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Traffic Abstractions of Nonlinear Homogeneous Event-Triggered Control
Systems

Giannis Delimpaltadakis, Student Member, IEEE, and Manuel Mazo Jr., Senior Member, IEEE

Abstract— In previous work, linear time-invariant event-
triggered control (ETC) systems were abstracted to finite-state
systems that capture the original systems’ sampling behaviour.
It was shown that these abstractions can be employed for
scheduling of communication traffic in networks of ETC loops.
In this paper, we extend this framework to the class of nonlinear
homogeneous systems, however adopting a different approach
in a number of steps. Finally, we discuss how the proposed
methodology could be extended to general nonlinear systems.

I. INTRODUCTION

The present-day ubiquity of networked control systems
(NCS) has raised the research community’s awareness re-
garding the consumption of communication bandwidth of
digital control implementations. Specifically, periodic sam-
pling seems to be inefficient, as it leads to unnecessary com-
munication between controllers and sensors. In this context,
and promising to reduce the bandwidth used by networked
control loops, aperiodic schemes have been proposed: Event-
Triggered Control (ETC) [1]–[3] and Self-Triggered Control
(STC) [4]–[7]. For an introduction to ETC/STC see [8].

Both of them are sample and hold implementations, in
which at every sampling time instant the sensors transmit
measurements to the controller and, only then, the con-
troller updates the control action. These schemes exploit the
system’s dynamics to decide when to close the sampling
loop, while guaranteeing that certain performance criteria
(e.g. stability) are met. In ETC, intelligent sensors monitor
the state of the plant, and transmit measurements when
a certain state-dependent triggering condition is met. On
the other hand, in STC the controller is the one to decide
about the sampling time, based on previous measurements.
Although STC relaxes the need of an intelligent sensory
system compared to ETC, it is considered less robust, due to
its sampling’s open loop nature, since the controller does not
receive any, maybe critical, information between samples.

Even though ETC has enjoyed a big share of research,
there are still unresolved issues that forbid it being a
widespread paradigm. According to the authors’ opinion,
one of the most prominent problems is the scheduling of
communication traffic of ETC loops in shared networks. It
is the ETC traffic’s inherently aperiodic and unpredictable
nature that constitutes the problem challenging. To the
authors’ knowledge, almost all of the approaches that are
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proposed to solve the problem belong to the family of con-
troller/scheduler co-design [9]–[15]. Basically, the control
law, the sampling-scheme, and the scheduling of commu-
nication are all co-designed, such that resource utilization is
efficient, while certain performance guarantees are met. The
main drawback of these approaches is their lack of versatility,
which is a result of the coupling of the controller, sampling,
and scheduler design; e.g. whenever a new control loop joins
the network, these techniques have to be applied again from
scratch, resulting in a different design.

In [16], a different approach was developed for scheduling
of traffic produced by linear time-invariant (LTI) ETC sys-
tems, decoupling the scheduler design from that of the con-
troller and sampling, thus being more versatile. Specifically,
a given ETC system (with the controller and triggering condi-
tion already designed) is abstracted by a finite-state quotient
system (or abstraction) that captures all possible sequences
of the ETC system’s sampling times. As showcased in [17],
given a network of ETC loops, once each ETC system is
abstracted as done in [16], the abstractions can be readily
employed for scheduling. To derive the abstraction’s states,
the state-space is partitioned into a finite number of cones.
Afterwards, a convex embedding approach is followed, that
derives lower and upper bounds of inter-event times for each
conic region/state of the quotient system, which serve as
outputs of the abstraction. Finally, the transitions between
the abstraction’s states are obtained via reachability analysis
(e.g. see [18]) conducted on each of the conic regions.

In this work, the framework of [16] is extended to the class
of nonlinear homogeneous systems. Nonetheless, the present
approach is essentially different in many steps. First, a finite
set of times {τ1, . . . , τ q} that will serve as lower bounds of
inter-event times is fixed a priori. Then, the state-space is
partitioned into regions Ri,j , delimited by intersections of
cones with inner-approximations of isochronous manifolds
that correspond to the chosen times τ i, which were derived
in [7]. In this way, the dynamics of the system dictate the
state-space partitioning and more control on the abstraction’s
precision is gained. The upper bounds on inter-event times
and the abstraction’s transitions are determined concurrently,
via reachability analysis. To carry out the reachability analy-
sis, an algorithm is proposed that overapproximates the tran-
scendental sets Ri,j by semi-algebraic ball-segments R̂i,j .
Finally, in Section VI it is briefly discussed how the presented
methodology could be extended to general nonlinear systems.
In these terms, the present work contributes to the solution
of the scheduling problem of networks of ETC loops.
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II. NOTATION AND PRELIMINARIES

A. Notation

The Euclidean norm of a point x ∈ Rn is denoted by |x|.
We use ∃! to denote existence and uniqueness. R+

0 denotes
the set of non-negative reals. Given a set X , 2X denotes the
power set of X . If Q ⊆ X × X is an equivalence relation
on X , the set of all equivalence classes is denoted by X/Q.

Consider a system of first order differential equations:

ζ̇(t) = f(ζ(t)), (1)

where ζ : R → Rn and f : Rn → Rn. The solution of the
above system with initial condition ζ0 is denoted by ζ(t; ζ0)
(for simplicity we always assume that the initial time t0 = 0).
When ζ0 is clear from the context, we might omit it. The Lie
derivative of a function h at a point x along the flow of f
is denoted by Lfh(x). Similarly, Lkfh(x) = Lf (Lk−1

f h(x))

is the k-th Lie derivative with L0
fh(x) = h(x).

Definition II.1 (Reachable Set and Reachable Flowpipe).
Consider system (1). Given a set of initial states I ⊆ Rn,
the system’s reachable set at time t? is defined as:

X ft?(I) := {ζ(t?;x0) : x0 ∈ I}.
The reachable flowpipe of the system in the time interval
[τ , τ ] is defined as X f[τ,τ ](I) :=

⋃
t∈[τ,τ ]

X ft (I).

Reachability analysis tools (e.g. dReach [18]) generally
compute overapproximations of reachable sets and flowpipes.
They can also check if the computed flowpipe enters an un-
safe set Uf , i.e. if X f[τ,τ ](I)∩Uf 6= ∅. For ease of exposition,
we use the same notation for reachable sets/flowpipes and the
results of these tools (i.e. their overapproximations).

B. Systems and Simulation Relations

To introduce notions related to systems and relations
between them, first we give some preliminary definitions.

Definition II.2 (Metric [19]). Given a set X , a function
d : X ×X → R+

0 ∪ {+∞} is a metric on X , if it satisfies
the following properties for all xa, xb, xc ∈ X:

• d(xa, xb) = d(xb, xa),

• d(xa, xb) = 0 ⇐⇒ xa = xb,

• d(xa, xb) ≤ d(xa, xc) + d(xb, xc).

The ordered pair (X, d) then forms a metric space.

Definition II.3 (Hausdorff Distance [19]). Consider a metric
space (X, d) and two subsets Xa, Xb ⊆ X . The Hausdorff
distance between Xa and Xb is defined as:

dH(Xa, Xb) := max
{

sup
xa∈Xa

inf
xb∈Xb

d(xa, xb),

sup
xb∈Xb

inf
xa∈Xa

d(xa, xb)
}
.

We are ready to proceed to notions related to systems and
relations, within the framework of [20].

Definition II.4 (System [20]). A system S is a tuple
(X,X0, U, −→, Y,H), where X is the set of states, X0 is the
set of initial states, U is the set of inputs, −→⊆ X×U×X is
a transition relation, Y is the set of outputs and H : X → Y
is the output map.

If X is a finite (infinite) set, then S is called finite-state
(infinite-state). A system S is called a metric system if Y is
equipped with a metric d : Y × Y → R+

0 ∪ {+∞}.
Definition II.5 (ε-Approximate Simulation Relation [20]).
Consider two metric systems Sa,Sb with Ya = Yb and a
constant ε ≥ 0. A relation Q ⊆ Xa×Xb is an ε-approximate
simulation relation from Sa to Sb if it satisfies:
• ∀x0a ∈ X0a : ∃x0b ∈ X0b such that (x0a , x0b) ∈ Q,
• ∀(xa, xb) ∈ Q : d(Ha(xa), Hb(xb)) ≤ ε,
• ∀(xa, xb) ∈ Q with (xa, ua, x

′
a) ∈−→

a
: there exists

(xb, ub, x
′
b) ∈−→

b
such that (x′a, x

′
b) ∈ Q.

If there exists an ε-approximate simulation relation from
Sa to Sb, we say that Sb ε-approximately simulates Sa and
write Sa

ε
� Sb. Finally, we introduce an alternative definition

of power quotient systems (for the original one, see [20]):

Definition II.6 (Power Quotient System [16]). Consider
a system S = (X,X0, U,−→, Y,H) and an equivalence
relation Q ⊆ X × X . The power quotient system of S is
the tuple S/Q = (X/Q, X0/Q , U/Q,−→

/Q
, Y/Q, H/Q), where:

• X/Q = X/Q,
• X0/Q = {x/Q ∈ X/Q : x/Q ∩X0 6= ∅},
• U/Q = U ,
• (x/Q, u, x

′
/Q) ∈−→

/Q
if ∃(x, u, x′) ∈−→ such that x ∈

x/Q and x′ ∈ x′/Q,
• Y/Q ⊆ 2Y ,
• H/Q(x/Q) =

⋃
x∈x/Q

H(x).

Lemma II.1 ([16]). Consider a metric system
S, an equivalence relation Q ⊆ X × X and
the power quotient system S/Q. For any ε s.t.
ε ≥ sup

x∈x/Q, x/Q∈X/Q
dH(H(x), H/Q(x/Q)), S/Q ε-

approximately simulates S, i.e. S
ε
� S/Q

C. Event-Triggered Control Systems

Consider the continuous-time control system:

ζ̇(t) = f(ζ(t), υ(ζ(t))), (2)

where ζ : R→ Rn, υ : Rn → Rm and f : Rn ×Rm → Rn.
The sample-and-hold implementation of (2) is as follows:

ζ̇(t) = f(ζ(t), v(ζ(tk))), t ∈ [tk, tk+1), (3)

i.e. the input is constant between two consecutive sampling
times tk, tk+1, and is only updated at sampling times. By
introducing the measurement error:

ε(t) = ζ(tk)− ζ(t), t ∈ [tk, tk+1),
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i.e. the deviation of the current state ζ(t) from the last
sampled state ζ(tk), we can write (3) as:

ζ̇(t) = f(ζ(t), v(ζ(t) + ε(t))), t ∈ [tk, tk+1). (4)

In event-triggered control (ETC) the sampling time instants,
or triggering times, are defined as follows:

tk+1 := tk + inf{t > 0 : φ(ζ(t;xk), ε(t)) ≥ 0}, (5)

where xk is the state measurement from the previous sam-
pling time tk and φ(·, ·) is the triggering function. Equation
(5) is the triggering condition, and the difference tk+1 − tk
is called inter-event time. Every point xk ∈ Rn in the state
space of (4) admits a specific inter-event time τ : Rn → R+:

τ(xk) := inf{t > 0 : φ(ζ(t;xk), ε(t)) ≥ 0}. (6)

For ease of exposition, we consider the most popular trig-
gering function for nonlinear systems, derived in [2]:

φ(ζ(t;xk), ε(t)) := |ε(t)|2 − σ2|ζ(t;xk)|2, (7)

where σ is a constant. According to [2], φ(·, ·) is designed
such that the ETC implementation (4)-(5) is globally asymp-
totically stable, i.e.: φ(ζ(t), ε(t)) < 0 =⇒ V̇ (ζ(t)) < 0,
where V (ζ(t)) is a Lyapunov function for the ETC system.

The ETC system (4) can be written in the following
extended form, with state vector ξ(t) =

[
ζ>(t) ε>(t)

]> ∈
R2n and dynamics:

ξ̇(t) =

[
f(ζ(t), v(ζ(t) + ε(t)))
−f(ζ(t), v(ζ(t) + ε(t)))

]
= F (ξ(t)), t ∈ [tk, tk+1),

ξ(tk+1) =

[
ζ(t−k+1)

0

]
.

(8)
While ζ(t) flows continuously for all time, ε(t) performs
jumps at each sampling time, because the state is measured
again and the measurement error becomes zero. The reach-
able sets of the original ETC system (3) are the projection of
the reachable sets of the extended one (8) to the ζ variables:

X ft?(If ) = πζXFt? (IF ), (9)

where IF = {
[
x> 0>

]> ∈ R2n : x ∈ If}.
D. Homogeneous Systems and Scaling of Inter-Event Times

We recall results derived in [5] regarding the scaling law
of homogeneous ETC systems’ inter-event times. For clarity,
we consider the classical notion of homogeneity, with respect
to the standard dilation (for more information see [21]):

Definition II.7 (Homogeneous Function [21]). A function
f : Rn → Rm is homogeneous of degree α ∈ R, if for all
x ∈ Rn and λ > 0:

f(λx) = λα+1f(x).

A system (2) is homogeneous of degree α, if f(ζ, υ(ζ)) :=
f̃(ζ) is homogeneous of the same degree. Inter-event times
of homogeneous ETC systems follow a scaling law along
homogeneous rays, i.e. lines starting from the origin:

Theorem II.2 (Scaling Law [5]). Consider an ETC system
(4)-(5). Assume that (8) is homogeneous of degree α, and
that the triggering function is homogeneous of degree θ. For
all x ∈ Rn, the inter-event times defined by (6) scale as:

τ(λx) = λ−ατ(x), λ > 0, (10)

III. PROBLEM STATEMENT

We aim at constructing traffic abstractions of nonlinear
homogeneous ETC systems (4)-(5). Thus, we adopt the
following set of Assumptions:

Assumption 1. We assume that: 1) the extended ETC system
(8) is sufficiently smooth and homogeneous of degree α ≥ 1,
and 2) the triggering function is the one defined in (7).

Remark 1. As in [7], the results of this work are applicable
to more general triggering functions φ(·, ·) satisfying:
• φ(·, ·) is homogeneous of degree θ ≥ 1,
• for all x ∈ Rn \ {0}, φ(ζ(0;x), ε(0)) < 0 and ∃tx ∈

(0,+∞) such that φ(ζ(tx;x), ε(tx)) = 0.
In Section VI, the extension to general nonlinear systems and
triggering functions is briefly discussed.

The task of abstracting LTI ETC systems has been already
carried out in [16]. Thus, we adopt a similar problem
formulation. We introduce the system

S = (X,X0, U,−→, Y,H), (11)

where X = X0 ⊆ Rn, U is a singleton (the system is
autonomous), Y ⊆ R+, H(x) = τ(x) and the transition
relation −→⊆ X × X is such that (x, x′) ∈−→ ⇐⇒
ζ(τ(x);x) = x′. The above system’s set of output sequences
is the collection of all sequences of inter-event times that the
ETC system (4)-(5) can exhibit, i.e. it captures exactly the
traffic generated by the ETC system. However, (11) is an
infinite-state system and cannot serve as a finite handleable
abstraction of the ETC system. This leads us to the following:

Problem Statement. Consider the system (11). Construct
an equivalence relation Q ⊆ X ×X and a power quotient
system S/Q = (X/Q, X0/Q , U/Q,−→

/Q
, Y/Q, H/Q) with:

• X/Q = X0/Q = X/Q := {R1,1, . . . ,Ri,j , . . . ,Rq,m},
• U/Q = U ,
• (x/Q, x

′
/Q) ∈−→

/Q
if ∃x ∈ x/Q and ∃x′ ∈ x′/Q such that

ζ(H(x);x) = x′,
• Y/Q ⊆ 2Y = 2R

+

,
• H/Q(x/Q) := [τx/Q , τx/Q ], with:

τx/Q ≤ inf
x∈x/Q

H(x), τx/Q ≥ sup
x∈x/Q

H(x). (12)

The reason to use the i, j-subscript on Ri,j will become
clear later. Note that: a) the power quotient system’s states
are regions in the ETC system’s state-space, b) a transition
in the quotient system takes place when the ETC system
triggers and c) the outputs of the quotient system are intervals
containing the corresponding outputs of (11), i.e. the ETC
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system’s inter-event times. Hence, each possible sequence of
the ETC system’s inter-event times is captured by an output
sequence of the power quotient system; the power quotient
system abstracts the ETC system’s timing behaviour.

IV. CONSTRUCTING THE ABSTRACTION

In this section, we construct the abstraction S/Q, i.e. we
construct Q, X/Q, H/Q(x/Q) and −→

/Q
. In [16], to get X/Q

the state-space is partitioned into a finite number of cones.
Afterwards, the bounds τx/Q , τx/Q for each conic region are
computed via LMIs. To obtain the transitions, reachability
analysis on each set x/Q is performed.

In this work we adopt a different approach, regarding
the partitioning of the state-space and the computation of
τx/Q and τx/Q . In particular, first a finite set of lower
bounds on inter-event times {τ1, . . . , τ q} is fixed, that serve
as τx/Q . Then, by considering intersections of cones with
inner approximations of isochronous manifolds, previously
constructed in [7], the regions {R1,1, . . . ,Ri,j , . . . ,Rq,m}
are derived such that:

∀x ∈ Ri,j : τ(x) ≥ τ i, (13)

which implies that the first part of (12) is satisfied. After-
wards, to perform reachability analysis on the regions Ri,j ,
and since they obtain a transcendental representation, we
overapproximate them by semi-algebraic ball segments R̂i,j .
Finally, the upper bounds τx/Q and the transitions −→

/Q
are

determined concurrently, via reachability analysis on R̂i,j .
A. Lower Bounds on Inter-Event Times and State-Space
Partitioning

First, we recall the notion of isochronous manifolds of
ETC systems, which was firstly introduced in [21]:

Definition IV.1 (Isochronous Manifolds). Consider an ETC
system (4)-(5). The set Mτ? = {x ∈ Rn : τ(x) = τ?}, where
τ(x) is as in (6), is called isochronous manifold of time τ?.

In other words, the isochronous manifold Mτ? consists of
all points in the state-space of an ETC system that correspond
to the same inter-event time τ?. Isochronous manifolds are
manifolds of dimension n− 1 (proven in [21]).

Proposition IV.1 ([21]). Consider an ETC system (4)-(5),
and let Assumption 1 hold. Each homogeneous ray intersects
any isochronous manifold only at one point:

∀τ? > 0 and ∀x ∈ Rn\{0} : ∃!λx > 0 such that λxx ∈Mτ?

(14)

Proposition IV.2 ([7]). Consider an ETC system (4)-(5), and
let Assumption 1 hold. Consider isochronous manifolds Mτi

and Mτi+1
, with τi < τi+1. For all x ∈Mτi :

∃!λx ∈ (0, 1) s.t. λxx ∈Mτi+1∧ 6 ∃κx ≥ 1 s.t. κxx ∈Mτi+1 .
(15)

Proposition (IV.2) implies that isochronous manifolds that
correspond to smaller inter-event times are further away from

the origin in every direction. The two above propositions
are depicted in Fig. 1. Now, consider the region which is

Fig. 1: Isochronous manifolds Mτ1 , Mτ2 (τ1 < τ2). They are
intersected by homogeneous rays only once. Mτ1 is further
away from the origin in every direction compared to Mτ2 .

enclosed by two isochronous manifolds Mτi and Mτi+1 with
τi < τi+1. The scaling law (10) directly implies that τi lower
bounds the inter-event times of all points in this region, i.e.
(13) holds. Thus, if we could obtain these regions we would
solve the problem of state-space partitioning. However, these
exact regions cannot be derived analytically, since nonlinear
systems generally do not obtain closed form solutions.

In [7], inner-approximations Mτ?
of isochronous mani-

folds Mτ? , that satisfy (14), (15), were derived analytically. It
was shown that the regions enclosed by such approximations
do satisfy (13). Hence, we use them to partition the state-
space and determine the abstraction’s states. Let us recall the
method presented in [7]. First, define the sets:

Ωd := {x ∈ R2n : |x| < d}, Z := {x ∈ Rn : V (x) ≤ c},
E := {e ∈ Rn : e = x0 − x, x0, x ∈ Z}, Ξ := Z× E,

where d, c > 0 and V (x) is a Lyapunov function for the ETC
system (4). The first step to obtain the inner-approximations
is to solve the following feasibility problem:

Problem 1. Find coefficients δ0, δ1, . . . , δp ∈ R+
0 such that:

LpFφ(z, e) ≤
p−1∑
i=0

δiLiFφ(z, e) + δp, ∀
[
z> e>

]> ∈ Ωd,

δ0φ(z, 0) + δp ≥ ε > 0, ∀z ∈ Z,

where F is defined in (8), p > 0 is a user-defined positive
integer, ε is an arbitrary positive constant, and c, d are such
that Ξ ⊂ Ωd.

In [7], a computational algorithm has been developed that
solves the above problem. Note that there always exists a
solution; e.g. δp ≥ max{ε, sup

z∈Ωd

LpFφ(z)} and δi = 0 for

i = 0, . . . , p− 1. Having obtained such δi ∈ R+
0 , the inner-

approximations of isochronous manifolds are derived:

Theorem IV.1 ([7]). Consider an ETC system (4)-
(5), a triggering function φ(ζ(t;x), ε(t)), and coefficients
δ0, δ1, . . . , δp solving Problem 1. Let Assumption 1 hold. Let
Dρ = {x ∈ Rn : |x| = ρ}, with ρ > 0 such that Dρ ⊂ Z.
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Define the following function for all x ∈ Rn \ {0}:

µ(x, t) := C( |x|ρ )θ+1eA(
|x|
ρ )αt



φ(ρ x
|x| , 0)

max

(
Lfφ(ρ x

|x| , 0), 0

)
...

max

(
Lp−1
f φ(ρ x

|x| , 0), 0

)
δp


,

(16)
where:

A =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 1 0
δ0 δ1 δ2 . . . δp−1 1
0 0 0 . . . 0 0


, C =


1
0
...
0


>

,

and α and θ are the degrees of homogeneity of the system
and the triggering function, respectively. The set Mτ?

:=
{x ∈ Rn : µ(x, τ?) = 0} satisfies (14) and (15) and is an
inner-approximation of the isochronous manifold Mτ? .

Regarding the regions enclosed by inner-approximations
of isochronous manifolds, we get that (13) is satisfied:

Proposition IV.3 ([7]). Consider the following set:

Ri := {x ∈ Rn : µ(x, τ i+1) > 0, µ(x, τ i) ≤ 0}, (17)

with 0 < τ i < τ i+1. The set Ri satisfies (13), i.e. τ(x) ≥ τ i,
for all x ∈ Ri.

The sets Ri are the regions with their outer and inner
boundaries being Mτ i

and Mτ i+1
respectively (see Fig.

2). Since Ri satisfy (13), we could directly use them to

Fig. 2: Inner-approximations Mτ i
of isochronous manifolds

and the regions enclosed by them Ri.

partition the state-space as required. However, these sets
are generally large, which could harm the accuracy of the
reachability analysis that is to be conducted afterwards. Thus,
we further divide them, using conic intersections. We create
a state-space covering by m cones (see [6]), which admit the
representation:

Cj := {x ∈ Rn : Ejx � 0}, j = 1, . . . ,m. (18)

The sets {R1,1, . . . ,Rq,m} are obtained as intersections
of regions Ri with cones Cj : We fix a set of q times
{τ1, . . . , τ q} that serve as lower bounds on inter-event times,
and obtain the regions {R1, . . . ,Rq} from (17). Then, em-
ploying a covering by m cones, we derive the sets Ri,j as

Ri,j := Ri ∩ Cj , (19)

where i = 1, . . . , q and j = 1, . . . ,m (see Fig. 3). Since
Ri,j ⊂ Ri, from (13) we get that τ(x) ≥ τ i for all x ∈ Ri,j .
Thus, we can fix:

τRi,j := τ i. (20)

It is straightforward to design the equivalence relation Q as:

Fig. 3: State-space partitioning into regions Ri,j .

Q := {(x, y) ∈ Rn × Rn : x ∈ Ri,j ⇐⇒ y ∈ Ri,j}.
Remark 2. To define the regions Rq,j (e.g. see the white
innermost regions in Fig. 3), we cannot use (17), since there
is no τ q+1. Thus, we define Rq := {x ∈ Rn : µ(x, τ q) ≤ 0}
and Rq,j := Rq ∩ Cj . Observe that (13) still holds.

B. Overapproximations of the sets Ri,j
To obtain the upper bounds τx/Q and the state transi-

tions, reachability analysis on the regions Ri,j is conducted.
However, it is obvious from (16) and (17) that the sets
Ri,j are transcendental, which renders their computational
handling very difficult. To the authors’ knowledge, there are
no reachability analysis tools that can handle effectively such
sets. Hence, we have to overapproximate them.

In general, the overapproximation of transcendental sets is
very challenging. However, leveraging special characteristics
of the specific representation, we devised an algorithm that
overapproximates the sets Ri,j by ball segments (Fig. 4):

R̂i,j := {x ∈ Cj : ri+1,j ≤ |x| ≤ ri,j}. (21)

Note that, since Ri,j ⊆ R̂i,j , the following holds:

X f[τRi,j ,τRi,j ](Ri,j) ⊆ X
f
[τRi,j

,τRi,j ](R̂i,j). (22)

To obtain the ball segments (21), ri+1,j and ri,j must be
determined; i.e. spherical segments (intersections of spheres
with cones) that inner- and outer- approximate the conic
sections Mτ i+1

∩ Cj and Mτ i
∩ Cj , respectively, have to be

found (see Fig. 4). A whole sphere Sr := {x ∈ Rn : |x| = r}
inner-approximates the whole Mτ?

if it lies entirely in the
region enclosed by Mτ?

, that is if µ(x, τ?) ≤ 0 for all
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Fig. 4: Ball segment R̂i,j (blue region) overapproximating
Ri,j (region delimited by the red lines and the cone).

x ∈ Sr. Likewise, a spherical segment Sr?,j ∩ Cj inner-
approximates Mτ?

∩ Cj if the following holds:

∀x ∈ Sr?,j ∩ Cj : µ(x, τ?) ≤ 0. (23)

Formulas like (23) can be verified or disproved by SMT
solvers, e.g. dReal [22]. Thus, a line search on r?,j could
be employed, by iteratively checking (23). In our case
though, µ(x, τ?) ≤ 0 implies the numerically non-robust
symbolic computation of the matrix exponential eA(

|x|
ρ )ατ?

over the symbolic variable x. Luckily, since we want to
verify µ(x, τ?) ≤ 0 on a spherical segment Sr?,j ∩ Cj ,
we can fix |x| ← r?,j , which renders the symbolic matrix
exponential a regular numerical one and severely relaxes
computations, i.e. eA(

|x|
ρ )ατ? = eA(

r?,j
ρ )ατ? for all x ∈

Sr?,j ∩ Cj . This is done by fixing the first argument of
µ(·, τ?) as: µ( x

|x|r?,j , τ?). Consequently, in order to find a
spherical inner-approximation Sr?,j ∩Cj of the conic section
Mτ?

∩ Cj , we employ a line search on the radius r?,j and
check iteratively by an SMT solver the following condition:

∀x ∈ Sr?,j ∩ Cj : µ(
x

|x|r?,j , τ?) ≤ 0. (24)

By reversing inequality (24) we determine an outer-
approximation Sr?,j ∩Cj of Mτ?

∩Cj . Fig. 5 shows spherical
inner/outer-approximations of Mτ?

for each conic section.

Fig. 5: Spherical inner- and outer-approximations for each
conic section of Mτ?

.

Until now, we have only done this for one Mτ?
. To derive

such approximations for all Mτ i
, first observe from (16) that

µ(λx, t) = λθ+1µ(x, λαt). This implies that x ∈ Mτ?
=⇒

λx ∈ Mλ−ατ?
, i.e. in every direction of the state-space

the sets Mτ?
scale according to their associated time τ?.

Thus, if Sr?,j ∩ Cj is an inner-approximation of Mτ?
∩ Cj ,

then Sλr?,j ∩ Cj is an inner-approximation of Mλ−ατ?
∩ Cj .

Consequently, to obtain inner- and outer-approximations of

all conic sections Mτ i
∩ Cj (i = 1, . . . , q), we scale the

obtained radii accordingly by corresponding factors λi =(
τ?
τ i

) 1
α

, so that we get: ri,j = λir?,j and ri,j = λir?,j .
Finally, as soon as all radii ri,j , ri,j are obtained, the regions
Ri,j are overapproximated by ball segments R̂i,j (21).

Remark 3. For sets Rq,j , which contain the origin, there is
no radius rq+1,j that defines R̂q,j as in (21), since there is
no Mτq+1

. For these sets, we define the overapproximations

as: R̂q,j = {x ∈ Cj : |x| ≤ rq,j}.
C. Upper Bounds on Inter-Event Times and State Transitions

To complete the construction, what remains is to obtain the
upper bounds τRi,j and the state transitions. Let us recall the
definition of transitions for the power quotient system:

(x/Q, x
′
/Q) ∈−→

/Q
if:

∃x ∈ x/Q and ∃x′ ∈ x′/Q such that ζ(H(x);x) = x′.

To determine such transitions, the inter-event time τ(x) =
H(x) has to be known a priori and the trajectories starting
from all x ∈ x/Q have to be computed, which is impossible.
Thus, we choose to relax the definition of transitions as:

(x/Q, x
′
/Q) ∈−→

/Q
if:

∃x ∈ x/Q and ∃x′ ∈ x′/Q such that x′ ∈ X fH/Q(x/Q)(x),

i.e. if there exists a state x′ in the region x′/Q that is
reachable from at least one state x ∈ x/Q in the interval
H/Q(x/Q) := [τx/Q , τx/Q ]. This characterization of transi-
tions involves conducting reachability analysis and comput-
ing set-intersections on the transcendental sets Ri,j . Thus,
we relax the characterization once more, motivated by (22),
using the overapproximations R̂i,j :

(Ri,j ,Ra,b) ∈−→
/Q

if: X f[τRi,j ,τRi,j ](R̂i,j) ∩ R̂a,b 6= ∅.
(25)

Hence, if the upper bounds τRi,j are known, we can de-
termine transitions from each Ri,j by the above formula. In
this subsection, we show how to determine the upper bounds
and the transitions concurrently, via reachability analysis.

For a certain region R̂i,j we fix the reachability-analysis
time-interval as [τRi,j , τmax], where τmax is user-specified.
Reachability analysis is conducted on the extended state ETC
system (8). The following two sets are defined:

IF := {(x,0) ∈ R2n : x ∈ R̂i,j}, (26)

UF := {(x, e) ∈ R2n : φ(x, e) ≤ 0}, (27)

where φ is the triggering function. The set IF serves as the
initial set, while UF serves as the unsafe set. By checking if
the system’s trajectories are in UF at time τmax, we check
if τmax is an upper bound on inter-event times:

Proposition IV.4. If XFτmax
(IF ) ∩ UF = ∅, where F (·) is

defined in (8) and IF and UF are defined in (26)-(27), then:

∀x ∈ Ri,j : τ(x) ≤ τmax. (28)
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Proof. If XFτmax
(IF ) ∩ UF = ∅, then for all x ∈ R̂i,j :

φ(ζ(τmax;x), ε(τmax)) > 0. Thus, τ(x) ≤ τmax for all
x ∈ R̂i,j , and since Ri,j ⊆ R̂i,j , we get (28).

Obviously, in order to find an upper-bound on inter-event
times for a region Ri,j , a line search on τmax is needed. As
soon as the upper-bounds τRi,j are obtained, to determine
the transitions from each Ri,j we employ equations (9), (25)
and the already computed flowpipes XF[τRi,j ,τRi,j ](IF ):

X f[τRi,j ,τRi,j ](R̂i,j) ∩ R̂a,b = πζXF[τRi,j ,τRi,j ](IF ) ∩ R̂a,b.
(29)

Remark 4. Instead of computing timing upper bounds for
all Ri,j , one could compute them only for regions Ri,j for
a fixed i and for all j, and then use the scaling law (10)
to determine the upper bounds for all Ri,j . Also, flows of
homogeneous systems scale as: ζ(t;λx) = λζ(λαt;x), which
could similarly be employed to determine transitions for all
Ri,j , based on transitions of regions Ri,j for a fixed i.

Remark 5. For regions Rq,j , which contain the origin, there
is no upper bound on inter-event times, since the origin’s
inter-event time is theoretically ∞. For these regions, we
arbitrarily dictate an upper bound τRq,j ≥ τRq,j and force
the sensors to close the sampling loop whenever the system’s
last measured state xk−1 ∈ Rq,j and t = tk−1 + τRq,j .

Finally, for the constructed abstraction we have:

Proposition IV.5. The constructed metric system S/Q ε-
approximately simulates (11), with ε ≤ max

i,j
{τRi,j − τRi,j}.

Proof. It is a direct result of Lemma II.1.

Thus, the constructed abstraction can be used for schedul-
ing, as described in [17].

V. NUMERICAL EXAMPLE

Consider the following nonlinear ETC system:

ζ̇1 = ζ3
1 + ζ1ζ

2
2 , ζ̇2 = ζ1ζ

2
2 − ζ2

1ζ2 + υ(ζ, ε) (30)

with υ(ζ, ε) = −(ζ2 + ε2)3 − (ζ1 + ε1)(ζ2 + ε2)2. The
corresponding extended ETC system (8) is homogeneous of
degree α = 2. A triggering function, used in [21], rendering
the ETC implementation asymptotically stable is:

φ(ζ(t;x), ε(t)) = |ε(t)|2 − 0.01272 · 0.32|ζ(t;x)|2,
For the abstraction, we fix {τ1, τ2, τ3} = {4, 8, 20}·10−4,

which serve as timing lower bounds τRi,j of the abstraction’s
regions, and the number of cones m = 16. The abstraction is
composed of 48 regions Ri,j . Fig. 6 depicts the state-space
partitioning into regions Ri,j created by the cones Cj (black
rays) and the approximations of isochronous manifolds Mτ i
(blue curves), which were derived using Theorem IV.1 and
the computational algorithm of [7]. The red spherical seg-
ments and the corresponding cones, show the boundaries of
the overapproximations R̂2,j for regions R2,j , obtained as
described in Section IV-B. Observe that the sets R̂i,j are

relatively accurate overapproximations of Ri,j . The accuracy
can be improved by increasing the number of cones or
reducing the line search’s step size, at the expense of heavier
computations.

Fig. 6: State-space partitioning into 48 regions Ri,j , de-
limited by 16 cones Cj (black rays) and 3 approximations
of isochronous manifolds Mτ i

(blue curves), for times
{τ1, τ2, τ3} = {4, 8, 20} · 10−4. The red segments delimit
the overapproximations R̂2,j of regions R2,j .

Fig. 7 shows the timing lower bounds τRi,j , which were
predefined, and upper bounds τRi,j for each region Ri,j ,
which were obtained via reachability analysis, as described
in Section 4.3. Recall from Remark 5 that the timing upper
bounds for the regions R3,j are fixed arbitrarily, such that
τR3,j ≥ τR3,j

. Here, we fixed them in such a way that they
follow the spatial trend of the upper bounds τRi,j (i 6= 3). By
Proposition IV.5, the abstraction’s precision is ε ≤ 0.0035.

R1,1 R1,8 R2,1 R2,8 R3,1 R3,8 R3,16

0.001

0.002

0.003

0.004

0.005 τRi,j

τRi,j

Fig. 7: Lower bounds τRi,j and upper bounds τRi,j of inter-
event times for each region Ri,j .

In Fig. 8, each dotted point (a, b) denotes a transition
from region a to region b. First, we observe that there
exists a transition from each region R3,j to any region R3,k.
This is expected, as these regions intersect at the origin.
However, note that each one generally corresponds to a
different set of transitions. Hence, they do serve as distinct
states of the abstraction. Overall, there are 536 transitions.
The reachability analysis was carried out with dReach [18].

Finally, we carried out a simulation to verify our results.
The initial condition is set to

[
1.5 2

]>
and the simulation
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R1,1 R1,8 R2,1 R2,8 R3,1 R3,8 R3,16

R1,1

R1,8

R2,1

R2,8

R3,1

R3,8

R3,16

Fig. 8: Transitions between regions Ri,j .

duration is 0.8s. The red line in Fig. 9 shows the evolution
of inter-event times of the ETC system, and the blue lines
represent the bounding intervals [τRi,j , τRi,j ] generated by
the abstraction, i.e. its output sequence. It is obvious that
the abstraction’s output sequence confines the ETC system’s
inter-event times, as expected. Moreover, the system’s tra-
jectory starting from R1,3 followed the spatial path: R1,3 →
R1,3 → · · · → R1,2 → R1,2 → · · · → R2,2 → R2,2 →
· · · → R3,2 → R3,2 → . . . . Indeed, Fig. 8 shows that the
followed path is contained in the abstraction’s transition set.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

0.001

0.002

0.003

0.004

0.005

Fig. 9: The ETC system’s inter-event times’ evolution (red
line) and the bounding intervals [τRi,j , τRi,j ] generated by
the abstraction (blue lines) during a simulation.

VI. DISCUSSION AND FUTURE WORK

We constructed abstractions of nonlinear homogeneous
ETC systems that can be employed for traffic scheduling
in NCS, as shown in [17], thus contributing to the solution
of a prominent problem of ETC. Next step is extending
this method to general nonlinear systems and triggering
functions. For this purpose, the procedure proposed in [21]
can be used, which renders any system/triggering function
homogeneous by embedding it into Rn+1 and adding an extra
variable w. In this case, the original system’s trajectories
are the ones of the extended homogeneous one confined
to the w = 1 plane. Thus, approximations of the extended
system’s isochronous manifolds could be used (see [7], [21]).
However, new challenges arise, as e.g. the extended system’s
isochronous manifolds obtain a singularity at the origin.
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