm is closely related

to the convex-concave procedure [31], which iteratively finds

a locally optimal solution to a difference of convex (DC)

problem and to [28], which optimizes a similar metric to our

case in a path-planning problem using an RRT*-based method.

We formulate the path-smoothing problem with perception

cost as a DC problem. Our formulation is convex, except the

task constraints, which is to avoid colliding with obstacles.

We express the task constraints as reverse convex constraints,

which can be used in a DC problem, and a locally optimal

solution can be computed.

We show the effectiveness of the algorithms in two nu-

merical examples. To demonstrate our first contribution, we

consider attitude determination for a spin-stabilized satellite

example. We compute the minimum required information in

order to satisfy the required distortion constraints with a

substantial horizon length. To demonstrate the second con-

tribution, we solve a path-smoothing problem with multiple

obstacles in a two-dimensional state space. The objective is to

find a path that is feasible and minimizes the required joint

control and perception cost. We show that we can find a locally

optimal path within a few iterations.

Organization: Section II introduces the Gaussian SRD

problem and the semidefinite programming formulation for

the linear-Gaussian sensor design problem. We propose a

distributed algorithm based on ADMM in Section III that

solves the linear-Gaussian sensor design problem in linear time

with the horizon length. We discuss the convergence rate of

the algorithm and improvements over the standard ADMM.

Section IV provides the application of our algorithm in a path-

planning problem. Section V provides two examples to show

the validity of our proposed algorithm. Section VI concludes

the paper and discusses future directions.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Notation. We denote vector-valued variables at time step t
by xt ∈ R

n. x(T ) is the collection of all x0 . . . xT . A ≻
0 (� 0) denotes that the matrix A ∈ R

n×n is positive definite

(positive semidefinite). We denote a Gaussian distribution with

mean µ and covariance Σ by N (µ,Σ). The log-determinant of

a positive definite matrix A is given by logdet A and the trace

of a matrix A is given by Tr(A). For a positive semidefinite

matrix A, we define ‖x‖A =
√
x⊤Ax.

A. Minimum-Information Linear-Gaussian Control

The model that we consider in this paper is the following

linear time-varying system

xt+1 = Atxt +Btut + wt, t = 1, 2, . . . , T − 1, (1)

where x0 ∈ R
n ∼ N (0, P0), P0 ∈ R

n×n ≻ 0 and

wt ∈ R
n ∼ N (0,Wt),Wt ∈ R

n×n ≻ 0, t = 1, 2, . . . , T
are mutually independent Gaussian random variables, ut ∈
R

m, t = 1, 2, . . . , T−1 are the control inputs, and At ∈ R
n×n,

Bt ∈ R
n×m, t = 1, 2, . . . , T − 1 define the dynamics.

The minimum-information linear-Gaussian control problem

is formulated as

minimize I(x(T ) → u(T )) (2)

subject to E‖xt‖2 + ‖ut‖2 ≤ γt, (3)

where the minimization is over the causal policies (stochastic

kernels) of the form {p(ut|x(t), u(t− 1))}t=1,2,...,T . Positive

constants γt, t = 1, 2, . . . , T specify user-defined requirements

on instantaneous control costs, and the term I(x(T ) → u(T ))
is known as directed information [32]:

I(x(T ) → u(T )) ,
∑T

t=1
I(x(t);ut|u(t− 1)), (4)

where I(x(t);ut|u(t− 1)) is the conditional mutual informa-

tion. It can be shown [5] that the optimal policy for (2)-(3)

can be realized by a three-stage structure comprised of

(i) a linear sensor mechanism

yt = Ctxt + vt, t = 1, 2, . . . , T, (5)

where vt ∼ N (0, Vt), Vt ≻ 0 are mutually independent

Gaussian random variables;

(ii) the least mean square error estimator (Kalman filter)

zt = E(xt|y(t)), t = 1, 2, . . . , T ; and (6)

(iii) the certainty equivalence controller ut = Ktzt.

Observing that the optimal control gain Kt in (iii) can be

pre-calculated by solving a backward Riccati equation, the

problem (2)–(3) can be reduced to the optimal sensor design

problem [5]

minimize I(x(T ) → z(T )) (7)

subject to E‖xt − zt‖2Θt
≤ γt − ct(:= Dt), (8)

where the minimization is over the sensor mechanism (5)

(decision variables are matrices Ct and Vt) and zt is computed

by (6). Constants Θt ≻ 0 and ct are obtained from the solution

to the aforementioned backward Riccati equation. The prob-

lem (7)–(8) is known as the Gaussian sequential rate-distortion

(SRD) problem [33] (also known as the nonanticipative rate-

distortion problem [14]).

B. SDP Formulation of the Gaussian SRD Problem

It can be further shown (see [6] for the derivation) that the

Gaussian SRD problem (7)-(8) can be written as a SDP

minimize −
∑T

t=1
logdet Πt (9)

subject to PT |T = ΠT ,Πt ≻ 0, t = 1, 2, . . . , T, (10)
[

Pt|t −Πt Pt|tA
⊤
t

AtPt|t Wt +AtPt|tA
⊤
t

]

� 0, t = 1, 2, . . . , T − 1, (11)

Tr(ΘtPt|t) ≤ Dt, t = 1, 2, . . . , T − 1, (12)

Pt+1|t+1 � AtPt|tA
⊤
t +Wt, t = 1, 2, . . . , T − 1, (13)

where Pt|t,Πt ∈ R
n×n are the problem variables, and

At,Wt, Dt,Θt are given problem data. Once the optimal solu-

tion {Pt|t}t=1,2,...,T to (9)–(13) is obtained, the optimal sensor

mechanism (5) can be obtained by choosing the matrices Ct

and Vt to satisfy

P−1

t|t − (At−1Pt−1|t−1A
⊤
t−1 +Wt−1)

−1 = C⊤
t V −1

t Ct.

C. Problem Statement

Reference [5] notes that solving the SDP (9)–(13) typically

requires O(T 3) time. However, that generally holds if there is

no sparsity pattern in the SDP problem that can be exploited.

We note that the only coupling constraints between different

time-steps in the SDP (9)–(13) is the constraint in (13), and we

propose a method to decouple these constraints for different

time-steps, which facilitates solving the linear-Gaussian sensor

design problem in O(T ) time. Specifically, we solve the

following problem.

Problem 1. Given the dynamics At, the Gaussian noise

matrices Wt, and coefficients Dt for t = 1, . . . , T , derive

an algorithm that solves the SDP (9)–(13) in O(T ) time.

In addition to solving Problem 1 in Section III, we also

discuss how we utilize our methods for the Gaussian SRD

problem to a path-planning problem in Section IV.

III. DISTRIBUTED SENSOR DESIGN USING ADMM

In this section, we derive our distributed algorithm for the

linear-Gaussian sensor design problem. We introduce alternat-

ing direction method of multipliers (ADMM) [17], which is

frequently used in distributed optimization. We then derive our

formulation to decouple the constraints in (13) for different

time steps. We prove that by construction, our algorithm also

runs in time linear with the horizon length T .

A. ADMM

ADMM can be used to solve the following constrained

optimization problem

minimize f(j)

subject to j ∈ C,



where j ∈ R
n is the problem variable, f and C are convex.

We rewrite the problem in ADMM form as

minimize f(j) + g(k)

subject to j = k,

where g is the indicator function of C.

The augmented Lagrangian with the scaled dual variable

l ∈ R
n for this problem is

Lρ(j, k, l) = f(j) + g(k) + (ρ/2)‖j − k + l‖22,
which is obtained by combining the terms in the augmented

Lagrangian, see [17, Section 3.1.1] for details. The ADMM

iterations for this problem are

jm+1 := argmin{f(j) + (ρ/2)‖j − km − lm‖22},
km+1 := πC(j

m+1 + km),

lm+1 := lm + jm+1 − km+1,

where ρ ∈ R+ is a penalty parameter, jm is the value of j
after m′th iteration and πC denotes projection onto C.

The j-update involves minimizing f plus a convex quadratic

function, i.e., evaluation of the proximal operator associated

with f . The k-update is Euclidean projection onto C.

B. Distributed Linear-Gaussian Sensor Design

We now give our algorithm that solves the linear-Gaussian

sensor design problem in O(T ) time. Our algorithm involves

constructing an equivalent problem to the problem in (9)–

(13) and deriving ADMM updates that can be computed in

O(T ) time, which proves that we can solve the Gaussian SRD

problem in time linear with the horizon length T .

Theorem 1. The Gaussian SRD problem can be solved in

O(T ) time with the horizon length T .

Proof. Our proof is based on constructing an equivalent opti-

mization problem that can be solved in a distributed manner

with ADMM such that each ADMM update runs in time linear

with the horizon length T .

We rewrite the SDP (9)–(13) by adding additional variables

Kt, Qt|t, and St, and the additional constraints in (18)–(19),

minimize −
∑T

t=1
logdet Πt (14)

subject to PT |T = ΠT ,Πt ≻ 0, t = 1, 2, . . . , T, (15)
[

Pt|t −Πt Pt|tA
⊤
t

AtPt|t Wt +AtPt|tA
⊤
t

]

� 0, t = 1, 2, . . . , T − 1, (16)

Tr(ΘtPt|t) ≤ Dt, t = 1, 2, . . . , T − 1, (17)

Pt+1|t+1 +St =AtQt|tA
⊤
t +Wt, t = 1, 2, . . . , T − 1, (18)

Kt � 0, Qt|t = Pt|t, St = Kt, t = 1, 2, . . . , T − 1. (19)

By construction, it is clear that the optimization problem

in (9)–(13) shares the same objective value and set of optimal

solutions with the problem (14)–(19).

We rewrite the above problem in ADMM form with j
denoting the variables for St and Qt|t, k denoting the variables

for Pt|t, Πt, Kt, and f(j) is the indicator function for (18)

and g(k) is the sum of the objective in (14) and the indicator

functions for (15)–(17) and Kt � 0.

We now construct the ADMM iterations as follows. The

j-update is given by solving the following convex problem

minimize
∑T−1

t=1
(‖Qt|t − Pm

t + Um
t ‖2F+

‖St −Km
t + V m

t ‖2F )
subject to

Pm
t+1|t+1 + St = AtQt|tA

⊤
t +Wt, t = 1, 2, . . . , T − 1,

with variables Qt|t and St. Ut denotes the dual variable for

the constraint Qt|t = Pt|t and Vt denotes the dual variable

for the constraint St = Kt, and ‖.‖F denotes the Frobenius

norm of a matrix. This problem is separable with each time

step t = 1, 2, . . . , T , meaning that the optimal solution can be

obtained by solving for each time step t separately. Therefore,

j− update can be done in time linear in T .

Let {Qm+1

t|t ,Km+1
t }t=1,2,...,T−1 be the optimal solution of

this convex optimization problem. Then, the k-update is given

by solving the following SDP

minimize − (2/ρ)
∑T

t=1
logdet Πt+

∑T−1

t=1
(‖Qm+1

t|t − Pt + Um
t ‖2F + ‖Sm+1

t −Kt + V m
t ‖2F )

subject to PT |T = ΠT ,Πt ≻ 0, t = 1, 2, . . . , T − 1,
[

Pt|t −Πt Pt|tA
⊤
t

AtPt|t Wt +AtPt|tA
⊤
t

]

� 0, t = 1, 2, . . . , T − 1,

Tr(ΘtPt|t) ≤ Dt, Kt � 0, t = 1, 2, . . . , T − 1,

with variables Πt, Pt|t and Kt for t = 1, 2, . . . , T . Note that

this problem also is separable with each time step t.

Let {Πm+1
t , Pm+1

t ,Km+1
t }t=1,2,...,T be the optimal solu-

tion of this SDP. Then, the l-update is given by

Um+1
t = Uk

t +Qm+1

t|t − Pm+1
t ,

V m+1
t = V m

t +Km+1
t − Sm+1

t ,

for t = 1, 2, . . . , T − 1. The dual update also scales linearly

with T . This completes our proof.

Our algorithm solves the linear-Gaussian sensor design

problem, which is the most computationally challenging part

of solving the minimum-information linear-quadratic Gaussian

problem in time linear with horizon length. In the following,

we discuss the convergence rate of the algorithm and how we

can improve the convergence rate of ADMM.

C. Improvements over the Standard ADMM

ADMM can generate solutions with moderate accuracy

after the first few tens of iterations and solve large-scale

problems effectively [17]. However, ADMM can be very slow

to converge to a highly accurate solution. In this section, we

discuss some theoretical properties of the proposed algorithm

and possible improvements to improve the convergence rate.



1) Convergence Rate of the Algorithm: ADMM can achieve

linear convergence rate, i.e., requiring O(log(1/ǫ)) iterations

to achieve ǫ accuracy by choosing a small enough step-size in

the dual update [20], or if f is strongly convex [34].

2) Using Acceleration Steps: An extension to ADMM is

to use an additional acceleration step, which is including

additional update steps in the k−update and the dual update. It

is empirically shown in [35] that acceleration steps can signif-

icantly improve the convergence rate. Adding an acceleration

step requires the objective f to be strongly convex to ensure

convergence. Therefore, additional strongly convex terms are

required to be added to the objective in the j− update, such

as µ
(

‖Qt|t‖2F + ‖St‖2F
)

, where µ is a positive parameter.

The acceleration step is carried out by modifying the

ADMM iterations as

jm+1 := argmin{f(j) + (ρ/2)‖j − k̂m + l̂m‖22},
km+1 := πC(j

m+1 + l̂m),

lm := l̂m + ρ(jm+1 − km+1),

βm+1 := (1 +

√

1 + 4βm2)/2,

k̂m+1 := km +
βm − 1

βm+1
(km − km−1),

l̂m+1 := lm +
βm − 1

βm+1
(lm − lm−1),

where βm is the acceleration parameter, and β0 = 0.
Restarting the algorithm here refers to setting the acceleration

parameter to 0 during the iterations.

3) Over-relaxation: Over-relaxation is done by replacing

jm+1 with γmjm+1 − (1 − γm)jm in k− and l− updates.

γm ∈ (0, 2) is a relaxation parameter. When γm > 1, this

technique is called over-relaxation, and when γm < 1, it

is called under-relaxation. The intuition in over-relaxation is

to take an additional step in the k− and l− updates. Ref-

erences [36], [37] analyze the convergence of over-relaxation

for different parameters. Experiments in [38], [39] suggest that

over-relaxation with γm ∈ [1.5, 1.8] can improve convergence.

IV. APPLICATIONS TO PATH-PLANNING PROBLEM

In this section, we leverage our SDP-based formulation to

synthesize an optimal control and sensing policy to the path-

smoothing problem. The path-smoothing problem we consider

has a similar structure to (9)–(13) with additional variables

and constraints. The ADMM-based algorithms provided in the

previous section are largely applicable. We provide an algo-

rithm for the path-smoothing problem that locally optimizes

a weighted sum of the control and perception cost from any

given trajectory by iteratively convexifying the problem around

the trajectory. Our algorithm computes a locally optimal solu-

tion, and if the given trajectory is feasible, then all successive

trajectories are guaranteed to be feasible.

Suppose (1) represents the dynamics of a mobile robot under

stochastic disturbances, where xt ∈ R
n for t = 1, 2, . . . , T is

the position of the robot, and ut ∈ R
m for t = 1, 2, . . . , T − 1

is the control input. Let Xobs ∈ R
m be a closed set of points

that represents the obstacles to avoid. We can formulate the

path-planning problem by modifying the objective in (9) by

minimize
∑T

t=1
(−logdet Πt + (1/α)‖ut‖22) (20)

and adding the following constraints to (10)–(13),

ut ∈ Ut, t = 1, 2, . . . , T − 1, (21)

xt ∈ Xt, t = 1, 2, . . . , T, (22)

xt+1 = Atxt +Btut, t = 1, 2, . . . , T − 1, (23)

(xt − xobs)
⊤P−1

t|t (xt − xobs) ≥ χ2, (24)

t = 1, 2, . . . , T, ∀xobs ∈ Xobs,

where α ∈ R+ is a parameter that gives the trade-off between

the control and the perception cost, χ2 ∈ R+ is a confidence

level parameter, At ∈ R
n×n and Bt ∈ R

n×m are given

matrices, and xobs ∈ R
n are the obstacles. Here, we are

adopting the notion of path-planning in the so-called uncertain

configuration space [40], i.e., designing the sequence of mean

xt and covariance Pt|t jointly.
The objective in (20) minimizes a trade-off between the

perception and control cost. The constraints in (21)–(22)

represent the constraints in the inputs and final state. The

constraints in (23) give the dynamics of the linear time-varying

process, and (24) ensures that the uncertainty ellipsoid given

by Pt|t around the trajectory xt does not intersect with the

obstacles. The problem in (10)–(13) and (20)–(24) is a convex

optimization problem without the constraints in (24), which is

a nonconvex constraint in general.

Remark 1. We can include any convex cost, such as in the

position or control variables in the objective (20). In this

paper, we consider control and perception cost for simplicity.

We use the penalty convex-concave procedure (CCP) [31],

which iteratively over-approximates a non-convex optimiza-

tion problem via linearization. The resulting convex problem

can then be solved efficiently, and we iterate the process

until we compute a locally optimal solution. Specifically, we

compute affine upper bounds for the convex functions in (21).

CCP improves the solution by convexifying the problem

around the previous solution iteratively.
To perform CCP, we start with any initial trajec-

tory {x̂t, P̂t|t}t=1,2,...,T in the uncertain configuration

space and convexify the constraints in (24) for t =
1, 2, . . . , T, ∀xobs ∈ Xobs as

xt,obs = (xt − xobs),

h(xt, Pt|t, xobs) = x⊤
t,obsP

−1

t|t xt,obs,

h̄(xt, Pt|t, xobs) = h(x̂t, P̂t|t, xobs)+ (25)

∇h(x̂t, P̂t|t, xobs)(x̂t − xt, P̂t|t − Pt|t, xobs),

∇h(x̂t, P̂t|t, xobs) = −P̂−1

t|t xt,obsx
⊤
t,obsP̂

−1

t|t , (26)

h̄(xt, Pt|t, xobs) ≥ χ2, (27)

where (25) computes an affine approximation of the convex

function h around (x̂t, P̂t|t) and (26) is the gradient of h at

(x̂t, P̂t|t). (27) is the resulting convexified constraint.



The function h̄ is a convex over-approximation of the

original function h as we compute an affine lower bound

of h. As a direct consequence, any feasible assignment for

the resulting over-approximated and convex problem is also

feasible for the original nonconvex problem. However, the

resulting convex problem might be infeasible, even though

the original problem is not. To find a feasible assignment, we

assign a non-negative penalty variable mt,obs for each of the

convexified constraints by modifying the constraint (27) as

mt,obs + h̄(xt, Pt|t, xobs) ≥ χ2 (28)

to ensure that the convexified problem is always feasible [31,

Section 3.1]. To find a solution that minimizes violations to the

convexified constraints, we minimize the sum of the penalty

variables. We then solve the convex problem with the objective

minimize
∑T

t=1
(−logdet Πt + (1/α)‖ut‖22)+

τ
∑T

t=1

∑

xobs∈Xobs

mt,obs

and the constraints in (10)–(13), (21)–(23) and (28) where

τ is a positive penalty parameter that minimizes a trade-off

between the objective and the violations of the constraints. If

all penalty variables are assigned to zero, then the solution

of the convex problem is feasible for the original non-convex

path-planning problem, as we over-approximate the convex

functions by affine functions. If any of the penalty variables

mt,obs and are assigned to a positive value, we update the

penalty parameter τ by µ · τ for a µ > 0, similar to [31,

Algorithm 3.1].

After getting a new solution, we convexify the non-convex

constraints by linearizing the convex functions around the new

solution and solve the resulting convex SDP. We repeat the

procedure until we find a feasible and locally optimal solution.

If the procedure converges to an infeasible solution, we restart

the procedure with another initial trajectory. Note that the

procedure converges to a locally optimal solution for a fixed

τ , i.e., after τ = τmax, but it may converge to an infeasible

point of the original problem [31, Section 1.3].

Remark 2. If the initial trajectory is feasible, we can set

the penalty variables mt,obs to zero, and all subsequent

trajectories are guaranteed to be feasible after each iteration

of the CCP [31].

V. NUMERICAL EXAMPLES

We evaluate our distributed sensor and control design

procedure in two numerical examples. The experiments are

performed on a computer with an Intel Core i9-9900u 2.50

GHz processor and 64 GB of RAM with Mosek [41] as the

SDP solver. The first example is on computing the minimal

information to estimate the attitude of a satellite subject to ac-

curacy constraints. The second example is on a path-smoothing

problem in a two-dimensional state space containing multiple

obstacles in order to illustrate the effects of varying the trade-

offs between the control and perception cost.
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Figure 1: Plot of the time-varying distortion constraint Dt and

the traces of the optimal covariance matrices Pt|t for the first

250 minutes of the mission.
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Figure 2: Plot of the optimal information rate I(x(t) : yt|y(t−
1)) for the first 250 minutes of the mission.

A. Satellite Attitude Determination

In this example, we consider the spin-stabilized satellite

example from [6]. The equation of motion of the angular

velocity vector of a spin-stabilized satellite linearized around

the nominal angular velocity vector (ω0, 0, 0) is

[

dω1
dω2
dω3

]

=









1 0 0

0 1
I3 − I1

I2
ω0

0
I1 − I2

I3
ω0 1









[

ω1
ω2
ω3

]

dt+ db

where b is a disturbance, I1, I2, and I3 are the moment of

inertias in three dimensions. We convert the continuous-time

dynamics into a discrete-time model in the experiments. The

objective is to figure out the sensing pattern that uses minimal

information during the mission. We consider a horizon length

T = 1500 with the distortion rate constraint given in Figure 1.

We plot the optimal covariance scheduling Pt|t and the

optimal information rate in Figures 1 and 2 for the first 250
time-steps. We put a log-scale on the y−axis in Figure 2

to emphasize that the optimal covariance scheduling requires

some information rate in all time steps, which is not the case

in the numerical examples in [6]. The reason that there is a

requirement of some information in all time steps may stem

from having a less accurate solution from an ADMM-based

algorithm rather than from an interior-point method. We can

see that the information rate varies significantly during the

mission, and the optimal information rate is minimal if the

distortion rate constraint is not restrictive.
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Figure 3: Primal residuals for the spin-stabilized satellite

example for standard ADMM, accelerated ADMM, and over-

relaxed ADMM with ρ = 1. Accelerated ADMM with restart

achieves the best performance.
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Figure 4: Dual residuals for the spin-stabilized satellite ex-

ample for standard ADMM, accelerated ADMM, and over-

relaxed ADMM with ρ = 1. Accelerated ADMM with restart

achieves the best performance.

We now show the convergence rate of the ADMM-based

algorithms by plotting the norm of the primal residual, which

is given by r1t = Pt − Qt and r2t = St − Kt and the dual

residual, which is d1t = ρ(Pt−Pt−1) and d2t = ρ(Kt−Kt−1)
for different methods [17, Section 3.3]. The primal residual

denotes the infeasibility of the methods in each iteration, and

the dual residual denotes the optimality of the methods. If

the primal residual is small, then the variables approach to

a feasible solution. If the dual residual is small, then the

variables approach to an optimal solution.

We list the convergence rates of the over-relaxation and

accelerated variants of the ADMM in Figures 3–4. We plot

the primal residuals, in Figure 3 we plot the dual residuals

in Figure 4. Residuals for the spin-stabilized satellite example

for regular ADMM and over-relaxed ADMM with ρ = 1.

We note that the over-relaxation and the accelerated variants

of the ADMM achieve higher accuracy than the standard

ADMM. However, the tail convergence of the methods can be

very slow. Accelerated ADMM with restarting the acceleration

parameter in every ten iterations achieves feasibility with

higher accuracy compared to other methods, and the tail
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Figure 5: The running times of the distributed and centralized

algorithms with a different number of horizon lengths after 50

iterations with the distributed algorithm. The distributed algo-

rithm scales linearly with the number of horizon length. The

centralized algorithm is slower than the distributed algorithm

with an increasing number of horizon lengths and does not

scale linearly.
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Figure 6: The plot of the initial trajectory with covariance

matrices. The small red dots denote the expected state at

different time steps, and the red ellipsoids are χ2 covariance

ellipses representing 90% certainty regions. The blue regions

and the boundaries are the obstacles to avoid.

convergence is faster compared to the other methods.

For dual residuals, both of the over-relaxation schemes

achieve better accuracy. However, the iterates change very

slowly before a high accuracy in the primal residual is

achieved, which is not a desired property. On the other hand,

accelerated ADMM with restarting the acceleration parameter

in every ten iterations achieves very high accuracy in the dual

residual, and the resulting solution has very high accuracy.

We show the running time of the distributed and the central-

ized algorithm, which is solving the SDP in (9)–(13) directly,

for the different number of horizon lengths in Figure 5. The

results in Figure 5 show that the running time of the distributed

algorithm scales linearly with the horizon length and is faster

than the centralized algorithm with a higher horizon length.

B. Path Planning with Multiple Obstacles

We consider a path-planning problem with multiple obsta-

cles in a two-dimensional state space. We consider an example

with α = 10, 1, 0.1, 0, 001 to illustrate the effects of varying

the trade-offs between the perception and control cost.
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Figure 7: Resulting trajectory after 50 CCP iterations with

α = 0.1. The expected values of the locations at each time

step are feasible. However, the trajectory may collide with the

obstacles as the direct path between the locations in different

time-steps crosses one of the obstacles.
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Figure 8: Resulting trajectory after 50 CCP iterations with

α = 10. The procedure maximizes the distance between the

obstacles and the trajectory by minimizing the perception cost.

We plot the initial trajectories in Figure 6, where the red dots

represent the expected position vector xt at time step t and the

red χ2 covariance ellipsoids represent 90% certainty regions.

Larger covariance ellipsoids indicate a lower perception cost.

We depict the initial and final points with teal and green dots.

We consider the boundaries as obstacles. The initial trajectory

requires a very high perception cost as the covariance matrices

around the trajectory is small in magnitude. In this example,

we consider Wt = 10−2I for all time-steps t.

The resulting trajectories after 50 CCP iterations are shown

in Figures 7 and 8. The trajectories are feasible, and also

has a much larger uncertainty around the waypoints, which

minimizes the perception cost. However, the shortest path

between the points of the trajectory with α = 0.01 is infeasible

as it crosses the obstacles, and the resulting trajectory may be

infeasible in practice with a higher probability than the one

with α = 1. We also demonstrate both of the trajectories in

the video1 to demonstrate the trade-offs of having different

perception costs on a ground robot. The robot can follow

the trajectory with α = 1 safely, whereas the trajectory with

α = 0.01 results in the robot colliding with the obstacle.

To assess the robustness of the trajectories, we run a-

1https://bit.ly/2UvCi26
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Figure 9: Perception and control costs versus the number of

iterations with different values of α. The iterates converge to

a locally optimal solution with different parameters, and the

resulting perception cost is lower with a higher value of α.
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Figure 10: Convergence rate of the procedure with different

values of α. All problems converge to a solution within an

accuracy of 10−4 after 50 CCP iterations.

posteriori Monte-Carlo analysis with different trade-offs of

perception cost. We perturb each element of the matrix At

with N = 106 samples drawn from a zero-mean uniform

distribution with an interval length of 10−2. If we apply the

exact inputs that we obtained with α = 0.01 on the perturbed

dynamics, the estimated probability of resulting path being

infeasible is 0.2827, even though the nominal trajectory is

feasible. On the other hand, if we apply the inputs with α = 1
on the same perturbed dynamics, the estimated probability

of an infeasible path is 0.0234, which results in a nominal

trajectory that is more robust to the modeling errors.

The resulting perception and control costs with different

trade-offs are shown in Figure 9. The solid lines depict the

perception costs, and the dashed lines depict the control

costs. We observe that with all different trade-offs of the

perception and control costs, the methods converge to a locally

optimal solution within a few tens of iterations. As expected,

the resulting perception costs decrease, and the control cost

increase with an increasing value of α. We also plot the

convergence rate with different values of α in Figure 10, where

x-axis shows the difference between the obtained state values

x and covariance values P to the converged solution at each

iteration, and the slopes of the figures indicate the rate of

convergence. All problems with different values of α converge

to a solution within an accuracy of 10−4 after 50 iterations.



VI. CONCLUSIONS AND FUTURE WORK

We developed a distributed algorithm for solving the

minimum-information linear-Gaussian control problem and

applied the algorithm to the minimum-sensing path-planning

problem. Our algorithm can scale to very large horizon lengths

and runs in time linear with the horizon length. Future work

involves establishing the optimal convergence rate given the

problem data and determining the optimal parameter selection

in different ADMM methods to achieve a faster convergence

rate. We will also consider nonlinear and multi-agent systems,

and integrate our approach to sampling-based methods for

path-planning problems.
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