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Towards Totally Asynchronous Primal-Dual Convex Optimization in

Blocks

Katherine R. Hendrickson and Matthew T. Hale∗

Abstract

We present a parallelized primal-dual algorithm for solving constrained convex optimization problems. The

algorithm is “block-based,” in that vectors of primal and dual variables are partitioned into blocks, each of which is

updated only by a single processor. We consider four possible forms of asynchrony: in updates to primal variables,

updates to dual variables, communications of primal variables, and communications of dual variables. We explicitly

construct a family of counterexamples to rule out permitting asynchronous communication of dual variables, though

the other forms of asynchrony are permitted, all without requiring bounds on delays. A first-order update law is

developed and shown to be robust to asynchrony. We then derive convergence rates to a Lagrangian saddle point in

terms of the operations agents execute, without specifying any timing or pattern with which they must be executed.

These convergence rates contain a synchronous algorithm as a special case and are used to quantify an “asynchrony

penalty.” Numerical results illustrate these developments.

I. INTRODUCTION

A wide variety of machine learning problems can be formalized as convex programs [3], [6], [20], [21]. Large-

scale machine learning then requires solutions to large-scale convex programs, which can be accelerated through

parallelized solvers running on networks of processors. In large networks, it is difficult (or outright impossible)

to synchronize their behaviors. The behaviors of interest are computations, which generate new information,

and communications, which share this new information with other processors. Accordingly, we are interested in

asynchrony-tolerant large-scale optimization.

The challenge of asynchrony is that it causes disagreements among processors that result from receiving different

information at different times. One way to reduce disagreements is through repeated averaging of processors’ iterates.

This approach dates back several decades [24], and approaches of this class include primal [16]–[18], dual [7], [22],

[23], and primal-dual [14], [26] algorithms. However, these averaging-based methods require bounded delays in

some form, often through requiring connectedness of agents’ communication graphs over intervals of a prescribed

length [4, Chapter 7]. In some applications, delays are outside agents’ control, e.g., in a contested environment

where communications are jammed, and thus delay bounds cannot be reliably enforced. Moreover, graph connectivity

cannot be easily checked locally by individual agents, meaning even satisfaction or violation of connectivity bounds

is not readily ascertained. In addition, these methods require multiple processors to update each decision variable,
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which duplicates computations and increases processors’ workloads. This can be prohibitive in large problems, such

as learning problems with billions of data points.

Therefore, in this paper we develop a parallelized primal-dual method for solving large constrained convex

optimization problems. Here, by “parallelized,” we mean that each decision variable is updated only by a single

processor. As problems grow, this has the advantage of keeping each processor’s computational burden approximately

constant. The decision variables assigned to each processor are referred to as a “block,” and block-based algorithms

date back several decades as well [2], [24]. Those early works solve unconstrained or set-constrained problems, in

addition to select problems with functional constraints [4]. To bring parallelization to arbitrary constrained problems,

we develop a primal-dual approach that does not require constraints to have a specific form.

Block-based methods have previously been shown to tolerate arbitrarily long delays in both communications

and computations in unconstrained problems [2], [13], [25], eliminating the need to enforce and verify delay

boundedness assumptions. For constrained problems of a general form, block-based methods have been paired with

primal-dual algorithms with centralized dual updates [10], [12] and/or synchronous primal-updates [15]. To the best

of our knowledge, arbitrarily asynchronous block-based updates have not been developed for convex programs of a

general form. A counterexample in [12] suggested that arbitrarily asynchronous communications of dual variables

can preclude convergence, though that example leaves open the extent to which dual asynchrony is compatible with

convergence.

In this paper, we present a primal-dual optimization algorithm that permits arbitrary asynchrony in primal

variables, while accommodating dual asynchrony to the extent possible. Four types of asynchrony are possible:

(i) asynchrony in primal computations, (ii) asynchrony in communicating primal variables, (iii) asynchrony in dual

computations, (iv) asynchrony in communicating dual variables. The first contribution of this paper is to show that

item (iv) is fundamentally problematic using an explicit family of counterexamples that we construct. This family

shows, in a precise way, that even small disagreements among dual variables can cause primal computations to

diverge. For this reason, we rule out asynchrony in communicating dual variables. However, we permit all other

forms of asynchrony, and, relative to existing work, this is the first algorithm to permit arbitrarily asynchronous

computations of dual variables in blocks.

The second contribution of this paper is to establish convergence rates. These rates are shown to depend

upon problem parameters, which lets us calibrate their values to improve convergence. Moreover, we show that

convergence can be inexact due to dual asynchrony, and thus the scalability of parallelization comes at the expense

of a potentially inexact solution. We term this inexactness the “asynchrony penalty,” and we give an explicit bound

on it. Simulation results show convergence of this algorithm in practice, and illustrate concretely that the asynchrony

penalty is slight.

The rest of the paper is organized as follows. Section II provides the necessary background on convex optimization

and formally gives the asynchronous primal-dual problem statement. Then Section III discusses four possible asyn-

chronous behaviors, provides a counterexample to complete asynchrony, and presents our asynchronous algorithm.

Primal and dual convergence rates are developed in Section IV. Section V presents a numerical example with
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implications for relationships among parameters. Finally, we present our conclusions in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT

We study the following form of optimization problem.

Problem 1: Given h : Rn → R, g : Rn → R
m, and X ⊂ R

n, asynchronously solve

minimize h(x)

subject to g(x) ≤ 0

x ∈ X. ♦

We assume the following about the objective function h.

Assumption 1: h is twice continuously differentiable and convex. △

We make a similar assumption about the constraints g.

Assumption 2: g satisfies Slater’s condition, i.e., there exists x̄ ∈ X such that g
(

x̄
)

< 0. For all j ∈ {1, . . . ,m},

the function gj is twice continuously differentiable and convex. △

Assumptions 1 and 2 permit a wide range of functions to be used, such as all convex polynomials of all orders.

We impose the following assumption on the constraint set.

Assumption 3: X is non-empty, compact, and convex. It can be decomposed into X = X1 × · · · ×XN . △

Assumption 3 permits many sets to be used, such as box constraints, which often arise multi-agent optimiza-

tion [19].

We will solve Problem 1 using a primal-dual approach. This allows the problem to be parallelized across many

processors by re-encoding constraints through Karush-Kuhn-Tucker (KKT) multipliers. In particular, because the

constraints g couple the processors’ computations, they can be difficult to enforce in a distributed way. However, by

introducing KKT multipliers to re-encode constraints, we can solve an equivalent, higher-dimensional unconstrained

problem.

An ordinary primal-dual approach would find a saddle point of the Lagrangian associated with Problem 1, defined

as L(x, µ) = h(x) + µT g(x). That is, one would solve minx maxµ L(x, µ). However, L is affine in µ, which

implies that L(x, ·) is concave but not strongly concave. Strong convexity has been shown to provide robustness

to asynchrony in minimization problems [4], and thus we wish to endow the maximization over µ with strong

concavity. We use a Tikhonov regularization [8, Chapter 12] in µ to form

Lδ(x, µ) = h(x) + µT g(x)−
δ

2
‖µ‖2, (1)

where δ > 0.

Instead of regularizing with respect to the primal variable x, we impose the following assumption in terms of

the Hessian H(x, µ) = ∇2
xLδ(x, µ). When convenient, we suppress the arguments x and µ.
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Assumption 4 (Diagonal Dominance): The n × n Hessian matrix H = ∇2
xLδ(x, µ) is β-diagonally dominant.

That is, for all i from 1, . . . , n,

|Hii| − β ≥
n
∑

j=1
j 6=i

|Hij |. △

If this assumption does not hold, the Lagrangian can be regularized with respect to the primal variable as well,

leading to H’s diagonal dominance. Some problems satisfy this assumption without regularizing [9], and, for such

problems, we proceed without regularizing to avoid regularization error.

Under Assumptions 1-4, Problem 1 is equivalent to the following saddle point problem.

Problem 2: Let Assumptions 1-4 hold and fix δ > 0. For Lδ defined in Equation (1), asynchronously compute

(

x̂δ, µ̂δ) := argmin
x∈X

argmax
µ∈Rm

+

Lδ(x, µ). ♦

It is in this form that we will solve Problem 1, and we present our algorithm for doing so in the next section.

III. ASYNCHRONOUS PRIMAL-DUAL ALGORITHM

One challenge of Problem 2 is that µ̂δ is maximized over the unbounded domain R
m
+ , which is the non-

negative orthant of R
m. Because this domain is unbounded, gradients and other terms are unbounded, which

makes convergence analysis challenging as dual iterates may not be within a finite distance of the optimum. To

remedy this problem, we next compute a non-empty, compact, and convex set M that contains µ̂δ.

Lemma 1: Let Assumptions 1-4 hold, let x̄ be a Slater point of g, and set h∗ := minx∈X h(x). Then

µ̂δ ∈ M :=

{

µ ∈ R
m
+ : ‖µ‖1 ≤

h(x̄)− h∗

min
1≤j≤m

−gj(x̄)

}

.

Proof: Follows Section II-C in [11]. �

Here, h∗ denotes the optimal unconstrained objective function value, though any lower-bound for this value will

also provide a valid M . In particular, h is often non-negative and one can substitute 0 in place of h∗ in such cases.

Solving Problem 2 asynchronously requires choosing an update law that we expect to be robust to asynchrony

and simple to implement in a distributed fashion. In this context, first-order gradient-based methods offer both

some degree of inherent robustness, as well as computations that are simpler than other available methods, such

as Newton-type methods. We apply a projected gradient method to both the primal and dual variables, which is

shown in Algorithm 1, and is based on the seminal Uzawa iteration [1].

Algorithm 1

Let x(0) and µ(0) be given. For values k = 0, 1, ..., execute

x(k + 1) = ΠX [x(k) − γ(∇xLδ(x(k), µ(k)))] (2)

µ(k + 1) = ΠM [µ(k) + γ(∇µLδ(x(k), µ(k)))]

where γ is a step-size, ΠX is the Euclidean projection onto X , and ΠM is the Euclidean projection onto M .
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A. Overview of Approach

We are interested in distributing Algorithm 1 among a number of processors while allowing agents to generate

and share information as asynchronously as possible. We consider N agents indexed over a ∈ [N ] := {1, . . . , N}.

We partition the set [N ] into [Np] and [Nd] (where Np + Nd = N ). The set [Np] contains indices of agents that

update primal variables (contained in x), while [Nd] contains indices of agents that update dual variables (contained

in µ). Using a primal-dual approach, there are four behaviors that could be asynchronous: (i) computations of

updates to primal variables, (ii) communications to share updated values of primal variables, (iii) computations of

updates to dual variables, and (iv) communications to share updated values of dual variables.

(i) Computations of Updates to Primal Variables: When parallelizing Equation (2) across the Np primal agents,

we index all primal agents’ computations using the same iteration counter, k ∈ N. However, they may perform

updates at different times. The subset of times at which primal agent i ∈ [Np] computes an update is denoted

by Ki ⊂ N. For distinct i, j ∈ [Np], K
i and Kj need not have any relationship.

(ii) Communications of Updated Primal Variables: Primal variable communications are also totally asyn-

chronous. A primal variable’s current value may be sent to other primal and dual agents that need it at each time k.

We use the notation P i
j to denote the set of times1 at which primal agent i sends values of its primal variables to

agent j. Similarly, we use the notation Di
c to denote the set of times at which primal agent i sends updated values

to dual agent c ∈ [Nd].

(iii) Computations of Updates to Dual Variables: Dual agents wait for each primal agent’s updated state before

computing an update. Dual agents may perform updates at different times because they may receive primal updates

at different times. In some cases, a dual agent may receive multiple updates from a subset of primal agents prior

to receiving all required primal updates. In this case, only the most recently received update from a primal agent

will be used in the dual agent’s computation. For all c ∈ [Nd], dual agent c keeps an iteration count tc to track the

number of updates it has completed.

(iv) Communications of Updated Dual Variables: Previous work [12] has shown that allowing primal agents

to disagree arbitrarily about dual variables can outright preclude convergence. This is explained by the following:

fix µ1, µ2 ∈ M . Then an agent with µ1 onboard is minimizing L(·, µ1), while an agent with µ2 onboard is

minimizing L(·, µ2). If µ1 and µ2 are arbitrarily far apart, then it is not surprising that the minima of L(·, µ1)

and L(·, µ2) are as well. However, one may conjecture that small disagreements in dual variables lead to small

distances between these minima. Below, we show that this conjecture is false and that even small disagreements in

dual variables can lead to arbitrarily large distances between the minima they induce. Even limited asynchrony can

lead to small disagreements in dual variables, and, in light of the above discussion, this can cause primal agents’

computations to reach points that are arbitrarily far apart.

1We assume that there is no delay between sending and receiving messages. There is no loss of generality in our results because we can

make P i
j

and Di
c the times at which messages are received. However, assuming zero delays simplifies the forthcoming discussion and analysis

and is done for the remainder of the paper.
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Therefore, we will develop an algorithm that proceeds with all agents agreeing on the value of µ while still

allowing dual computations to be divided among dual agents. This is accomplished by allowing primal agents to

work completely asynchronously (updates are computed and sent at different times to different agents) but requiring

that dual updates are sent to all primal agents at the same time2. After a dual agent computes an update, it sends

its updated dual variable to all primal agents. Again, for simplicity, it is assumed that the update is received at the

same time it is sent. When dual agent c sends the updated dual variable µc
c to all primal agents, it also sends its

iteration count tc. This allows primal agents to annotate which version of µ is used in their updates. Primal agents

disregard any received primal updates that use an outdated version of µc (as indicated by tc). This ensures that

primal updates are not mixed if they rely on different dual values.

B. Counterexample to the Asynchronous Dual Case

Below we show that behavior (iv) above, communications to share updated values of dual variables, cannot be

asynchronous in general. The intuition here is as follows. In a primal-dual setup, one can regard each fixed choice

of dual vector as specifying a problem to solve in a parameterized family of minimization problems. Formally,

with µ fixed, agents solve

minimizex∈XLδ(x, µ) := h(x) + µT g(x)−
δ

2
‖µ‖2.

For two primal agents with different values of µ, denoted µ1 and µ2, they solve two different problems: agent 1

minimizes Lδ( · , µ1) while agent 2 minimizes Lδ( · , µ2). With a gradient-based method to minimize over x,

gradients depend linearly upon µ. This may lead one to believe that for

x̂1 := argmin
x∈X

Lδ(x, µ
1) and x̂2 := argmin

x∈X

Lδ(x, µ
2),

having ‖µ1 −µ2‖ small implies that ‖x̂1 − x̂2‖ is also small. However, we show in the following theorem that this

is false.

Theorem 1: Fix any ǫ > 0 and L > ǫ. Then, under Assumptions 1-4, there always exists a problem such

that ‖µ1 − µ2‖ < ǫ and ‖x̂1 − x̂2‖ > L.

Proof: See the appendix. �

C. Glossary of Notation

Every agents stores a local copy of x and µ for use in local computations. The following notation is used in our

formal algorithm statement below.

Di
c The times at which messages are sent by primal agent i and received by dual agent c.

gc(x) The cth entry of the constraint function, g, evaluated at x.

k The iteration count used by all primal agents.

2Even if they are not sent and/or received at the same time, we can apply any procedure to synchronize these values and the algorithm will

remain the same. We assume synchrony in sending and receiving these values merely to simplify the forthcoming discussion.
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Ki The set of times at which primal agent i performs updates.

Ni Essential neighborhood of agent i. Agent j is an essential neighbor of agent i if ∇xj
Lδ depends upon xi.

Then agent i communicates with agent j to ensure it has the information necessary to compute gradients.

[Nd] Set containing the indices of all dual agents.

[Np] Set containing the indices of all primal agents.

P i
j The times at which messages are sent by primal agent i and received by primal agent j.

τ ij (k) Time at which primal agent j computed the update that it sent agent i at time k (i can be primal or dual).

Note that τ ii (k) = k for all i ∈ [Np].

t The vector of dual agent iteration counts. The cth entry, tc, is the iteration count for dual agent c’s updates.

tc The iteration count for dual agent c’s updates. This is sent along with µc
c to all agents.

vci The iteration count used by dual agent c for updates received from primal agent i between dual updates.

xi
j Agent i’s value for the primal variable j, which is updated/sent by primal agent j. If agent i is primal, it is

indexed by both k and t; if agent i is dual it is indexed by t.

xi
i(k; t) Agent i’s value for its primal variable i at primal time k, calculated with dual update t.

x∗(t) The fixed point of f = ΠX [x− γ∇xLδ(x, µ(t))] with respect to a fixed µ(t).

xc
t Abbreviation for xc(t), which is dual agent c’s copy of the primal vector at time t.

x̂δ The primal component of the saddle point of Lδ. Part of the optimal solution pair (x̂δ, µ̂δ).

x̂t Given µ(t), x̂t = argminx∈X Lδ(x, µ(t)).

µc
d Agent c’s copy of dual variable d, which is updated/sent by dual agent d. Agent c may be primal or dual.

µ̂δ The dual component of the saddle point of Lδ, (x̂δ, µ̂δ).

µ̂c,δ The cth entry of µ̂δ.

Mc The set {ν ∈ R+ : ν ≤ h(x̄)−h∗

minj −gj(x̄)
}. This uses the upper bound in Lemma 1 to project individual components

of µ.

D. Statement of Algorithm

Having defined our notation, we impose the following assumption on agents’ communications and computations.

Assumption 5: For all i ∈ [Np], the set Ki is infinite. If {kn}n∈N is an increasing set of times in Ki,

then limn→∞ τ ji (kn) = ∞ for all j ∈ [Np] and limn→∞ τci (kn) = ∞ for all c ∈ [Nd]. △

This simply ensures that no agent ever stop computing or communicating, though delays can be arbitrarily large.

We now define the asynchronous primal-dual algorithm.

September 1, 2020 DRAFT



8

Algorithm 2

Step 0: Initialize all primal and dual agents with x(0) ∈ X and µ(0) ∈ M . Set t = 0 and k = 0.

Step 1: For all i ∈ [Np] and all j ∈ Ni, if k ∈ P i
j , then agent j sends xj

j(k; t) to agent i.

Step 2: For all i ∈ [Np] and all c ∈ [Nd], if agent i receives a dual variable update from agent c, it uses the

accompanying tc to update the vector t and performs the update

µi
c(t) = µc

c(tc).

Step 3: For all i ∈ [Np] and all j ∈ Ni, execute

xi
i(k+1; t)=











ΠXi
[xi

i(k; t)−γ∇xi
Lδ(x

i(k; t), µ(t))] k∈Ki

xi
i(k; t) k /∈Ki

xi
j(k + 1; t) =











xj
j(τ

i
j (k + 1); t) i receives j’s state at k + 1

xi
j(k; t) otherwise

.

Step 4: If k + 1 ∈ Di
c, agent i sends xi

i(k + 1; t) to dual agent c. Set k := k + 1.

Step 5: For c ∈ [Nd] and i ∈ [Np], if dual agent c receives an update from primal agent i computed with dual

update t, it sets

xc
i (tc) =











xi
i(τ

c
i (k), t) xi

i received prior to update tc + 1

xc
i (tc − 1) otherwise

.

Step 6: For c ∈ [Nd], if agent c has received an update from every primal agent for the latest dual iteration t, it

executes

µc
c(tc + 1) = ΠMc

[µc
c(tc) + ρ

∂L

∂µc

(xc(tc), µ
c(tc))].

Step 7: If dual agent c updated in Step 6, then it sends µc
c(tc + 1) to all primal agents. Set tc := tc + 1.

Step 8: Return to Step 1.

IV. CONVERGENCE

To define an overall convergence rate to the optimal solution (x̂δ , µ̂δ), we first fix the dual variable µ and find

the primal convergence rate. We then find the overall dual convergence rate to µ̂δ by showing that dual variables

converge to µ̂δ over time, which lets us show that primal variables converge to x̂δ .

A. Primal Convergence with Fixed Dual Variable

Given a fixed µ(t), projected gradient descent for minimizing Lδ(·, µ(t)) may be written as

f(x) = ΠX [x− γ∇xLδ(x, µ(t))] , (3)

where γ > 0. Leveraging some existing theoretical tools in the study of optimization algorithms [2], [5], we can

study f in a way that elucidates its behavior under asynchrony.
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According to [5], the assumption of diagonal dominance guarantees that f has the contraction property

‖f(x)− x∗(t)‖ ≤ α‖x− x∗(t)‖ for all x ∈ X,

where α ∈ [0, 1) and x∗(t) is a fixed point of f , which depends on the choice of fixed µ(t). However, the value

of α is not specified in [5], and it is precisely that value that governs the rate of convergence to a solution. We

therefore compute α explicitly below. First, we bound the step-size γ.

Definition 1: Define the primal step-size γ > 0 to satisfy

γ <
1

max
i

max
x∈X

max
µ∈M

∑n
j=1 |Hij(x, µ)|

.

Because x and µ both take values in compact sets, each entry Hij is bounded above and below, and thus the upper

bound on γ is positive.

Following the method in [2], two n× n matrices G and F must also be defined.

Definition 2: Define the n× n matrices G and F as

G =











|H11| −|H12| . . . −|H1n|
...

...
. . .

...

−|Hn1| −|Hn2| . . . |Hnn|











and F = I − γG,

where I is the n× n identity matrix.

We now state the following lemma that relies on meeting the conditions listed in [2].

Lemma 2: Let f , G, and F be as above and let Assumptions 1-4 hold. Then, |f(x) − f(y)| ≤ F |x − y|, for

all x, y ∈ R
n, where |v| denotes the element-wise absolute value of the vector v ∈ R

n and the inequality holds

component-wise.

Proof: Three conditions must be satisfied in [2]: (i) γ is sufficiently small, (ii) G is positive definite, and (iii) F is

positive definite.

(i) γ is sufficiently small: Results in [5] require γ
∑n

j=1 |Hij | < 1 for all i ∈ {1, . . . , n}, which here follows

immediately from Definition 1.

(ii) G is positive definite: By definition, G has only positive diagonal entries. By H’s diagonal dominance we

have the following inequality for all i ∈ {1, . . . , n}:

|Gii| = |Hii| ≥
n
∑

j=1
j 6=i

|Hij |+ β >

n
∑

j=1
j 6=i

|Hij | =
n
∑

j=1
j 6=i

|Gij |.

Because G has positive diagonal entries, is symmetric, and is strictly diagonally dominant, G is positive definite

by Gershgorin’s Circle Theorem.

(iii) F is positive definite: Definition 1 ensures the diagonal entries of F are always positive. And F is

diagonally dominant if, for all i ∈ {1, . . . , n},

|Fii| = 1− γ|Hii| > γ

n
∑

j=1
j 6=i

|Hij | =
n
∑

j=1
j 6=i

|Fij |.
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This can be rewritten as γ
∑n

j=1 |Hij | < 1, which was satisfied under Condition (i). Because F has positive diagonal

entries, is symmetric, and is strictly diagonally dominant, F is positive definite by Gershgorin’s Circle Theorem.�

To establish convergence in x, we will show that ‖f(x)− f(x∗(t))‖ ≤ α‖x− x∗(t)‖ for all x ∈ X , where α ∈

[0, 1). Toward doing so, we define the following.

Definition 3: Let v ∈ R
n. Then ‖v‖max = max

i
|vi|.

In this work, we consider a scalar maximum norm because we consider agents that update scalar blocks, though

updating non-scalar blocks is readily accommodated by considering a block-maximum norm [4].

We next show that the gradient update law f in Equation (3) converges with asynchronous, distributed compu-

tations. Furthermore, we quantify convergence in terms of γ and β.

Lemma 3: Let f , H , G, F , γ, and ‖v‖max be as defined above. Let Assumptions 1-4 hold and fix µ(t) ∈ M .

Then for a fixed point x∗(t) of f and for all x ∈ R
n,

‖f(x)− f(x∗(t))‖max ≤ qp‖x− x∗(t)‖max,

where qp = (1− γβ) ∈ [0, 1).

Proof: For notational simplicity we write x∗(t) simply as x∗. Assumption 4 and the definition of F give

n
∑

j=1

Fij = 1− γ
(

|Hii| −
n
∑

j=1
j 6=i

|Hij |
)

≤ 1− γβ.

This result, Definition 3, and Lemma 2 give

‖f(x)− f(x∗)‖max = max
i

|fi(x)− fi(x
∗)|

≤ max
i

n
∑

j=1

Fij |xj − x∗
j | ≤ max

l
|xl − x∗

l |max
i

n
∑

j=1

Fij

≤ max
l

|xl − x∗
l |(1− γβ) = (1− γβ)‖x− x∗‖max.

All that remains is to show (1 − γβ) ∈ [0, 1). By Definition 1 and the inequality |Hii| ≥ β, for all x ∈ X

and µ(t) ∈ M ,

γβ <
β

max
i

∑n
j=1 |Hij |

≤
β

max
i

|Hii|
<

β

β
= 1. �

The primal-only convergence rate can be computed by leveraging results in [12] in terms of the number of

operations the primal agents have completed (counted in the appropriate sequence). Namely, we count operations

as follows. For a given dual variable with iteration vector t, we set ops(k, t) = 0. Then, after all primal agents

have computed an update to their decision variable and sent it to and had it received by all other primal agents

that need it, say by time k′, we increment ops to ops(k′, t) = 1. After ops(k′, t) = 1, we then wait until all primal

agents have subsequently computed a new update (still using the same dual variable indexed with t) and it has been

received by all other primal agents that need it. If this occurs at time k′′, then we set ops(k′′, t) = 2, and then this

process continues. If at some time k′′′, primal agents receive an updated µ (whether just a single dual agent sent
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an update or multiple agents send updates) with an iteration vector of t′, then the cycle count would begin again

with ops(k′′′, t′) = 0.

Theorem 2: Let Assumptions 1-4 hold. For µ(t) fixed and the agents asynchronously executing the gradient

update law f ,

‖xi(k)− x∗(t)‖max ≤ qops(k,t)
p max

j
‖xj(k)− x∗(t)‖max,

where x∗(t) is the fixed point of f with µ(t) fixed.

Proof: We write x∗ in place of x∗(t) for simplicity. From Lemma 3 we see that f is a qp-contraction mapping with

respect to the norm ‖ · ‖max. From Section 6.3 in [5], this contraction property implies that there exist sets of the

form

X(k) = {x ∈ R
n | ‖x− x∗‖max ≤ qkp‖x(0)− x∗‖max}

that satisfy the following criteria from [12]:

i. · · · ⊂ X(k + 1) ⊂ X(k) ⊂ · · · ⊂ X

ii. limk→∞ X(k) = {x∗}

iii. For all i, there are sets Xi(k) ⊂ Xi satisfying

X(k) = X1(k)× · · · ×XN (k)

iv. For all y ∈ X(k) and all i ∈ [Np], fi(y) ∈ Xi(k + 1), where fi(y) = ΠXi
[yi − γ∇xi

Lδ(y)].

We will use these properties to compute the desired convergence rate. Suppose all agents have a fixed µ(t)

onboard. Upon receipt of this µ(t), agent i has xi(k; t) ∈ X(0) by definition. Suppose at time ℓi that agent i

computes a state update. Then xi
i(ℓi + 1; t) ∈ Xi(1). For m = maxi∈[Np] ℓi +1, we find that xi

i(m; t) ∈ Xi(1) for

all i. Next, suppose that, after all updates have been computed, these updated values are sent to and received by all

agents that need them, say at time m′. Then, for any i ∈ [Np], agent i has xi
j(m

′; t) ∈ Xj(1) for all j ∈ [Np]. In

particular, xi(m′; t) ∈ X(1), and this is satisfied precisely when a single cycle has occurred. Iterating this argument

for subsequent cycles completes the proof. �

B. Dual convergence

We next derive a componentwise convergence rate for the dual variable.

Theorem 3: Let Assumptions 1-4 hold. Fix δ > 0 and let ρ ∈
(

3−
√
3

3δ , 3+
√
3

3δ

)

. Then

|µc
c(tc + 1)− µ̂c,δ|

2 ≤ qd|µ
c
c(tc)− µ̂c,δ|

2 + 2ρ2M2
gc
D2

x + 2ρ2M2
gc
q2ops(kc,t)
p L2

x + 2ρ2M2
gc
Dxq

ops(kc,t)
p Lx,

where qd := 3(1− ρδ)2 ∈ [0, 1), Mgc := max
x∈X

‖∇gc(x)‖max, Dx := max
x,y∈X

‖x− y‖max, Lx = max
j

‖xj(0)− x∗(t)‖max,

t is the dual iteration count vector onboard the primal agents when sending states to dual agent c, and kc is the

time at which the first primal agent sent a state to dual agent c with µ(t) onboard.

Proof: Let xc(t) be denoted by xc
t , and define x̂t = argminx∈X Lδ(x, µ(t)) and x̂δ = argminx∈X Lδ(x, µ̂δ).
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Using the non-expansiveness of ΠM , we find

|µc
c(tc + 1)− µ̂c,δ|

2 = |ΠM [µc
c(tc) + ρ(gc(x

c
t)− δµc

c(tc))]−ΠM [µ̂c,δ + ρ(gc(x̂δ)− δµ̂c,δ)]|
2

≤ (1 − ρδ)2|µc
c(tc)− µ̂c,δ|

2 + ρ2|gc(x
c
t )− gc(x̂δ)|

2 − 2ρ(1− ρδ)(µc
c(tc)− µ̂c,δ)(gc(x̂δ)− gc(x

c
t )).

Adding gc(x̂
t)− gc(x̂

t) in the last set of parentheses gives

|µc
c(tc + 1)− µ̂c,δ|

2 ≤ (1− ρδ)2|µc
c(tc)− µ̂c,δ|

2 + ρ2|gc(x
c
t)− gc(x̂δ)|

2

− 2ρ(1− ρδ)(µc
c(tc)− µ̂c,δ)(gc(x̂δ)− gc(x̂

t))

− 2ρ(1− ρδ)(µc
c(tc)− µ̂c,δ)(gc(x̂

t)− gc(x
c
t)). (4)

Using 0 ≤ |(1− ρδ)(µc
c(tc)− µ̂c,δ) + ρ(gc(x̂

t)− gc(x
c
t))|

2, we expand and rearrange to give

−2ρ(1 − ρδ)(µc
c(tc) − µ̂c,δ)(gc(x̂

t) − gc(x
c
t)) ≤ (1 − ρδ)2|µc

c(tc) − µ̂c,δ|
2 + ρ2|gc(x̂

t) − gc(x
c
t )|

2. (5)

Similarly, we can derive

−2ρ(1 − ρδ)(µc
c(tc) − µ̂c,δ)(gc(x̂δ) − gc(x̂

t)) ≤ (1 − ρδ)2|µc
c(tc) − µ̂c,δ|

2 + ρ2|gc(x̂δ) − gc(x̂
t)|2. (6)

Using Equations (5) and (6) in Equation (4) gives

|µc
c(tc+1)−µ̂c,δ|

2≤3(1−ρδ)2|µc
c(tc)−µ̂c,δ|

2 +ρ2|gc(x̂δ)−gc(x̂
t)|2

+ρ2|gc(x̂
t)−gc(x

c
t)|

2 +ρ2|gc(x
c
t )−gc(x̂δ)|

2. (7)

For the ρ2|gc(x
c
t )− gc(x̂δ)|

2 term, we can write

|gc(x
c
t )− gc(x̂δ)|

2 = |gc(x
c
t )− gc(x̂

t) + gc(x̂
t)− gc(x̂δ)|

2

≤ |gc(x
c
t )− gc(x̂

t)|2 + |gc(x̂
t)− gc(x̂δ)|

2 + 2|gc(x
c
t)− gc(x̂

t)||gc(x̂
t)− gc(x̂δ)|,

where substituting this into Equation (7) and grouping gives

|µc
c(tc + 1)− µ̂c,δ|

2 ≤ 3(1− ρδ)2|µc
c(tc)− µ̂c,δ|

2 + 2ρ2|gc(x̂
t)− gc(x̂δ)|

2

+ 2ρ2|gc(x
c
t )− gc(x̂

t)|2 + 2ρ2|gc(x
c
t )− gc(x̂

t)||gc(x̂
t)− gc(x̂δ)|.

Using the Lipschitz property of gc and the definition of Dx,

|µc
c(tc+1)−µ̂c,δ|

2 ≤ 3(1−ρδ)2|µc
c(tc)−µ̂c,δ|

2+2ρ2M2
gc
D2

x

+ 2ρ2M2
gc
‖xc

t − x̂t‖2max + 2ρ2M2
gc
Dx‖x

c
t − x̂t‖max. (8)

Previously, we established primal convergence for a fixed µ(t). This allows us to write ‖xc
t− x̂t‖max ≤ q

ops(kc,t)
p Lx.

Substituting this into Equation (8) completes the proof. �

Remark 1: The term 2ρ2M2
gc
D2

x in Theorem 3 is termed the “asynchrony penalty,” because it is an offset from

reaching a solution. It is due to asynchronously computing dual variables and is absent when dual updates are

centralized [12], [15]. Further bounding it will be the subject of future research.
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We next present a simplified dual convergence rate.

Theorem 4: Let all conditions of Theorem 3 hold. In Algorithm 2, convergence for dual agent c obeys

|µc
c(tc + 1)− µ̂c,δ|

2 ≤ qtc+1
d |µc

c(0)− µ̂c,δ|
2 +

1− qtc+2
d

1− qd
p,

where p = max
t

2ρ2M2
gc
D2

x + 2ρ2M2
gc
q
2ops(kc,t)
p L2

x + 2ρ2M2
gc
Dxq

ops(kc,t)
p Lx.

Proof: First, define

pi := 2ρ2M2
gc
D2

x + 2ρ2M2
gc
q2ops(kc,i)
p L2

x + 2ρ2M2
gc
Dxq

ops(kc,i)
p .

Then, recursively applying Theorem 3 gives

|µc
c(tc + 1)−µ̂c,δ|

2≤qtc+1
d |µc

c(0)− µ̂c,δ|
2 +

tc+1
∑

j=0

qtc+1−j
d pj. (9)

By definition, qd ∈ [0, 1), so, using pi ≤ p, summing the geometric series in Equation (9) completes the proof. �

Theorems 3 and 4 can be used to give an overall primal convergence rate for xi(k; t) converging to x̂δ .

Theorem 5: Let Assumptions 1-4 hold. Then there exist constants K1,K2 > 0 such that, for all t,

‖xi(k; t)− x̂δ‖2 ≤ K1q
ops(k,t)
p +K2‖µ(t)− µ̂δ‖2.

Proof: Plug Theorem 3 into Theorem 2 of [12]. �

V. NUMERICAL EXAMPLE

We consider an example with n = 10 primal agents (each updating a scalar variable) whose objective function is

h(x) =

n
∑

i=1

x4
i +

1

20

n
∑

i=1

n
∑

j=1
j 6=i

(xi − xj)
2.

Set δ = 0.001. For b = (−2, 4,−10, 5, 1, 8)T and

A =





























−1 0 −3 0 0 4 0 0 10 0

0 1 5 1 1 0 0 2 0 5

0 0 1 1 −5 1 4 0 0 0

0 0 −2 0 0 8 1 1 −3 1

0 0 0 0 −3 0 1 1 1 0

0 4 0 0 0 0 0 2 1 −4





























,

there are m = 6 dual agents each responsible for a scalar dual variable that encodes a constraint in g(x) = Ax− b.

We also require that each xi ∈ Xi = [1, 10]. Then

Lδ(x,µ) =

n
∑

i=1

x4
i +

1

20

n
∑

i=1

n
∑

j=1
j 6=i

(xi−xj)
2 + µT

(

Ax−b
)

−
δ

2
‖µ‖2.

We find that H is β-diagonally dominant with β = 12.

We use this simulation example to explore fundamental relationships between the diagonal dominance parameter β

and the communication rate between agents. Here, we use random communications and vary the probability that
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Fig. 1. Effect of diagonal dominance on convergence. Larger values of β tend to produce faster convergence. However, sufficiently small

values for β may also produce the same result by promoting constraint satisfaction earlier.
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Beta = 12*100, Comm Rate = .25
Beta = 12*100, Comm Rate = 1

Fig. 2. Effect of communication rate on convergence. Less frequent communication leads to slower convergence, larger errors, and oscillation

in the optimum’s proximity. The benefits of strong diagonal dominance can also be outweighed by poor communication.

agents i and j communicate at a particular timestep. We begin by varying β over β ∈ 12 ·{.9, 1, 10, 100}, which we

do by scaling h while holding other terms constant. Figure 1 plots the iteration number k versus the value
‖xi

i(k;t)−x̂δ‖
‖x̂δ‖

(the relative error) for these values of β and a communication rate of 1 (the agents communicate every update with

one another).

As predicted by Theorem 2, a larger β correlates with faster convergence in general. Figure 1 also reveals,

however, that if β is sufficiently small, then the convergence rate is eventually similar to that for a large β. This is

explained by how β weights h versus g: if β is large, then h will be minimized quickly and satisfaction of g will

only be attained afterwards, which prolongs convergence. Conversely, for smaller β, minimizing h and satisfying g

are weighted more equally, which promotes convergence of both equally.

Varying the communication rate has a significant impact on the number of iterations required and the behavior
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of error in agents’ updates. Communication rate can even outweigh the benefits of a large β, shown in Figure 2.

This reveals that faster convergence can be achieved by both improving communication or increasing the diagonal

dominance of the problem. However, if communication is poor, increasing diagonal dominance may not improve

results by much, which suggests that even favorable problem structure does not eliminate the impact of asynchrony.

Oscillations in the proximity of the optimum are also amplified by large values of β.

VI. CONCLUSION

After exploring a counterexample to asynchronous dual communications, Algorithm 2 presents an asynchronous

primal-dual approach that is asynchronous in primal updates and communications and asynchronous in distributed

dual updates. A numerical example illustrates the effect diagonal dominance has with other parameters upon

convergence. Future work will apply the algorithm to large-scale machine learning problems and explore reducing

the asynchrony penalty.

APPENDIX

Proof of Theorem 1: Consider the quadratic program

minimize
1

2
xTQx+ rTx

subject to Ax ≤ b, x ∈ X,

where R
n×n ∋ Q = QT ≻ 0, r ∈ R

n, A ∈ R
m×n, and b ∈ R

m. We take X sufficiently large in a sense to be

described below.

Because Q is symmetric and positive definite, its eigenvectors can be orthonormalized, and we denote these

eigenvectors by v1, . . . , vn. To construct an example, suppose that A ∈ R
m×n has row i equal to the ith nor-

malized eigenvector of Q. To compute x̂1 := argminx∈X Lδ(x, , µ
1) we set ∇xLδ(x̂1, µ

1) = 0. Expanding and

solving, we find x̂1 = −Q−1ATµ1, where we assume that X is large enough to contain this point. Similarly, we

find x̂2 = −Q−1ATµ2, where we also assume x̂2 ∈ X . Then

‖x̂1−x̂2‖2=‖Q−1AT (µ2−µ1)‖2≥σmin

(

Q−1AT
)

‖µ1−µ2‖2,

where σmin(·) is the minimum singular value. Expanding,

σ2
i

(

Q−1AT
)

= λi

(

AQ−TQ−1AT
)

= λi

(

AQ−2AT
)

,

and AQ−2AT = diag
(

1
λ1(Q)2 , . . . ,

1
λn(Q)2

)

, which follows from the fact that we have orthonormalized Q’s

eigenvectors. Then σmin

(

Q−1AT
)

= 1
λmax(Q) . Using this above, we find

‖x̂1 − x̂2‖2 ≥
1

λmax(Q)
‖µ1 − µ2‖2.

To enforce ‖x̂1− x̂2‖ > L, we ensure that ǫ
λmax(Q) > L, which is attained for any matrix satisfying λmax(Q) < ǫ

L
.

�
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