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Lower Bounds for Policy Iteration on Multi-action MDPs
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Abstract— Policy Iteration (PI) is a classical family of algo-
rithms to compute an optimal policy for any given Markov
Decision Problem (MDP). The basic idea in PI is to begin
with some initial policy and to repeatedly update the policy to
one from an improving set, until an optimal policy is reached.
Different variants of PI result from the (switching) rule used for
improvement. An important theoretical question is how many
iterations a specified PI variant will take to terminate as a
function of the number of states n and the number of actions k
in the input MDP. While there has been considerable progress
towards upper-bounding this number, there are fewer results
on lower bounds. In particular, existing lower bounds primarily
focus on the special case of k = 2 actions. We devise lower
bounds for k≥ 3. Our main result is that a particular variant of

PI can take Ω(kn/2) iterations to terminate. We also generalise
existing constructions on 2-action MDPs to scale lower bounds
by a factor of k for some common deterministic variants of PI,
and by log(k) for corresponding randomised variants.

I. INTRODUCTION

Markov Decision Problems (MDPs) [1][2] are a popular

abstraction of sequential decision making tasks in stochastic

environments. An MDP is a tuple 〈S,A,T,R,γ〉, where S is a

set of states and A is a set of actions. T : S×A×S→ [0,1] is

a function such that T (s,a,s′) is the probability of reaching

state s′ ∈ S from state s ∈ S by taking action a ∈ A. The

reward function R : S×A→ R, assigns a bounded reward

R(s,a) when the agent takes action a ∈ A from state s ∈ S.

An MDP serves as an environment, which describes the

consequences of an agent’s actions. The agent itself has

control only over its own behaviour, encapsulated as a

policy π : S→ A (by this definition, policies are Markovian,

stationary, and deterministic—sufficient for our purposes). If

r0,r1,r2, . . . denotes the sequence of rewards obtained by an

agent that follows policy π , starting at state s ∈ S, then its

expected long-term reward

V π(s)
def
=Eπ ,s[r0 + γr1 + γ2r2 + . . . ] (1)

is denoted the value of s under π ; V π : S→ R is the value

function of π . In (1), γ ∈ [0,1] is a discount factor. In general,

γ is set to be less than 1 so that the infinite discounted reward

is well-defined. However, we may set γ = 1, thereby taking

value to be the total reward, when trajectories in the input

MDP are guaranteed to reach a terminal state. In this paper,

we adopt the total reward formulation, but our results can all

be extended to the infinite discounted setting.
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Every MDP is guaranteed to have an optimal policy

π⋆ : S → A whose value at each state is at least as large

as any other policy’s [1]. Hence, given an MDP, a natural

objective is to compute an optimal policy for it. There are

many approaches to this planning problem, among them

Value Iteration and Linear Programming [3]. In this paper,

we consider a third popular approach: Policy Iteration (PI).

PI [4] is based on the Policy Improvement Theorem, which

facilitates a relatively straightforward computation of a set

of locally-improving policies IP(π) for any given policy π .

IP(π) is represented implicitly through “improvable states”

for π , as well as “improving actions” for such states. If π
is optimal, IP(π) is guaranteed to be empty; if not, every

policy π ′ ∈ IP(π) strictly dominates π in terms of state

values. Indeed every such policy π ′ ∈ IP(π) is obtained by

switching the actions taken by π in some improvable states

to corresponding improving actions.

Given an arbitrary initial policy π0, a PI algorithm gen-

erates a sequence of policies π0,π1, . . . ,πT wherein πt+1 ∈
IP(πt) for t = 0,1, . . . ,T − 1, and πT is an optimal policy.

Even for the same MDP and starting policy π0, different PI

variants could select improving policies in different ways,

thereby yielding different sequences. In this paper, our aim is

to lower-bound the length of these sequences. We restrict our

attention to finite MDPs, assuming that S shall comprise n

non-terminal states and a constant number of terminal states.

We take A = {0,1, . . . ,k− 1}; thus |A|= k. With this setup,

observe that policies can be viewed as n-length k-ary strings.

Since PI increases some state value in each iteration, it

cannot visit the same policy more than once. Hence, kn,

which is the total number of policies, serves as a trivial

upper bound on the iterations taken by every PI variant.

Howard’s PI [4], a classical variant, has been shown to

incur no more than O(kn/n) iterations [5]. Among upper

bounds that are solely in terms of n and k, the tightest

are O(k0.7019n) iterations for deterministic PI variants [6],

and O((2+ ln(k− 1))n) expected iterations for randomised

variants [7]. Even tighter upper bounds (still exponential in

n) have been shown for k = 2 [6]. Interestingly, the only

lower bounds that have been shown for PI are either for the

special case of k = 2 [8][9] or when k is related to n [10][11].

We contribute lower bounds for arbitrary n≥ 2, k≥ 2.

Every PI variant must choose which improvable states

to switch. Notably, this is all that PI needs to do on 2-

action MDPs, since selecting an improvable state fixes the

improving action. The main technical difference that arises

on k-action MDPs, k ≥ 3, is that there can be multiple

improving actions associated with an improvable state, and
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PI must additionally choose among them. We consider both

deterministic and randomised strategies for action selection.

Our main contribution is a novel MDP construction that

yields a trajectory of length Ω(kn/2) for a particular deter-

ministic variant of PI. From a theoretical perspective, it is

significant that the base of the exponent is an increasing (in

fact polynomial) function of k. We also generalise existing

constructions for 2-action MDPs, scaling lower bounds by a

factor of k for some deterministic PI variants, and by log(k)
for some randomised variants. We present our constructions

in sections IV–VI, after first formalising PI in Section II and

discussing existing lower bounds in Section III. We present

conclusions and discuss future directions in Section VII.

II. POLICY ITERATION

In this section, we describe Policy Iteration (PI),

borrowing notation from previous work [6][7]. Note that for

any given policies π and π ′, the relation π � π ′ means that

for all s ∈ S, V π(s)≥V π ′(s). If π � π ′, and for some s ∈ S,

V π(s)>V π ′(s), then we also have π ≻ π ′.

Policy evaluation. Each iteration of PI considers some policy

π , and begins by computing its value function V π . From the

definition in (1), it is seen that V π satisfies a set of linear

equations (called Bellman’s Equations): for s ∈ S,

V π(s) = R(s,π(s))+ γ ∑
s′∈S

T (s,π(s),s′)V π(s′).

The “action value function” of π , Qπ : S×A→R, is defined

as follows: for s ∈ S,a ∈ A, Qπ(s,a) is the expected long-

term reward the agent receives if it takes action a from state

s for the first time-step, and then follows policy π . Thus,

Qπ(s,a) = R(s,a)+ γ ∑
s′∈S

T (s,a,s′)V π(s′).

Policy improvement. Define IS(π) to be the set of states s

on which π is not greedy with respect to its own action-value

function: that is,

IS(π)
def
=

{

s ∈ S : Qπ(s,π(s)) < max
a∈A

Qπ(s,a)

}

.

For each state s∈ IS(π), the set of improving actions IA(π ,s)
is defined as:

IA(π ,s)
def
={a ∈ A : Qπ(s,a)> Qπ(s,π(s))} .

If IS(π) is not empty, let π ′ be a policy that takes some

action from IA(π ,s) for one or more states s ∈ IS(π), and

takes the same action as π in the remaining states. In other

words, π ′ satisfies

∃s ∈ S : π ′(s) ∈ IA(π ,s), and

∀s ∈ S : (π ′(s) = π(s))∨ (π ′(s) ∈ IA(π ,s)). (2)

Denote the set of all π ′ satisfying (2) as the set IP(π):

IP(π)
def
={π ′ ∈Π : π ′ satisfies (2)}.

The Policy Improvement Theorem shows that every policy

π ′ ∈ IP(π) improves upon (or dominates) π as follows.

Theorem 1 (Policy improvement): For every π : S→ A:

(1) if IS(π) 6= /0, then for all π ′ ∈ IP(π), π ′ ≻ π ;

(2) if IS(π) = /0, then for all π ′ : S→ A, π � π ′.

The proof of this well-known theorem is available from many

sources [7][12].

Switching rules. For a given policy π , it is immediate

that IS(π) and IA(π , ·)—which implicitly represent IP(π)—
can be computed using poly(n,k) arithmetic operations. The

overall running-time of the algorithm may therefore be

obtained by multiplying this per-iteration complexity with

the total number of iterations taken to terminate. In turn, the

number of iterations is determined by the rule used to pick

π ′ ∈ IP(π) as the policy following π .

Recall that π ′ is obtained by modifying π : by selecting one

or more states from s ∈ IS(π), and switching to some action

from IA(π ,s) for such states s. The most common variant of

PI, called Howard’s PI or Greedy PI [4], switches every state

s ∈ IS(π). By contrast, under the Random PI variant [5], a

non-empty subset of IS(π) is selected uniformly at random,

and the states within this subset are switched. Under Simple

PI [8], which is yet another variant, only a single improvable

state is switched. Assuming a fixed indexing of states for the

entire run of the algorithm, in each iteration the improvable

state with the largest index is switched.

In 2-action MDPs, it suffices to specify which states to

switch, since an improvable state will have exactly one

improving action. On the other hand, if there are k ≥ 3

actions, one might encounter improvable states with multiple

improving actions, requiring yet another decision to be made.

• A common strategy for action-selection is to pick

an action that maximises the Q-value: that is, setting

π ′(s)← argmaxa∈A Qπ(s,a) for a selected improvable

state s ∈ IS(π). In this paper, we are unable to furnish

meaningful lower bounds for this “max-Q” strategy. We

make headway with two other natural approaches.

• Our first, “index-based” action-selection strategy as-

sumes a fixed indexing of actions for the entire run of

the algorithm, and always switches to the improving

action with the smallest index. Since we have assumed

A = {0,1, . . . ,k− 1}, we set π ′(s)←min(IA(π ,s)).
• Our second, “random” strategy sets π ′(s) to an action

picked uniformly at random from IA(π ,s).

We couple these action-selection strategies with several state-

selection strategies and then lower-bound the number of it-

erations taken by the resulting PI variants. Before presenting

our contributions, we review existing lower bounds for PI.

III. EXISTING LOWER BOUNDS

For n-state, 2-action MDPs, Melekopoglou and Con-

don [8] show that Simple PI can take Ω(2n) iterations to

terminate. In Section VI, we generalise both their construc-

tion and their proof to k ≥ 2, obtaining lower bounds of

Ω(k ·2n) and Ω(log(k) ·2n) when Simple PI is applied with

index-based and random action selection, respectively.

The tightest lower bounds known for Howard’s PI [9] and

Random PI [6] on n-state, 2-action MDPs are only Ω(n).



Hansen and Zwick [9] construct a deterministic MDP on

which, under the “average reward” criterion [13], Howard’s

PI can take as many as 2n− O(1) iterations. We show

linear dependence on n using a simpler construction, and

obtain linear and logarithmic scaling in k for index-based

and random action selection, respectively (see Section V).

Interestingly, our construction also implies a lower bound

of Ω(kn) (or Ω(log(k) · n)) iterations for index-based (re-

spectively, random) action selection regardless of the state-

selection strategy used.

Indeed a trajectory of exponential length (Ω(2n/7)) has

been shown for Howard’s PI both under the total reward [10]

and infinite discounted reward [11] settings. However, the

MDPs used in these constructions do not have a constant

number of actions per state—rather, this number is itself

θ (n). Yet another exponential lower bound (of Ω(2n/2)
iterations) has been shown for Howard’s PI on a class of

objects called Acyclic Unique Sink Orientations (AUSOs),

which may be derived from n-state, 2-action MDPs [14].

The proof does not imply the same bound for MDPs [6].

The bounds mentioned above, and also the ones we

provide, only depend on n and k. While there are upper

bounds for PI in terms of parameters such as the discount

factor, we are not aware of any such lower bounds.

IV. A TRAJECTORY OF LENGTH Ω(kn/2)

In this section, we propose a novel family of n-state, k-

action MDPs on which a particular variant of PI can take

Ω(kn/2) iterations to terminate. This lower bound becomes

the tightest shown yet for the PI family. In subsequent

sections, we generalise lower bounds for specific, commonly-

used variants of PI to k≥ 2, but the resulting bounds are only

linear or logarithmic in k.

A. Construction of Family F(m,k)

We construct a family of MDPs with n = 2m non-terminal

states, m≥ 1, a single terminal state, and k-actions, as shown

in Fig. 1. The idea behind the construction is to implement a

k-ary “counter” on a set of non-terminal states s1,s2, . . . ,sm,

ensuring that all km sub-policies on these states are visited.

To this end, we employ a “partner” state s′i for each such

state si, i ∈ {1,2, . . . ,m}. Recall that A = {0,1, . . . ,k− 1}.
As shown in Fig. 1, all transitions in F(m,k) are determin-

istic. Moreover, each state si in the counter and its partner s′i
have identical next states and rewards for each action. From

state s1 all actions j ∈ A lead to the terminal state sT . From

state si, i ∈ {2,3, . . . ,m}, action 0 alone leads to s′i−1, while

actions j ∈ A\ {0} all lead to si−1. For i ∈ {1,2, . . . ,m}, j ∈
A, the associated reward is R(si, j) = jkm−i. Observe that

there can be at most m transitions before termination; no

discounting is used in the calculation of values.

B. Policies

We find it convenient to denote policies for F(m,k)
in the form x · y, where x,y ∈ Am. In this notation, the

sequence x = x1x2 . . .xm lists the actions taken from states

s1,s2, . . . ,sm, respectively, and y = y1y2 . . .ym does the same

for states s′1,s
′
2, . . . ,s

′
m, respectively. For every x ∈ Am and

r ∈ {0,1,2, . . . ,m}, let pre(x : r) denote the prefix sequence

x1x2 . . .xr. This (possibly empty) sequence may be viewed

as a sub-policy on the counter states or the partner states.

Our proof relies on associating numbers with policies. For

every sequence x = x1x2 . . .xr, where r ≥ 1 and xu ∈ A for

u∈ {1,2, . . . ,r}, let [x] denote the natural number represented

in base k by x: that is, [x]
def
=∑r

u=1 xukr−u. Let N denote the

set of numbers {0,1, . . . ,km−1}. It is immediately clear that

Am, which is the set of m-length k-ary sequences, is in 1-to-1

correspondence with N, each x ∈ Am associated with [x]∈ N.

Of especial interest to us is policies of the form x · x for

x ∈ Am: we refer to such policies as balanced policies. Since

every counter state si and its partner s′i, i ∈ {1,2, . . . ,m},
have the same outgoing transitions and rewards in F(m,k),
it follows that V x·x(si) =V x·x(s′i). Moreover, since all transi-

tions either terminate or move to states with lower indices,

these values only depend on pre(x : i). Incorporating the

corresponding rewards, we observe:

V x·x(si) =V x·x(s′i) =
i

∑
u=1

xik
m−u = km−i[pre(x : i)], (3)

and in particular, V x·x(sm) = V x·x(s′m) = [x]. The format in

(3) is convenient to establish a key property of F(m,k).

Proposition 2 (Comparability of balanced policies): For

x,y ∈ Am, if [y]> [x], then y · y≻ x · x.

Proof: “[y] > [x]” is equivalently stated as: “there

exists r ∈ {0,1,2, . . . ,m− 1} such that for u ∈ {0,1, . . . ,r},
[pre(y : u)] = [pre(x : u)] and for u ∈ {r+ 1,r+ 2, . . . ,m},
[pre(y : u)] > [pre(x : u)]. From (3), it follows that for

i ∈ {1,2, . . . ,r}, V y·y(si) = V y·y(s′i) =V x·x(si) =V x·x(s′i), and

for i ∈ {r+ 1,r + 2, . . . ,m}, V y·y(si) = V y·y(s′i) > V x·x(si) =
V x·x(s′i), in turn implying that y · y≻ x · x.

The proposition is seen to induce a total order on policies

of the form x · x via their value functions. The maximal

element, km · km, is also the sole optimal policy for F(m,k).
Our proof will construct a trajectory for PI that visits each

balanced policy; notice that there are km = kn/2 in total.

At this point, one might wonder why we need the partner

states in F(m,k) at all. Consider an MDP F ′(m,k) that results

from removing partner states from F(m,k) and redirecting

their incoming transitions to corresponding counter states.

On F ′(m,k), there would be a total order on the entire set

of km polices, suggesting the possibility of an even tighter—

in fact maximally tight—lower bound. However, crucially,

it does not appear possible to get any PI variant to visit all

km policies in F ′(m,k). Although PI guarantees a dominating

policy after each step, it is not necessary that every policy π ′

that dominates π is reachable from π using PI. With partner

states, indeed we are able to show a chain of length km for

PI, but consequently m is only half the number of states.

C. A Long Trajectory for PI

We now present the main structural property of F(m,k):
that there is a sequence of policy improvements from every

non-optimal balanced policy to its successor.
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Fig. 1. The deterministic MDP F(m,k) with 2m non-terminal states, a single terminal state sT , and k actions. States s1,s2, . . . ,sm implement a k-ary
“counter”; each has an associated partner state. Each edge, labeled “action: reward” represents the corresponding transitions. No discounting is used.

Lemma 3 (Segments of Long PI Trajectory): Consider

x,y ∈ Am such that [y] = [x] + 1. There is a sequence

of policies π1,π2, . . . ,πt+1, t ≥ 2, for F(m,k) such that

π1 = x ·x; πt+1 = y ·y; and for i ∈ {1,2, . . . , t}, πi+1 ∈ IP(πi).

Proof: We furnish a proof by showing a chain of policy

improvements from x ·x to x ·y, and another chain from x ·y
to y ·y. For the proof, we find it useful to denote as I(z), for

z ∈ Am \{(k−1)m}, the largest index of z whose value is not

k−1. Also, we write the concatenation of sequences z1 and

z2 as z1 # z2. With this notation, [y] = [x]+ 1 implies

x = pre(x : I(x)− 1) # xI(x) # (k− 1)m−I(x), and

y = pre(x : I(x)− 1) # xI(x)+ 1 # 0m−I(x).

We show that PI can lead from x · x to x · y by switching, in

sequence, the states s′
I(x),s

′
I(x)+1

, . . . ,s′m; thereafter, switching

sm,sm−1, . . . ,sI(x) in sequence leads from x · y to y · y. Con-

cretely, for r ∈ {1,2, . . . ,m− I(x)+ 1}, define

pr
def
=pre(x : I(x)− 1) # xI(x)+ 1 # 0r−1 # (k− 1)m−I(x)−r+1;

qr
def
=pre(x : I(x)− 1) # xI(x) # (k− 1)m−I(x)−r+1 # 0r−1.

We establish that the following sequences of policy improve-

ments can be performed.

x · x→ x · p1→ x · p2→ ··· → x · pm−I(x)+1 = x · y;

x · y = q1 · y→ q2 · y→ ··· → qm−I(x)+1 · y→ y · y.

For the first chain, observe that x · x and x · p1 differ only

in one action: on state s′
I(x), x · x takes action xI(x) and x · p1

takes xI(x)+1. Using the structure of F(m,k) and (3), we get

Qx·x(s′I(x),xI(x)+ 1) = (xI(x)+ 1)km−I(x)+V x·x(sI(x)−1)

> xI(x)k
m−I(x)+V x·x(sI(x)−1)

=V x·x(s′I(x)),

with the convention that s0 = s′0 = sT . Now, for r ∈
{1,2, . . . ,m− I(x)}, policies x · pr and x · pr+1 take actions

k− 1 and 0 at state s′
I(x)+r

, respectively, but on other states

are alike. Substituting values calculated using the structure

of F(m,k), we get

Qx·pr(s′I(x)+r ,0) = 0+V x·pr(s′I(x)+r−1)

=V x·pr(sI(x)+r−1)+ km−I(x)−r+1

>V x·pr(sI(x)+r−1)+ (k− 1) · km−I(x)−r

=V x·pr(sI(x)+r).

Intuitively, action 0 is improving because the decrease in

immediate reward on switching from action k−1 to 0 at state

s′
I(x)+r

is offset by the gain from moving to state s′
I(x)+r−1

instead of sI(x)+r−1. Recall that counter states follow x, while

partner states follow pr+1, with a higher-index action at I(x).

For the second chain we first show that for r ∈
{1,2, . . . ,m− I(x)}, qr+1 · y is improvable over qr · y. Note

that the two policies take actions 0 and k−1 at state sm−r+1

respectively, but are alike at all other states. Substituting

values based on F(m,k), we get

Qqr·y(sm−r+1,0) = 0+V qr·y(s′m−r)

= kr +V qr·y(sm−r)

> (k− 1) · kr−1 +V qr ·y(sm−r)

=V qr·y(sm−r+1).

Lastly, we need to show that the policy y · y improves over

qm−I(x)+1 · y. Since the policies differ only at sI(x), showing

Qqm−I(x)+1·x(sI(x),xI(x)+ 1)

= (xI(x)+ 1)km−I(x)+V qm−I(x)+1·x(sI(x)−1)

> xI(x)k
m−I(x)+V

qm−I(x)+1·x(sI(x)−1)

=V
qm−I(x)+1·x(sI(x))

concludes the proof.

In short, we have demonstrated that a sequence of policy

improvements, each switching only a single state, can take us

from x ·x to y ·y. We denote the variant of PI that facilitates

such a trajectory Peculiar PI. For illustration, Appendix A

shows the sequence of policies visited by Peculiar PI on

F(3,3). While it might appear that going from x · x to y ·
y requires keeping an intermediate sequence of policies in

memory, indeed Peculiar PI can be implemented concisely

as a memoryless variant, as shown in Appendix B. From



Lemma 3, it is clear that if initialised with policy 0m · 0m,

this variant will visit all km balanced policies.

Theorem 4 (Ω(kn/2) Lower Bound for Peculiar PI): On

F(m,k), if initialised with policy 0m · 0m, Peculiar PI takes

Ω(km) iterations.

Although this lower bound—and those from the next two

sections—are shown using the total reward setting, they

continue to hold with discounting (see Appendix C).

V. GENERIC LOWER BOUNDS

In this section, we give k-dependent lower bounds for

every PI variant that uses index-based or random action

selection; that is, the state-selection strategy can be arbitrary.

A. Construction

Fig. 2 shows our family of MDPs G(n,k) with non-

terminal states s1,s2, . . . ,sn. Rewards are only given on

reaching terminal states, of which there are n+1.1 From each

state si, i∈ {1,2, . . . ,n}, action 0 deterministically terminates

with a reward of −2i. On the other hand, action k−1 moves

deterministically from si to si+1 for i ∈ {1,2, . . . ,n−1}, and

moves sn into a terminal state with no reward.

As before, let us denote policies as n-length, k-ary strings.

Observe that for i ∈ {1,2, . . . ,n}, the policy 0i(k−1)n−i has

exactly one improvable state: si. If the only actions were

0 and k− 1, any PI variant initialised with 0n would be

forced to visit all n of these policies. To get PI to also take

more actions from {1,2, . . . ,k−2}, we implement stochastic

transitions for each of these actions. In particular, action

j ∈ A \ {0,k− 1} behaves like 0 with probability p j, and

like k− 1 with probability 1− p j, where p j =
1
2
+ k− j

2k
. The

intuition behind this construction is that (1) so long as state

si+1, i ∈ {1,2, . . . ,n−1} follows any action other than k−1,

action 0 is the most rewarding at si; (2) once si+1 switches to

k−1, actions in A\{0} become profitable at si. Concretely,

we obtain the following structure within the set of policies.

Lemma 5: For i ∈ {1,2, . . . ,n}, j ∈ {0,1, . . . ,k− 2} let

πi j = 0i−1 j(k− 1)n−i. Then

IS(πi j) = {i}, and

IA(πi j, i) = { j+ 1, j+ 2, . . . ,k− 1}.
It is straightforward to construct the proof by writing out and

comparing Q-values in G(n,k), as shown in Appendix D.

From Lemma 5, it follows directly that if initialised

with the policy 0n, index-based action selection will go

through 0n−11,0n−12, . . . ,0n−1(k− 1); thereafter 0n−21(k−
1),0n−22(k−1), . . . ,0n−2(k−1)2, and so on until the optimal

policy (k− 1)n is evaluated after n(k− 1)+ 1 iterations.

In case random action selection is used, it remains that

the policies 0n−1(k− 1),0n−2(k− 1)2, . . . ,(k− 1)n will be

visited, but the number of policies visited in between any

successive pair of these will be random, since improving

1If ρ(s′) is the reward given on reaching s′ ∈ S in addition to reward
R(s,a) given for taking action a from state s, we can use R′(s,a) = R(s,a)+
∑s′∈S T (s,a,s′)ρ(s′) as an equivalent reward function that complies with our
definition in Section I. We use this idea here and in Section VI.
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Fig. 2. The stochastic MDP G(n,3), used to illustrate the structure of
G(n,k). Labels on arrows mark “action, probability”; terminal states show
rewards. While actions 0 and k−1 are deterministic, all others are stochastic,
with transition probabilities as specified in Section V-A.

actions are picked uniformly at random. For i∈ {1,2, . . . ,n},
j ∈ {0,1, . . . ,k − 2}, let ti j denote the expected number

of iterations needed to go from πi j = 0i−1 j(k − 1)n−i to

0i−1(k− 1)n−i+1. Clearly ti j is independent of i, and may

be written as t j. We have tk−2 = 1 and for j ∈ {0,1, . . . ,k−
3}, t j = 1+ 1

k− j−1 ∑k−2
j′= j+1

t j′ . Solving this recurrence yields

t0 = θ (log(k)); in other words, there are θ (log(k)) expected

iterations corresponding to each improvable state.

Theorem 6 (Generic Lower Bounds): On G(n,k), if ini-

tialised with policy 0n, every PI variant doing index-based

action selection takes Ω(kn) iterations, and every PI variant

doing random action selection takes Ω(log(k) ·n) iterations.

This result is significant for Howard’s PI and Random PI,

whose current lower bounds are θ (n) even for k = 2.

VI. SIMPLE POLICY ITERATION

In Section IV, we showed a lower bound of Ω(kn/2)
iterations for a new, carefully-designed variant of PI, while

in Section V, we provided lower bounds that apply to all PI

variants that use index-based or random action-selection. In

this section, we investigate the behaviour of Simple PI on

multi-action MDPs. Recall that this variant can visit each of

the 2n policies for an n-state, 2-action MDP [8]. Simple PI

assumes an arbitrary, fixed indexing of states, and always

switches the improvable state with the largest index. We

consider index-based and random action selection for k≥ 3.

A. Construction

Fig. 3 shows our construction H(n,k), which generalises

the one proposed by Melekopoglou and Condon [8]. The

MDP has n non-terminal states, s1,s2, . . . ,sn, and two termi-

nal states. For i ∈ {1,2, . . . ,n}, each state si has a “partner”

state s′i, from which two equiprobable outgoing transitions

do not depend on action. In principle these states can be

removed and the transition probabilities from s1,s2, . . . ,sn

modified accordingly. Whereas the original construction for

k = 2 only gives a reward of −1 on reaching one of the

terminal states, our generalisation also associates rewards

with state-action pairs.

As in the original construction, one action, say 0, tran-

sitions deterministically, with no reward, from each state si

to state si−1 for i ∈ {2,3, . . . ,n}, and from s1 to a terminal

state. We design the other actions j ∈ {1,2, . . . ,k− 1} from

each state to transition deterministically to the corresponding

partner state; action j gets reward ε/2k−1− j, where ε = 2−n.
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Fig. 3. The stochastic MDP H(n,k). The original construction of Melekopoglou and Condon is obtained by setting k = 2 and ε = 0. Edges are labeled
“action: reward”. The introduction of k−2 new actions and related details are presented in Section VI-A.

B. Lower Bounds

While the original construction uses ε = 0, we require

the rewards on the actions to be different so that more

policies can be visited by PI. Our generalised setup ensures

that if s is an improvable state currently taking action a ∈
{0,1, . . . ,k− 2}, then actions a+ 1,a+ 2, . . . ,k− 1 are all

improving actions. Moreover, taking ε = 2−n retains the

structure of the trajectory taken by Simple PI on H(n,2).
Indeed for t ∈{1,2,3, . . . ,2n}, if πt ∈ {0,1}n is the t-th policy

visited on H(n,2), then π ′t ∈ {0,k− 1}n, which has every

occurrence of 1 replaced by k− 1 in πt , is the t-th policy

from {0,k− 1}n visited on H(n,k).

The reason we get scaling of lower bound with k is that

corresponding to every switch from action 0 to action 1

on H(n,2), there is a progression through k− 1 actions—

0,1, . . . ,k− 1—on H(n,k), if using index-based action se-

lection. With random action selection θ (log(k)) actions are

visited in expectation, following the reasoning given in

Section V. Since Simple PI makes Ω(2n) switches from

action 0 to action 1 on H(n,2), we can generalise as below.

Theorem 7 (Simple PI Lower Bounds): On H(n,k), if ini-

tialised with policy 0n, Simple PI takes Ω(k · 2n) iterations

with index-based action selection, and Ω(log(k) · 2n) itera-

tions in expectation with random action selection.

VII. CONCLUSION AND FUTURE WORK

PI [4] is a widely-used family of algorithms for solving

MDPs, which model sequential decision making tasks in

stochastic domains. While there is a fair amount of work on

the theoretical analysis of PI, the literature on lower bounds

is relatively sparse. In particular, existing lower bounds on

the running-time of PI on n-state, k-action MDPs either

assume k = 2 or take k to be dependent on n. We present the

first non-trivial lower bounds for the general case of k≥ 2.

We consider a deterministic, index-based action-selection

strategy, as well as a randomised one. When coupled with

Simple PI [8]—earlier analysed for k = 2—these strategies

increase the corresponding lower bound by factors of k and

log(k), respectively. We also show the same scaling in terms

of k for the tightest lower bound known yet for Howard’s

PI on 2-action MDPs. Indeed the resulting lower bounds of

Ω(kn) and Ω(log(k) ·n) iterations apply to all PI variants that

use index-based and random action-switching, respectively.

Our constructions do not yield non-trivial lower bounds

when used in conjunction with the popular “max-Q” action

selection strategy, which needs further investigation.

From a lower-bounding perspective, the major open ques-

tion is whether there is an n-state, k-action MDP on which

some variant of PI can visit all of the kn policies. While the

answer is affirmative for k = 2 [8], we are yet unaware what it

is for k≥ 3. The tightest lower bound we show in this paper is

Ω(kn/2) iterations, which is significant in having
√

k, rather

than a constant, in the base of the exponent. Future work

could explore improvements to our lower bound. Another

possibility is to show an upper bound smaller than kn that

simultaneously holds for all PI variants in the case of k≥ 3.
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[14] Ingo Schurr and Tibor Szabó. Jumping doesn’t help in abstract cubes.
In Integer Programming and Combinatorial Optimization, pages 225–
235. Springer, 2005.



APPENDIX

A. Trajectory of Peculiar PI on F(3,3)

Below we list the sequence of trajectories visited by

Peculiar PI (the PI variant from Section IV) on F(3,3),
when initialised with policy 03 · 03. Each line begins with

a “balanced” policy (of the form x · x for x ∈ {0,1,2}3); to

its right is the sequence of policies taken to reach the next

balanced policy.

000000000 ···000000000 000 ·001
000000111 ···000000111 001 ·002
000000222 ···000000222 002 ·012 002 ·010 000 ·010
000111000 ···000111000 010 ·011
000111111 ···000111111 011 ·012
000111222 ···000111222 012 ·022 012 ·020 010 ·020
000222000 ···000222000 020 ·021
000222111 ···000222111 021 ·022
000222222 ···000222222 022 ·122 022 ·102 022 ·100 020 ·100 000 ·100
111000000 ···111000000 100 ·101
111000111 ···111000111 101 ·102
111000222 ···111000222 102 ·112 102 ·110 100 ·110
111111000 ···111111000 110 ·111
111111111 ···111111111 111 ·112
111111222 ···111111222 112 ·122 112 ·120 110 ·120
111222000 ···111222000 120 ·121
111222111 ···111222111 121 ·122
111222222 ···111222222 122 ·222 122 ·202 122 ·200 120 ·200 100 ·200
222000000 ···222000000 200 ·201
222000111 ···222000111 201 ·202
222000222 ···222000222 202 ·212 202 ·210 200 ·210
222111000 ···222111000 210 ·211
222111111 ···222111111 211 ·212
222111222 ···222111222 212 ·222 212 ·220 210 ·220
222222000 ···222222000 220 ·221
222222111 ···222222111 221 ·222
222222222 ···222222222

For F(m,k), the exact number of policies that are visited

using our construction is 2k
k−1

(km−1)−2m+1, seen here to

be 73 for F(3,3).

B. Memoryless Encoding of Peculiar PI

The idea of our construction in Section IV is to proceed

from one balanced policy to the next through a sequence of

policy improvement steps. Below we provide a memoryless

specification of Peculiar PI, the variant we have designed

for this purpose. Given an arbitrary policy of the form x · y,

where x,y ∈ Am, Peculiar PI identifies the state to switch,

denoted s̄ ∈ S, as follows.

Define d = [y]− [x] and if d ≥ 1, define b = ⌊logk(d)⌋.
If d < 0: //Cannot arise on F(m,k), starting from 0m ·0m.

Set s̄ to be an arbitrary state.

Else if d = 0:

s̄← s′
I(x).

Else if d = 1:

s̄← sm.

Else if ym = k− 1:

s̄← s′m−b+1.

Else:

s̄← sm−b.

First, note that s̄ is not guaranteed to be an improvable

state on every MDP. In fact, it might not be improvable even

for F(m,k) for some policies x ·y. However, if Peculiar PI is

initialised with policy 0m ·0m on F(m,k), then the procedure

outlined here will exactly simulate the trajectory of policies

described in the proof of Lemma 3. This property suffices

for the purpose of our lower bound. We allow Peculiar PI

to be defined arbitrarily when s̄ is not an improvable state,

or when it does not have the desired choice of improving

action (specified next).

If s̄ is indeed improvable and x ·y(s̄) 6= k−1, then Peculiar

PI switches the action j for s̄ to j+1 (if j+1 is an improving

action). If s̄ is improvable and x ·y(s̄)= k−1, then Peculiar PI

switches the action for s̄ to 0 (if 0 is an improving action). In

summary, if s̄ is an improvable state and (x.y(s̄)+1) mod k

is an improving action, Peculiar PI switches to this action.

Observe that the procedure outlined above can be imple-

mented using poly(n,k) arithmetic operations and space.

C. Extending Lower Bounds to Discounted Reward Setting

All three of our MDP families—F(m,k) (Section IV),

G(m,k) (Section V), and H(m,k) (Section VI)—are defined

under the total reward setting. To generalise our lower bounds

to the discounted reward setting, we begin by observing that

for each MDP family, the following properties are satisfied.

1) For all π : S→ A, s ∈ S, and a,a′ ∈ A:

(a 6= a′) =⇒Qπ(s,a) 6= Qπ(s,a′).

2) There is a finite number L such that starting from

any state, taking any actions, the number of steps to

termination is at most L.

3) Rewards are all bounded; assume they lie in

[−Rmax,Rmax] for finite Rmax > 0.

Define

∆
def
= min

π :S→A,s∈S,a,a′∈A,a 6=a′
|Qπ(s,a)−Qπ(s,a′)|.

Since the first property is satisfied, we have ∆ > 0. The

second property implies that every Q-value may be written

as a sum of L (expected) rewards:

Q = X1 +X2 +X3 + · · ·+XL.

Now, if we use a discount factor γ ∈ [0,1], we have

Qγ = X1 + γX2 + γ2X3 + · · ·+ γL−1XL.

Consequently, we have

|Qπ(s,a)−Qπ
γ (s,a)|= |

L

∑
i=2

(1− γ i−1)Xi|

≤ |
L

∑
i=2

(1− γ i−1)Rmax|

≤ (L− 1)(1− γL−1)Rmax.

For γ > γ0 =
(

max{1− ∆
2(L−1)Rmax

,0}
)

1
L−1

, we observe that

|Qπ(s,a) − Qπ
γ (s,a)| < ∆

2
. Hence, for all γ ∈ (γ0,1], the

relative order of Qγ values is identical for all policies, states,

and actions.

The lower bounds we have provided are all for PI variants

that are defined solely based on the relative order among

Q-values for each state and action. Consequently these

algorithms follow the same trajectories for all γ ∈ (γ0,1].



D. Proof of Lemma 5

Recall that for i ∈ {1,2, . . . ,n}, j ∈ {0,1, . . . ,k− 2} we

have πi j = 0i−1 j(k−1)n−i. For u ∈ {1,2, . . . ,n}, we observe

V πi j(su) =















−2u if u < i,

−2i
(

1
2
+ k− j

2k

)

if u = i,

0 if u > i.

In order to prove that IS(πi j) = {i} and IA(πi j, i) = { j+
1, j + 2, . . . ,k− 1}, first we show that i ∈ IS(πi j) and { j+
1, j + 2, . . . ,k− 1} ⊂ IA(πi j, i). Observe that for j′ ∈ { j +
1, j+ 2, . . . ,k− 2},

V πi j (si) =−2i

(

1

2
+

k− j

2k

)

<−2i

(

1

2
+

k− j′

2k

)

= Qπi j (si, j′),

and also, V πi j(si)< 0=Qπi j(si,k−1). Hence, i∈ IS(πi j) and

{ j+ 1, j+ 2, . . . ,k− 1} ⊂ IA(πi j, i).
Next, we show that u /∈ IS(πi j) for u ∈ {1,2, . . . , i− 1}∪
{i+ 1, i+ 2, . . .,n} by considering separate cases.

u ∈ {1,2, . . . , i− 2}. In this case, for j′ ∈ {1,2, . . . ,k− 2},

Qπi j (su, j′) =−2u

(

1

2
+

k− j′

2k

)

− 2u+1

(

1

2
− k− j′

2k

)

,

and Qπi j (su,k− 1) = −2u+1. Thus, for j′ ∈ {1,2, . . . ,k− 1},
Qπi j(su, j′)<−2u =V πi j(su).

u = i− 1. In this case, for j′ ∈ {1,2, . . . ,k− 2},

Qπi j(su, j′) =−2u

(

1

2
+

k− j′

2k

)

+V πi j(si)

(

1

2
− k− j′

2k

)

,

and Qπi j(su,k− 1) = V πi j (si). Substituting for V πi j (si), we

get, for j′ ∈ {1,2, . . . ,k− 1}, Qπi j(su, j′)<V πi j(su).

u ∈ {i+ 1, i+ 2, . . .,n}. In this case for j′ ∈ {0,1, . . . ,k−2},

Qπi j(su, j′) =−2u

(

1

2
+

k− j′

2k

)

< 0 =V πi j (su).
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