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Distributed Noise Covariance Matrices Estimation in Sensor Networks

Jiahong Li, Nan Ma, and Fang Deng

Abstract— Adaptive algorithms based on in-network process-
ing over networks are useful for online parameter estimation of
historical data (e.g., noise covariance) in predictive control and
machine learning areas. This paper focuses on the distributed
noise covariance matrices estimation problem for multi-sensor
linear time-invariant (LTI) systems. Conventional noise covari-
ance estimation approaches, e.g., auto-covariance least squares
(ALS) method, suffers from the lack of the sensor’s historical
measurements and thus produces high variance of the ALS
estimate. To solve the problem, we propose the distributed
auto-covariance least squares (D-ALS) algorithm based on the
batch covariance intersection (BCI) method by enlarging the
innovations from the neighbors. The accuracy analysis of D-
ALS algorithm is given to show the decrease of the variance
of the D-ALS estimate. The numerical results of cooperative
target tracking tasks in static and mobile sensor networks are
demonstrated to show the feasibility and superiority of the
proposed D-ALS algorithm.

I. INTRODUCTION

Recent advances in machine learning and information

fusion have led to the formulation of increasingly demanding

distributed estimation and inference problems, as discussed

in [1]. The distributed estimation fusion methods in [2], and

especially the batch covariance intersection (BCI) approach

(see [3] and references therein) provided an upper bound

on estimation accuracy without assuming any knowledge

on the correlation between the estimates of sensors. [4]

proposed a average consensus estimation algorithm based

on a new BCI strategy. However, the fusion methods above

lack the consideration of the exact knowledge of the noise

statistics, which is not plausible due to the mismatch of

the nominal system or invalidity of offline calibration in

many practical systems, e.g., low-cost integrated GPS/INS

positioning systems [5], energy-based source localization [6]

and fault tolerant systems [7].

One effective approach is to use the historical open-

loop data, which can be divided into several categories,

e.g., correlation techniques [8]–[16], Bayesian [17], [18],

maximum likelihood [19], [20], covariance matching [21],

methods based on the minimax approach [22], subspace

methods [23] and prediction error methods [24]. An al-

ternative approach that directly estimates the gain of a

linear estimator has been developed in [13], [15], [24], [25].

The connections between two approaches were discussed in

[16]. The Bayesian and maximum likelihood methods are
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well suited to multi-model approaches, but are costly in

terms of computation. Covariance matching is a technique

to provide biased estimates of the true covariances based on

the residuals of the state estimates. The minimax approach

provides a fixed system whose worst performance among an

assumed possible uncertainty set is the best possible. The

advantages and disadvantages of the approach have been

discussed in [26], [27]. The subspace methods formulate

the estimation problem as projections of Hankel matrices

and the model can be retrieved from the row and column

spaces of the projected data matrix. The prediction error

methods reduces the parameter identification problem to

the minimization of empirical average losses. Among all

the methods, the correlation methods can provide unbiased

estimates with acceptable computational requirements even

for high-dimensional systems [16]. The correlation methods

were firstly proposed by Mehra and Bélanger in [8] and

[9] as a three-step procedure, and were reformulated to

a single-step procedure called the auto-covariance least-

squares (ALS) method in [10]. In the ALS method, the corre-

lations between routine operating data formed a least-squares

problem of the noise covariance matrix, whose solution was

guaranteed by solving the semi-definite programming (SDP)

problem. The necessary and sufficient conditions for the

uniqueness of the variance estimates for dependent state and

measurement noise were presented in [11]. The ALS problem

with the estimation of a state noise disturbance structure was

formulated in [12]. The optimal weight was formulated in

the least-squares objective to ensure minimum variance in

[16]. However, the performance of the correlation methods

would become poor if the time window size of open-loop

measurements is small.

In this paper, the distributed noise covariance estimation

problem over networks is formulated, and the distributed

auto-covariance least squares (D-ALS) algorithm are pro-

posed based on batch covariance intersection (BCI) method.

The estimation accuracy of the proposed algorithm can in-

crease by fusing the innovations from the neighboring agents.

The theoretical analysis of the algorithm is also provided to

shown the efficiency. The simulation results of cooperative

target tracking case show the superiority of the ALS-BCI

algorithm in terms of the mean square error criterion.

II. PRELIMINARIES

We consider a connected sensor network of M agents

modeled as an undirected graph G(V , E), where the vertices

set V = 1, . . . ,M corresponds to the agents and the edge set

E ⊂ V × V represents the communication links between the

pairs of agents. Agent i can communicate with its neighbors
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whose indexes are in the set Ni = {j ∈ V : (i, j) ∈ E , i 6= j}
with cardinality Mi = ‖Ni‖.

In the sensor network, each agent observes the linear

discrete time-invariant dynamic system xk+1 = Fxk + wk

with linear time-invariant measurement model zi,k = Hixk+
vi,k. where the vector xk ∈ R

nx and zi,k ∈ R
nz represent

the state and the measurement of the ith agent at time

instant k ∈ N
+. F ∈ R

nx×nx and Hi ∈ R
nz×nx are

state-transitional and measurement-transitional matrix. The

variables wk and vi,k represent the process noise and mea-

surement noise respectively, and are mutually independent

following the zero-mean Gaussian statistics with probability

wk ∼ N (0nx×1, Q) and vi,k ∼ N (0nz×1, Ri) with unknown

covariance matrices Q ∈ R
nx×nx and Ri ∈ R

nz×nz . In
and 0n denote the identity matrix and the zeros matrix of

dimension n respectively.

According to the conventional distributed linear filtering

algorithm, each agent updates local state estimate x̂i,k =
F x̂i,k−1 +Kiei,k and state covariance estimate Pi,k = (I −
KiHi)(FP−1

i,k−1F
T+Q) with estimation gain Ki ∈ R

nx×nz ,

and transmits them to its neighbors to fuse the global ones.

where ei,k = zi,k −HiF x̂i,k−1 denote the innovation. Ki is

designed as Kalman gain Ki = Pi,k−1H
T
i (Hi(FP−1

i,k−1F
T+

Q)HT
i + Ri)

−1 in terms of minimum mean square error

(MMSE). Noting that the noise covariance matrices Q and

Ri are unknown and estimated by the auto-covariance least-

squares method below.

Denote the residuals and residuals covariance of the ith

agent as εi,k = xi,k − F x̂i,k−1 and Pε,i,k = E[εi,kε
T
i,k]

respectively, then the estimator of the residuals is deduced

as

εi,k = (F −KiHiF )
︸ ︷︷ ︸

F̄i

εi,k−1 + [Inx
−KiHi,−Ki]

︸ ︷︷ ︸

Gi

[
wk

vi,k

]

︸ ︷︷ ︸

w̄i,k

(1)

Pε,i,k = F̄iPε,i,k−1F̄i
T
+GiΣiG

T
i (2)

where Σ = E(w̄i,kw̄
T
i,k) =

[
Q 0nx×nz

0nz×nx
Ri

]

. Accord-

ing to the Lyapunov equation Pε = F̄PεF̄
T + GΣGT in

[28], the steady-state residual covariance solution exists if F̄
is stable. To ensure F̄ is stable, the residual covariance Pε

should satisfy (Pε)s =
(
(I − F̄ ⊗ F̄ )−1G ⊗ G

)
Σs through

the vectorization, where ⊗ denotes the Kronecker product,

As denotes the columnwise stacking of the matrix A into a

vector.

The innovations ei,k is deduced as ei,k = Hiεi,k + vi,k.

Then denote the auto-covariance Ci
e,0 = E[ei,ke

T
i,k] and

Ci
e,l = E[ei,k+le

T
i,k] of the ith agent’s innovation as

Ci
e,l = HiF̄

lPεH
T
i −HiF̄

l−1FKiRi l = 1, 2, . . . , N − 1
(3)

where Ci
e,0 = HiPε,iH

T
i +Ri, N is a user-defined parameter

defining the maximum time-window lag. It can be derived

as

Aiθi = bi (4)

where θ = [QT
s , (Ri)

T
s ]

T and b = (Ce(N))s with Ce(N) =
[Ce,0, C

T
e,1, . . . , C

T
e,N−1]

T. Ai satisfies

Ai = [Di, Di(FKi ⊗ FKi) + (Inx
⊗ Γi)]

Di = (Hi ⊗Oi)(In2
x
− F̄i ⊗ F̄i)

−1

Oi =
[
HT

i , (HiF̄i)
T, . . . , (HiF̄

N−1
i )T

]T

Γi = [Inz
,−(HiFKi)

T, . . . ,−(HF̄N−2
i FKi)

T]T

(5)

The parameters θ is computed as the solution of semi-

definite constrained least squares problem

θ̂i = argmin
θi

‖Aiθi − bi‖
2
2 s.t., Q,Ri ≥ 0 (6)

where the matrix inequalities Q,Ri ≥ 0 can be handled by

adding a logarithmic barrier function to the objective. [12]

proves the uniqueness of the solution to the problem is guar-

anteed if and only if A has full column rank. Furthermore, if

(F,H) is observable and F is non-singular, the optimization

in (6) has a unique solution if and only if dim[null(D)] = 0.

It should be noted that when the dimension of the state

x is large and the window size of auto-covariance is small,

the equation (6) is easy to fall into overfitting problem. To

alleviate it, the L2 regularization term is applied to (6), then

θ̂i = argmin
θi

‖Aiθi − bi‖
2
2 + µ‖θi‖

2
2 (7)

where ‖θ‖2 can be replaced by the trace of process noise

covariance tr(Q) for simplicity. µ is the regularization term,

and a good value of µ is such that tr(Q) is small and any

further decrease in value of tr(Q) causes significant increase.

When the matrix inequality holds, θ̂i is estimated in the

minimum mean-square error sense as

θ̂i = (AT
i Ai + µI)−1AT

i b̂i = A+
i b̂i (8)

where b̂ = (Ĉe(N))s is the unbiased estimate of the vector

b and computed as the empirical mean of the ith agent’s

auto-covariance innovations Ĉe,i,l is computed by using the

ergodic property of the L-innovations from the given set of

data Ĉe,i,l =
1

τ−l

∑τ−l
k=1 ei,k+le

T
i,k.

It is shown in [16] that the optimal estimator gain Ki can

be determined as K⋆
i = argminKi

f(J (Ki)) by minimiz-

ing the upper bound of the variance of the ALS estimate

according to Isserlis’ theorem, denoted as θ̂ P
θ̂
= cov[θ̂] =

E[(θ− θ̂)(θ− θ̂)T] = A+cov[b̂]A+T
. where f(·) is a suitable

function, e.g., the trace. J (Ki) is the known criterion of Ki

defined in [16].

III. DISTRIBUTED ALS METHOD

The ALS estimator of the noise covariance matrices is

proven to be unbiased and converging asymptotically to the

true values with increasing number of data τ in [10]. But

in sensor network, each agent has a limited storage capacity

and suffers from the lack of innovations, i.e., τ is small.

Besides, with the increase of τ , the computation and stoage

burden of each agent will become heavier. Therefore, it

is necessary to reformulate the distributed ALS method to

balance the tradeoff between the state estimation accuracy



and the computation capacity. One effective approach is that

each agent enlarges the number of input data τ by receiving

the auto-covariance from its neighbors j ∈ Ni ∪ i. The

equation (7) turns into a joint cost function, as shown below.

θ̂i = argmin
θi

∑

j∈Ni∪i

(

‖Ajθj − bj‖
2
2 + µ‖θj‖

2
2 (9)

The empirical mean of the auto-covariance innovations term

Ĉe,i,l is reformulated as the mean of the neighbors and itself

Ĉe,i,l =
1

τ − l

1

Mi + 1

∑

j∈Ni∪i

τ−l∑

k=1

ej,k+le
T
j,k (10)

We do experiments on a linear time-invariant system with

10 sensors to be deployed in a fully connected network.

The variance of the ALS-estimates var(θ̂i) = var(Q̂i)
denotes the state estimation accuracy. F = −0.8, Hi =
1, i = 1, . . . , 10, and with true but unknown noise variances

Q = 8 and R = [1, 2, . . . , 10]. The time intervals are set

as τ = [55, 60, . . . , 100]. The system is simulated for 104

steps. The relationship between var(Q̂i) and the number of

sensors Ni to be fused plus the different values of τ is shown

in Fig. 1.
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Fig. 1. Relationship between var(Q̂i) and (Ni, τ)

As is indicated from Fig. 1, the variance of ALS estimate

var(Q̂) decreases with the increase of the number of sensors

Ni and the number of innovations. var(Q̂) decreases from

34.4 to 10.25 as the number of innovations increases from

55 to 100 when the number of sensors is 1, and var(Q̂)
decreases from 10.25 to 4.97 as the number of fused sensors

increases from 1 to 10 when the number of innovations is

100. Therefore, it is possible for each agent to reduce the

variance of the ALS estimate by receiving the innovations

from its neighbors instead of increasing the number of

innovations.

The empirical mean of the auto-covariance innovations

term Ĉe,i,l in (10) is only the fusion of b̂i. To derive the

optimal fused noise covariance estimate denoted as θ̂⋆F ,

the fused residual εk,F and residual covariance Pε,k,F is

computed based on the batch covariance intersection (BCI)

method:

P−1
ε,k,F =

∑

j∈Ni∪i

wjP
−1
ε,k,j (11)

P−1
ε,k,F εk,F =

∑

j∈Ni∪i

wjP
−1
ε,k,jεk,j

N∑

i=1

wi = 1, wi ∈ [0, 1], i = 1, 2, . . . , N

(12)

where the weights wi can be determined by using some

sub-optimal methods such as minimizing the trace of fused

residual covariance P−1
ε,k,F in [29].

wi =
1/tr(Pε,k,i)

∑

j∈Ni∪i

1/tr(Pε,k,j)
(13)

Pε,k,i =
( ∑

j∈Ni∪i

1/tr(Pε,k,i)
∑

j∈Ni∪i

1/tr(Pε,k,j)
P−1
ε,k,j

)−1

(14)

Denote the matrices AF and b̂F as AF =
⊕Mi

i=1 Ai and

b̂F = b̂i ⊗ IMi
, where b̂i = [ĈT

e,i,0, Ĉ
T
e,i,1, . . . , Ĉ

T
e,i,N−1]

T.

Then the solution to the problem in (9) can be solved by

solving the regularized LS problem.

θ̂⋆F = argmin
θF

‖AF θF − b̂F ‖
2
2 + µ‖θF ‖

2
2 (15)

where θ̂F = θ̂i ⊗ IMi
. The problem is solved as

θ̂⋆F = (AT
FAF + µI)−1AT

F b̂F = A+
F b̂F (16)

Then the ALS method combined with the BCI algorithm

is summarized in Alg. 1.

Algorithm 1 Solving problem (9) by D-ALS algorithm

Input: µ = 0.01, ν = 5× 10−3, τ = 100, Nsim = 103.

Initialize: k = 0, x̂0, Q0, zi,1:Nsim
, R0,i, Pε,0 and K0, i =

1, · · · ,M .

Output: Q̂⋆.

while in loop and Q̂k+1 − Q̂k+1 > ν do

1) Update x̂i,k+1, εi,k+1, Pε,i and Ki in (1) to (2), and

then calculate the fused residual and its covariance

Pε,k,F by BCI method in (11) and (12). Update the

matrix Ai, b̂i, AF and b̂F in .

2) Update the global optimal noise covariance θ̂⋆ in (15)

to (16), and set Q̂k+1 = θ̂⋆1 .

end while

Remark 1: It is easily derived that the augmented ma-

trix AF and the permutation matrix b̂F for ith sensor has

dimensions of MiNnx × (nx + Minz) and MiNnx(nx +
Minz)× 1 respectively. The computation complexity of the

D-ALS algorithm is O(MiN
2nx). Expanding the number

of the auto-covariance of innovations would increase the

computation time and even lead to the intractable compu-

tation. Therefore, the number of sensors and the window

size should be made from a tradeoff between the accuracy

and the computation burden.

Then the variance of the fused noise covariance matrix θ̂F
is lower than the variance of each agent’s noise covariance

matrix θ̂i, as is proved in Theorem 1.



Theorem 1: (Accuracy Analysis of D-ALS algorithm)

The relations between local and fused residuals covariance

Pε,k,i, Pε,k,0, P̄ε,k,F and Pε,k,F are shown as follows.

tr(Pε,k,0) ≤ tr(P̄ε,k,F ) ≤ tr(Pε,k,F ) ≤ tr(Pε,k,i) (17)

Then the relations between the fused noise covariance

matrix θ̂F and the noise covariance matrix for each agent

are shown below.

var(θ̂F ) ≤ var(θ̂i), i = 1, . . . ,Mi (18)

Proof: Using the unbiasedness of ε̂k,i for each agent i, it can

be derived that ε̂F,k is a linear unbiased estimate. Since ε̂k,0
is the best linear unbiased estimate, then Pε,k,0 ≤ P̄ε,k,F

holds. The inequality P̄ε,k,F ≤ Pε,k,F is proved as the

consistency property in [30]. Because the operator of trace

is monotonically increasing function, then the inequalities

tr(Pε,k,0) ≤ tr(P̄ε,k,F ) and tr(P̄ε,k,F ) ≤ tr(Pε,k,F ) hold.

When the parameters are set to wi = 1 and wj = 1, j 6=
i, tr(Pε,k,F ) = tr(Pε,k,i). Because the parameter w is

determined by minimizing the trace of Pε,k,F , as shown in

(19), it is easily derived that Pε,k,F ≤ Pε,k,i.

w = argmin
w

tr
[

(

Mi∑

i=1

wiP
−1
ε,k,i)

−1
]

(19)

Then it can easily be derived that AF is the best estimate

of A. As shown in (10), the number of data to compute

b̂F is larger than that to compute b̂i. As is proven in [10],

The ALS estimate of the noise covariance matrix converges

asymptotically to the true values with increasing number

of data. Therefore, the variance of θ̂F is smaller than the

variance of θ̂i. Q.E.D.

IV. SIMULATION RESULTS

A. Static sensor networks

Consider fully connected sensor network The linear time-

invariant system is modeled as xk+1 = 0.8xk+wk measured

by 3 sensors modeled as yi,k+1 = Hixk + vi,k with

H1 = [1, 0], H2 = I2, H3 = [1, 0]. wk and vi,k are

zero-mean Gaussian noise with unknown covariance Q and

Ri, where the real values are set as Q = 4, R1 = 0.81,

R2 = diag(4, 0.64), and R3 = 2.25. Here, to guarantee the

unbiasedness, we ran Ns = 104 Monte Carlo simulations for

each simulation data set. The estimation performance for the

ith sensor is measured as the mean square error (MSE):

MSEi,k =
1

Ns

k+Ns∑

t=k

(εi,t − ε̂i,t)
2, i = 1, 2, , 3,Mi (20)

Using the steady-state Kalman filter, the gain Ki is com-

puted as

K1 = [1.68, 0.81],K2 =

[
0.36 1.22
0.06 0.84

]

,K3 = [1.40, 0.61]

(21)
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Fig. 2. Comparisons of MSE curve and the trace of residual covariance
between fused and single sensor.

TABLE I

COMPARISONS OF THE TRACE OF RESIDUAL COVARIANCE BETWEEN

FUSED AND SINGLE SENSOR.

trP1 trP2 trP3 trPF trP̄F trP̄0

10.791 10.083 8.771 8.512 8.102 7.985

According to the equations (11), the steady state covariances

of each agent and the cross covariance matrices are

Pε,1 =

[
5.05 4.94
4.94 5.73

]

, Pε,2 =

[
3.73 2.78
2.78 5.05

]

Pε,3 =

[
5.79 3.65
3.65 4.29

]

, Pε,1,2 =

[
1.30 −0.22
−0.22 0.38

]

Pε,2,3 =

[
0.75 0.21
0.21 0.45

]

, Pε,1,3 =

[
0.69 1.21
1.21 4.19

]

(22)

The comparisons between MSE and the trace of Pε,k,i,

Pε,k,0, P̄ε,k,F and Pε,k,F are shown in Fig. 2 and Table

I. As indicated from the figure, the true accuracy of

the BCI fused residual covariance is similar to the linear

optimal residual covariance, because tr(P̄ε,k,F ) = 8.102 is

near to tr(P̄ε,k,0) = 7.985. Besides, the variance of the

fused estimate trP̄F is lower than others, illustrating that

the proposed D-ALS algorithm outperforms than the ALS

method.

B. Mobile sensor networks

Cooperative target tracking in mobile sensor networks

(MSNs) is an important task in many applications, e.g., the

unmanned aerial vehicle (UAV). Compared with the target

tracking case in static sensor networks (SSNs) in section

IV-A, each agent node in this case is mobile and versatile,

and is required to be deployed in any scenario with rapid

topology changes. Therefore, the ALS-BCI algorithm is also

applied to the target tracking in MSNs to show its efficiency.

Consider 10 sensor nodes tracking the maneuver target in

a 110m× 90m square. The target is driven by a turning rate

model:

Xk+1 =








1 sin(ηTs)
η

0 − 1−cos(ηTs)
η

0 cos(ηTs) 0 − sin(ηTs)

0 1−cos(ηTs)
η

1 sin(ηTs)
η

0 sin(ηTs) 0 cos(ηTs)







Xk +Gwk

(23)



0 20 40 60 80 100 120
0

50

100

   1
   2    3    4

   5

   6

   7
   8    9

   10

k=15

0 20 40 60 80 100 120
0

50

100

   1
   2    3

   4
   5

   6

   7
   8    9

   10

k=40

0 20 40 60 80 100 120
0

50

100

   1

   2    3    4   5

   6

   7
   8    9

   10

k=65

0 20 40 60 80 100 120
0

50

100

   1
   2    3    4

   5

   6

   7
   8    9

   10

k=90

Sensor Deployment
Target Track

measurements of the 7th sensor

Fig. 3. The diagram of the target tracking in the time-varying sensor
deployment.

where Xk = [xk, ẋk, yk, ẏk]
T is the states to be esti-

mated at time k. The states includes the position [xk, yk]
and the velocity [ẋk, ẏk], and the initial values are

[10m, 2m/s, 100m, 2m/s]. η is the turn rate and is set to
π
60rad/s. wk is Gaussian white noise with covariance ma-

trix Q = diag[Qx, Qẋ, Qy, Qẏ], where Qx, Qy, Qẋ, Qẏ are

unknown scalar variable to be estimated and the real ones are

set to 10m2, 0, 10m2 and 0 respectively. Ts is the sampling

time and is set to 1s. G =

[
1
2T

2
s Ts 0 0

0 0 1
2T

2
s Ts

]T

.

The measurements of each agent is given by:

Zi,k =

[
1 0 0 0
0 0 1 0

]

Xk + vi,k i = 1, . . . ,M (24)

where Zi,k = [zxk, zyk]
T is the measurement of the position

of the target. vi,k is Gaussian white noise with unknown

covariance matrix Ri = diag[Rx,i, Ry,i]. Rx,i and Ry,i are

unknown parameter to be estimated and the real ones are set

to 2m2 and 2m2 respectively. The motion of each agent is

described by the following kinematic equations:

qxi(k) = qxi(k − 1) + qvi ∗ Ts ∗ cos θk

qyi(k) = qyi(k − 1) + qvi ∗ Ts ∗ sin θk
(25)

where (qxi(k), qyi(k)) is the position of the ith sensor

at time k. θk = arctan
zi,k−qyi(k−1)
zi,k−qxi(k−1) is the measurement

of angular position of the ith sensor towards the target.

qvi is the constant speed of the ith sensor and is set to

0.5m/s. The initial position of the sensors are set to (18, 27),
(31, 43), (62, 41), (86, 33), (15, 45), (13, 98), (38, 105),
(60, 99), (89, 93), (110, 106)], and the unit is meter. The

communication ranges and the sensing ranges of the sensors

are all set to rc = 45m and rs = 60m respectively.

100 Monte Carlo simulations are run on the simulated

model. For comparison we ran ALS and ALS-BCI on the

same data sets. The initial parameters of the algorithm 9

are set to QA = diag[5, 0, 5, 0] and RA = diag[1, 1]. The

diagram of the target tracking in the time-varying sensor

deployment is shown in Fig. 3. The connectivity of the ith

sensor is denoted as the sum of the adjacent matrix |Aij |, as

shown in Fig. 4.

As is shown from the above figures, the 7th sensor only

measures the target in the sensing range, and the communi-

cation topology is varying due to the mobility of the sensors.

The comparisons between MSE and the trace of the

7th sensor’s residual covariance P7 and its fused residual
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Fig. 4. The connectivity of the 7th sensor.

covariance PBCI and P̄BCI along the x-axis are shown in

Fig. 5 and Table II.
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Fig. 5. Comparisons of MSE curve and the residual covariance between
fused and 7th sensor.

TABLE II

COMPARISONS OF THE RESIDUAL COVARIANCE BETWEEN FUSED AND

7th SENSOR.

trP7

trPBCI trP̄BCI

k=15 k=43 k=15 k=43

8.536 7.223 7.502 7.185 7.411

As is indicated from the figure and the table, the fused

residual covariance trPBCI and the MSE values MSEBCI

of 7th sensor is less than that of its own trP7 and MSE7.

Besides, it is noticed that trPBCI and trP̄BCI decreases

with the increase of the number of neighbors.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper proposes the distributed auto-covariance least

squares algorithm based on BCI to solve the distributed

estimation problem with unknown noise covariance over

networks. The efficiency of the algorithm is proven because

the fused error covariances converges to the true values

faster and the variance of the ALS estimate is smaller. The

numerical results are illustrated to show the performance of

the algorithm.

B. Future Works

In real-time applications, the latency and limited power

are the main problems in wireless sensor network. Since the



ALS-BCI algorithm still needs some time to compute the

matrix A, it is necessary to compute the a-priori estimate of

the lower bound of the variance of the fused ALS estimate

θ̂F . Future work is needed to derive the lower bound of the

fused noise covariance estimate θ̂F .
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