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On the utilization of Macroscopic Information
for String Stability of a Vehicular Platoon

Marco Mirabilio, Alessio Iovine, Elena De Santis, Maria Domenica Di Benedetto, Giordano Pola

Abstract— The use of macroscopic information for the control
of a vehicular platoon composed of autonomous vehicles is
investigated. A mesoscopic control law is provided, and String
Stability is proved by Lyapunov functions and Input-to-State
Stability (ISS) concepts. Simulations are implemented in order
to validate the controller and to show the efficacy of the
proposed approach for mitigating traffic oscillations.

Keywords: String Stability, Input-to-State Stability, platoon
control, mesoscopic modeling, Cooperative Adaptive Cruise
Control.

I. INTRODUCTION

Nowadays, Vehicle-to-Infrastucture (V2I) and Vehicle-to-
Vehicle (V2V) communication technologies are a reality in
the smart transportation domain (see [1]), and their utilization
in Cooperative Adaptive Cruise Control (CACC) is widely
expected to improve traffic conditions (see [2], [3], [4]).
Indeed, traffic jamming transition has been shown to strongly
depend on the amplitude of fluctuations of the leading
vehicle (see [5]), and interconnected autonomous vehicles are
sensed to reduce stop-and-go waves propagation and traffic
oscillations via the concept of String Stability [2], [6], [7],
[8]. String Stability relies on the idea that disturbances acting
on an agent of the cluster should not amplify backwards in
the string. In the case of vehicular platooning, disturbances
may be due to reference speed variation, external inputs
acting on each vehicle, wrong modeling, etc. Several cases
of information sharing have been considered for each leader-
follower interaction, but a common characteristic is that some
microscopic variables are always shared among the whole
platoon, e.g. the acceleration of the platoon’s leading vehicle
(see [6]) or its desired speed profile (see [3]). It needs a
V2V communication among the whole platoon, or a V2I
bidirectional exchange of information. This paper analyses
the benefits of the information propagation in a String
Stability framework using both microscopic and macroscopic
information for control purposes. Each follower is here
considered to correctly measure the distance and speed of
its leading vehicles, using for example radar and LIDAR.
The leader acceleration is communicated only to its follower.
To improve control performance, macroscopic information
is supposed to be obtained and communicated either from
the road infrastructure (V2I) or from the whole platoon

Marco Mirabilio, Elena De Santis, Maria Domenica Di Benedetto,
Giordano Pola are with the Department of Information Engineering,
Computer Science and Mathematics, Center of Excellence DEWS,
University of L'Aquila. (e-mail:marco.mirabilio@graduate.univagq.it,
{elena.desantis,mariadomenica.dibenedetto,giordano.pola} @univagq.it)

Alessio lovine is with the Electrical Engineering and Computer Sci-
ences (EECS) Department at UC Berkeley, Berkeley, USA. E-mail:
alessio@berkeley.edu, alessio.iovine @ieee.org.

(V2V). Both technologies have strengths and weaknesses.
For example, V2V technology requires the macroscopic
information to be propagated through the vehicles, and
possibly estimated in a distributed manner by each one.
On the other hand, V2I technology may provide a more
reliable information at the cost of allocating several sensors
along the way and computing the quantities in a centralized
manner, implying a high computation request to the central
computer. A thorough analysis of pros and cons of the two
communication typologies is out of the scope of the present
paper.

We target a platoon composed by autonomous vehicles
implementing CACC, but the framework we propose is suit-
able for including autonomous vehicles implementing simple
ACC or even human-driven vehicles as part of the platoon.
The framework we propose is based on sharing macroscopic
quantities along the platoon. The use of those quantities
aims at increasing the ability of each car-following situation
to counteract the disturbances by providing an anticipatory
behaviour capable to absorb traffic jam. The idea of using
macroscopic quantities, mainly the density, for microscopic
traffic control has already been introduced in the literature,
resulting in a mesoscopic modeling. In [9], [10] and in the
references therein, the focus is on simulation aspects and
real data analysis. Several works are now focusing on a
mesoscopic modeling for traffic control purposes (see [11],
[12] [13], [14], [15D.

The controller we present in this paper considers macro-
scopic information and ensures Asymptotic String Stability.
The adopted nonlinear spacing policy relies on the fam-
ily of nonlinear spacing strategies introduced in [16] and
[17]. Similarly to [3], the result is obtained through an
inductive method exploiting Input-to-State Stability (ISS).
The main difference is that ISS is ensured with respect
to the leader-follower situation and the ahead vehicles of
each predecessor. Simulations show the improvements on the
whole traffic throughput producing an anticipatory behaviour
and oscillations reduction, and providing a better transient
harmonization while maintaining String Stability properties.

The paper is organized as follows. Section [lI| introduces
the considered framework, while Section the needed
control tools. Control laws are derived and stability analysis
is performed in Section Simulations are carried out in
Section [V] Some concluding remarks are outlined in Section
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Notation - RT is the set of non-negative real numbers.
For a vector x € R”, |z| = V2T is its Euclidean norm. The
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Fig. 1. Reference framework.

L signal norm is defined as |x()|([f<§’t] = SUp;, <, < [2(7)].
We refer to [18] for the definition of Lyapunov functions, and
functions C, K, and L.

II. MODELING AND STRING STABILITY DEFINITIONS
A. Platoon modeling

We consider a cluster of N + 1 vehicles, N € N,
proceeding in the same direction on a single lane road, as in
Fig[l] We make the following

Assumption 1: All the vehicles are equal, with the same

length L € R™ and have the common goal of maintaininig
a strictly positive distance among them, while keeping the
same speed.
We denote with ¢ = 0 the first vehicle of the platoon and
with Zy = {1,2, ..., N} the set of follower vehicles. The set
including all the vehicles is Z8 = Zy U {0}. Similarly to
[3], each vehicle i € Z¥, is assumed to satisfy the following
longitudinal dynamics:

pz = fp(gz)
§i = fe(&i) + ge(§)wi

where p; € RT is the position of vehicle i, v; = p; (0 <
U < Umaxs Umax € RT) is its velocity and the acceleration
u; is the vehicle control input. Variable &; € R"~! represents
the remaining dynamics of the vehicle, such as actuators
dynamics.

According to [6] and [19], the dynamics in (EI) can be
simplified:

)

Di =i, U; =1 (2)
where & = wv;, the functions f,(&) = v, fe(&) =
0 and g¢(&) = 1; w; is the acceleration of vehicle i

(|ui] < @max, @max € RT). The introduced double integrator
model is widely used in literature for string stability analysis
purposes. Moreover, field experiments adopting control laws
developed with respect to this model have shown satisfac-
tory behaviors [20]. To provide a global description of the
platoon, we adopt the leader-follower model that describes
the inter-vehicular interaction (see [21], [22]). We define the
state of each vehicle i € Z as

x; = [p; Ui]T 3)

and the state of each car-following situation among the
leading vehicle ¢+ — 1 and the following one 7 as

_ _ | Api | _ | pi—pi1
Xi = X5 — Tj—1 = l: AUZ' :l — l: Vi — Vi1

]- “4)

Positions, speed and acceleration of each leading vehicle are
supposed to be perfectly known, either measured or com-
municated to the following one. Consequently, the obtained
dynamical model is:

or, shortly,
1€ XIyN. (6)

To derive the dynamics of the first vehicle ¢ = 0 of
the platoon, in the same form of @), a non-autonomous
non-communicating virtual leader ¢ = —1 is considered to
precede the set of vehicles, with dynamical model

. - P_1 _ V-1

0 ol R
Then, the car-following dynamics with respect to vehicle ¢ =
0 can be described by:

Xi = (X, Uiy uiz1),

U Apo - AUO

w=| =12 ®)
It follows that the dynamics in @) is valid V i € IY%.
Since we consider ¢ = —1 to represent a virtual vehicle,

p_1(t) = fot v_1(7)dr, t > 0, is a dummy state. Moreover,
we consider Apg(t) = —Ap, Vit > 0, where Ap > 0 is the
constant desired inter-vehicular distance. Since p; < p;_1,
the desired distance has to be negative.

In accordance to [21], [23], [24], we consider the widely
accepted hypothesis of constant speed for the virtual leader
1 = —1, that precedes the entire cluster. Then, we have

p—1(t)=7-t, v_1(t) =7, u_1(t) =0, VE>0 (9)

where v > 0 is a constant speed. For vehicular platoons, the
constant speed assumption defines the equilibrium point for
all the vehicles in the cluster. Consequently, when all i € Z%
have equal speed and are at the same desired distance Ap,
the equilibrium point for the i-th system of dynamics (6) is

Xei=X=[-Ap 0] (10)
Let x be the lumped state of the entire vehicle platoon:
X=0o xi - xnl" (1n
Then, for u_; = 0 it follows that
T T

xe=K"x" .. x"". (12)

B. String Stability definitions

Let the model in (3)) describe a platoon, and its equilibrium
be (I0). The control input w; is generated by the following
dynamic controller

{Pz‘ = wi(pi, X)

(13)
u; = hi(pi, X, Xe,i> Ui—1)

where p; € R", r > 1, is the state vector with dimension
r of the dynamic controller; w; : R” x RV — R" is the
vector field describing the evolution of the controller state;



hi : R" x R?N x R? x R — R is the output function of the
system that corresponds to the control input u;. The inputs of
the dynamical system are ), Xe,, W;—1. The resulting
closed loop system is denoted in the sequel by P, where
the state vector of the i—th vehicle and the corresponding
equilibrium point are

Xi=[xi o1 Xes=[X" 071", VieIy, (14

with 0, € R" a null column vector.

We now recall the notions of String Stability and Asymp-
totic String Stability from [6] and [3].

Definition 1: (String Stability) The equilibrium X ;, ¢ €
I?V, of P, is said to be String Stable if, for any € > 0, there
exists 6 > 0 such that, for all N € N,

max |x;(0) — Xe,i| < 6= max|{;(t) — Res| <€ Vt>0.
i€TY, i€y,

15)

Definition 2: (Asymptotic String Stability) The equilib-

rium Xe; =X, ¢ € IR,, of P, is said to be Asymptotically
String Stable if it is String Stable and, for all N € N,

=0, VieIy.

i[5 (2) = Xes (16)

III. CONTROL TOOLS

The goal of this paper is to design a controller (T3] that
adopts mesoscopic quantities and ensures asymptotic string
stability of P,;. To this purpose, a proper spacing policy and a
function describing macroscopic information are introduced.

A. Spacing policy

Several spacing policies have been introduced in the
literature (see [25], [26]). We adopt a variable time spacing
policy, which consists in tracking a variable inter-vehicular
desired distance and allows for string stability and a low
inter-vehicular spacing at steady-state (see [16] and [17]). We
define a mesoscopic time varying trajectory for the distance
policy Ap? of the i-th vehicle with respect to its leader ¢ — 1:

Apl(t) = —Ap—pM(t), t >0 (17)

where Ap > 0 is the desired constant inter-vehicular distance
and pM (t) is a function describing macroscopic information.
Our goal is to show that, by using the macroscopic informa-
tion, transient harmonization when traffic conditions vary is
obtained while maintaining the platoon equilibrium in (12)
in steady-state.

B. Macroscopic information

Here we define proper macroscopic functions taking into
account microscopic distance and speed variance, similarly
to [14]. Given the generic vehicle 7 € Zy, let pap ; and UQAW-
be the inter-vehicular distance mean and variance computed
from vehicle 0 to vehicle 7, respectively:

1< ) 1< )
papi = Y Apj, 0X, = > (Apj—pap,)”.
i+ 14 1414
Jj=0 Jj=0
(18)

Let pa,; and 0%, ; be the velocity tracking error mean and
variance computed from vehicle 0 to vehicle ¢, respectively:

)

1< 1
Pavi = Y Avj, oA = P D (Avj—pay,)*.
Jj=0 Jj=0
(19)
Let d)iAp : RxRT — R be the distance macroscopic function
and 1, : RxRT — R the speed tracking error macroscopic
function, defined as

biap = VapSign(Ap + pap.i)\/ o2, (20)
Ve = VA0SIGN(HAv,i)\/TAy s @1

where YAaps YAav > 0 are constant parameters, HUAp,is BAv, i
0Xp.: and 03, ; are defined in (18) and (19), and

1, y >0
sign(y) =40, y=0 (22)
-1, y<0

Functions (20) and (2I) connect the macroscopic density
function with the variance of the microscopic distance and
speed difference. These functions catch the distance of the
system with respect to its equilibrium. Instead of considering
the whole set of leader-follower situations, they allow for
a complexity reduction of the considered interconnected
system without reducing the level of available information.

We embed the macroscopic information given by (20)
and (ZI) in the macroscopic function denoted by p; =

[p1.i p2.]T, the evolution of which is given by the controller
dynamics (3], where we choose a state dimension r = 2 and
an asymptotically stable dynamics:

P1,i = —A1p1,i + P2
pai = —Aap2i + apy, +bPL)
p1,i(0) = p2,i(0) =0

(23)

where a,b > 0 are chosen parameters, and A\;, Ao > 0. The
superscript ¢ — 1 in wiA_pl and wiA_vl means that we consider
the macroscopic information calculated up to the preceding
vehicle. Since no macroscopic information is available to
vehicle 0 we define w;; = 1/)&1} = 0. Different macroscopic
functions can be proposed, as in [14]. The macroscopic
function pM in (17) is defined as a linear combination of
the components of p;. Its role is to incorporate the whole
macroscopic information of the platoon avoiding complexity
calculation explosion by the control law due to the state
explosion. If the functions and were to be obtained
through V2V communications, a demanding exchange of
information could be necessary. However, those functions
can be easily calculated by the road infrastructure, and
then communicated to the vehicles via V2I communications.
Consequently, the function p; in (23) can be obtained without
V2V communication.



IV. MESOSCOPIC CONTROL LAW

In this section, the control law adopting mesoscopic
quantities for a single car-following situation is introduced.
Then, String Stability and Asymptotic String Stability as
in Definitions [1] and 2] are ensured when the control laws
are implemented for each leader-follower situation along the
platoon. The control law implements the variable spacing
policy in while considering the function p; in (23). Each
vehicle is modeled according to dynamics (2)) and each car-
following situation according to x; in (§) and (8). To analyze
the String Stability of the closed loop system, we consider
the extended state that includes the dynamics in (23).
Defining ¢.;,0(X—1) = 0, we can describe the closed loop
dynamics of (I4) as

Xo = fa(Xo), i =0, (24)
Xi = fa(Xi) + get,i(Xi—1, Xi—2, - X0), Vi € In. (25)
where f; : R* — R* is the vector field describing the

evolution dynamics of each isolated subsystem, and g ; :
R* x ... xR* — R* is the interconnection term. We
—_———

it
assumemttﬁat the virtual leader ¢ = —1 has a constant speed
v_1 = 0 > 0, u_; = 0. The assumption of Apy(t) =
—Ap, Vt > 0 is considered.
A. Control strategy for variable spacing policy
We present a control law obtained by backstepping, see
[18]), for implementing the variable spacing policy in

with pM = p;,;. The controller associated to the i—th
vehicle, V i € ZY,, is given by:

u; = ui—1 — (Ap;i + Ap+ p1,) — M(Ap1i — p2,i)
+ Aop2i — Kap(Avy — Aip1i + p2,i)
—atly! — bR, — Kao(Av — Mip1i + pai
+ Kap(Ap; + Ap+ p1,i))

=wu;_1 — (Ap; — Ap]) — Kay(Av; — AvY)
+ (Kap — M )(M1p1i — p2,i) + Aapai

— KapAv; — aply,| — by,! (26)

with

Avi = Mip1i — p2,i — Kap(Api — Apj) 27)

and given constant gains Kajp, Ka, > 0 equal for each i €
I8, Apf = —Ap — p14, and p1 4, p2,; as defined in .

Note that the controller in (26) considers both microscopic
and macroscopic information, leading to a mesoscopic frame-
work. To analyze the String Stability of the closed loop
system, we consider the extended leader-follower state vector
Xi and its corresponding equilibrium point ¥, ; in . The
closed loop dynamics for each i € Z% results to be:

: Av; (*)
| A 28
X Pl —Aip1i +p2i (28)
p2,i —Xopai +a,) + by,

TABLE I
THE CONTROL PARAMETERS.

Parameter | Value | Parameter | Value | Parameter | Value
Kap 1 Kaw 2 T 0.9
A1, A2 1.5 a 0.2 b 1
Yap 0.5 Yav 0.5 7 0.5
with

(%) = =(Ap; — Ap]) — Kay(Av; — Av))
+ (Kap — M)(A1p1i — p2i) + Aap2ia
— KppQv — aiy,! — byt
We remark that ¢} = ¥} = 0. Then, we can rewrite the
system in as and (23), where ger,i(Xi—1, -, Xo) is
0
i—1 i—1
N . —(ay, +bYp,
gcl,i(XiflaXz?%vaO) = ( APO A )
api, + oY

. (29)

B. String Stability analysis

Set Xi = Xi — Xe,i- Then, the following result holds:

Lemma 1: Consider the closed loop system described by
(28). Then, there exist functions § of class L and v of
class K such that, if Kap, KAy, A1, A2 > 0 then,

GO < B0+ (o 1HOIT) G0

vVt > 0, and y(s) = ¥s, s > 0, ¥ € RT. Moreover, there
exist a and b in such that 5 € (0,1).

Proof: See Appendix [A]in [27]. [ |
On the basis of Lemma [I] Asymptotic String Stability of
the platoon can be obtained by an appropriate choice of the
parameters in (28], as shown in the following:

Theorem 1: The closed loop system described by
where the parameters Kap, KAy, A1, A2 > 0 and parameters
a, b are such that 4 € (0, 1), is Asymptotically String Stable.

Proof: See Appendix [B]in [27]. ]

7=0,..., i—

V. SIMULATIONS

The introduced control strategy is simulated in Mat-
lab&Simulink. Based on the modeling in (3)), we consider
a platoon of N + 1 = 11 vehicles. The initial conditions
for each vehicle are randomly generated in a neighborhood
of the equilibrium point. It results pa, # —Ap, pa, 7 0
0Ap» TAy 7 0. The reference distance is Ap = 10m and the
initial desired speed of the leading vehicle is © = 14m/s.
Vehicle speed is 0 < v; < 36 [m/s] and the acceleration is
bounded by —4 < u; < 4 [m/s?]. The control parameters
are introduced in Table[l] with a resulting 4 = 0.5. To better
stress the advantages of the proposed controller, we analyze
the behavior of the system when a disturbance acts on the
acceleration of vehicle 7 = 0, and it is not communicated to
vehicle ¢ = 1.

The simulation time is 1 minute. We split it into three phases:

1) From t = tyg = 0s to t = t; = 10s: the vehicles
start with initial conditions that are different from the



desired speed and the desired distance. No disturbance
is acting on the leader vehicle, and its desired speed is
the initial one, i.e. ¥ = 14m/s.

2) From t = t; = 10s to t = t5 = 30s: a disturbance
acts on the acceleration of the first vehicle ¢ = O.
At t1 a positive pulse of amplitude 4m/s? and length
5s is considered, while a similar pulse with negative
amplitude is considered at ¢ = 15s. The control
input of ¢ = 0 being saturated, 7 = 0 succeeds to
properly counteract to it but it is not able to operate
the needed corrective action to return to the desired
speed. Since the disturbance is an external input, it is
not communicated to the follower and can propagate
along the platoon.

3) From t =ty = 30s to t = t3 = 60s: the leader tracks
a variable speed reference. From ¢t = 30s to ¢ = 455
the desired speed is © = 30m/s, while from ¢ = 45s
to t = 60s it is 7 = 20m/s.

Figures [2] [3] and [] show, respectively, the inter-vehicular
distance, speed and acceleration profiles for each vehicle of
the platoon when the control input in (26) is implemented.
In the first phase, the vehicles are shown to quickly converge
to the desired speed and the desired distance.

In the second phase, the controller of ¢ = 1 does not
know the correct acceleration value of vehicle ¢ = 0. Also,
the macroscopic variable is not available to it: for these
reasons, it does not succeed to perfectly track the desired
distance neither in case of positive disturbance between
t = 10s to ¢ = 15s nor in case of negative one between
t = 15s to t = 20s (see Figure [2). However, it converges
to the same speed of ¢ = 0 after a small transient of three
seconds in both cases (see Figure [3). Finally, at ¢t = 20s the
disturbance is not active anymore and the leader can restore
its desired speed. Also, ¢ = 1 receives correct information
about its leader acceleration and is able to return to the
ideal distance. The dynamical evolution of the remaining
vehicles in the platoon during the generated transients after
t = 10s, t = 15s and t = 20s catches the contribution of the
macroscopic information. To this purpose, let us consider the
speed dynamics of the last vehicle in Figure [3] It is possible
to remark an anticipatory behaviour due to the macroscopic
information resulting in a higher speed between ¢ = 10s
and t = 12s with respect to the leading vehicles. Then,
the decreasing of vehicles’ speed along the platoon scales
with respect to their position, resulting more stressed in the
last vehicles (see between t = 12s and ¢ = 14s). The same
anticipatory behaviour is shown in Figure ] with respect to
the accelerations of the leading vehicles. The acceleration
profiles better show how the vehicles along the platoon scale
to intensify their accelerations and speeds, both for increas-
ing and decreasing speed phases. An anticipatory behaviour
is shown, both when the leading vehicles are accelerating and
converging to the same speed. The same applies for transients
taking place after t = 15s and ¢ = 20s, which are generated
by the fast reaction of the leading vehicle to the disturbance.
An anticipatory harmonizing acceleration for each vehicle
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Fig. 2. Control strategy for variable spacing policy: Distances.
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Fig. 3. Control strategy for variable spacing policy: Speeds.
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Fig. 4. Control strategy for variable spacing policy: Accelerations.

scales along the platoon with respect to their knowledge of
the macroscopic quantities, as shown in Figure [3] and [

In the third phase, since there is no unknown perturbation
acting on the platoon, the vehicles succeed to track the
variable speed profile and to remain at the desired distance.
No oscillations are shown by the proposed control law, even
if the desired speed profile has high steps.

The proposed control laws in (26) exploit the information
resulting from the macroscopic variable and safely control
a platoon of vehicles. The control inputs provide transient
harmonization on the whole traffic throughput while ensuring
Asymptotic String Stability properties. The dynamical evo-
lution results in a reduction of the oscillations propagation
along the platoon, both in nominal case and in the presence
of an active external disturbance. The utilization of the
macroscopic information results to be a powerful tool.



VI. CONCLUSIONS

This paper introduces macroscopic variables for ensuring
the String Stability of a platoon of CACC autonomous
vehicles. As the variance of microscopic quantities is related
to the macroscopic density, the proposed stability analysis
opens to the possibility of properly controlling a platoon
by propagating only macroscopic density information. A
control law based on information obtained by V2V com-
munication has been proposed. The improvements resulting
from taking into account macroscopic information are shown
by simulation results. The proposed mesoscopic control law
produces an anticipatory behaviour, which provides a better
transient harmonization. Future work will focus on extending
the proposed framework in a mixed traffic situation with
non-communicating vehicles. Also, due to the satisfactory
results, the next objective is to extend our approach to more
complex models including non-idealities such as actuation
and communication delays.
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APPENDIX
A. Proof of Lemmal[]|

Let us consider the candidate Lyapunov function (see [18])
W,; = W(x;) for the i-th dynamical system X;, for i € Z%:

= 1 T 1 e
W(x:) = §(Apz‘ — Ap))? + §(Avi — Av)?
1 1
+ ipii + §P§,i~
It can be proven that (3I) is bounded by two quadratic
functions as follows

alxil? < W) < alxl®

€1y

(32)

To derive the constants o« > 0 and & > 0 we replace the
expressions of Apj defined in (T7) and of Av] in @7) in
the definition of W; in (BI). Then,

. 1 _
W(xi) = §(Apz‘ + AP+ p1.i)?

1
+ i(A'Ui —Mipri+ p2i+ Kap(Api + AP+ p14))?
1 1
+ ipiz + 5/0%,11
1+ KX, m P2 P1
o 1 ~T 0 1 pP3 2 ~
2Xi 0 0 2+ ()\1 — KAP)Q 3 Xi
0 0 0 2
Pw
(33)
where

p1=2Kap, p2 = 2(1+ Kip - AlKAp)a
ps =2(Kap — A1)-
By defining Apin (P), Amax(P) respectively the minimum
and maximum eigenvalues of the generic matrix P, then,
Sin (P )l < W) < 3 A (Pl
Since Kap, A1, A2 > 0, then

(34)

)\min(PW) =1, )\max(PW) = maX{1+KZp7 2+()‘1_KAP)2}'

(35)
From (34) and (33) it follows
1

a=g, a= %max{l + K3,.2+ (A — Kap)?}. (36)
The time derivative of W; in (31) verifies:
Wi = —Kpp(Ap; — Ap})? — Kpo(Av; — AvF)?
= Mipli = Aepd i+ pripa
+ p2i(at, +b0s,)

Qi

q1 2KApKA'U q2 2KApKAU
- 0 K 2K -
_ LT Av g3 Av )
- X7, 0 O qa qs Xi
0 0 0 X+ Kay
Qw

+ %6l (algls, |+ bl )

< —al%l® + Xl (el | + 01w, ) (37)

where

a = Amin(Qw) = min{qi, Kav, g1, A2 + Kao},
with

(38)

a1 = Kap(l+ KapKaw),

g2 = 2Kap(1 + Kao(Kap — A1),

g3 = 2K a0 (Kap — A1),

s = Kap+ A1 + Kao(\ = Kap)?,

g5 =1 —2Kn,(Kap — M).
We proceed to prove some inequalities with respect to
functions ¢, and ¢}, by exploiting the variance property
given below. Let | € {1,..,m} and y; € R. Then, the
variance with respect to the set of values y; satisfies the

property

1
oy < - (maxy — miny;)?. (39)

4
Since we consider the dynamics in (24) and (25) with respect
to Xi = Xi — Xe,i» let us define Ap; = Ap; — Ap, then

|¢1Ap| < YAp \/ O—QAP

1
< —yap| max Ap; — min Apj]
2 §=0,...,i §=0,...,i

.

< yap max |Ap;|
7=0,...,%
< Yap max x| (40)
7=0,...,2
where we have exploited the relationship
| max Ag;| < max|Ap;|
J J
| min Ap;| < max [Ap;]
J J

By applying the same methodology, is proven the inequality

ol <720 max [%;] (41)
Then,
al¥ispl + bliaul < (a7ap +b7a0) max [%] (42
Define
d=avyap+bya, >0, T €(0,1), (43)

then for the time derivative of W; in (37) the following holds

Wi < —alul® +d%l _max | [%]+ Yaltl” = YTalw[?
d
< —(1- V|2 Yi| > — Xl
<-A-Taxl, Vilz 5 max [yl
(44)

Since a > 0, the inequality in (#4) satisfies the Input-to-
State Stability (ISS) condition (see [18]). According to [18,
Theorem 4.19], the inequality in (30) is verified. Moreover,

a d
=A~AsVs>0 ~= —— 0.
v(s)=4sV s>0, ¥ ”gaT >

Since the parameters a,b > 0 in the dynamics of p; in
can be arbitrarily selected, the constant d defined in can
be chosen such that 7 in belongs to (0,1).

(45)

O



B. Proof of Theorem ]|

The first part of the proof is based on the forward recursive
application of the ISS property in Lemma [I] through an
inductive method. For 7 = 0:

IXo()| < B(Ix0(0)[,1), V>0. (46)
For © = 1:
X1 ()] < B(R1(0)]8) + A% (), v ¢ >0,

where [Xo(-)lss” < B(Ix0(0)[,0). Defining [xar(0)] =
max{|x0(0)|, |X1( )|}, then for both ¢ =0 and i = 1:

(47)

IXo(t)| < B(Ixm(0)],0), V>0, (48)
IX1(t)] < B(Xa(0)],0)(1 +7), vt >0.  (49)
For ¢ =
IX2(t)] < B(Ix2(0)], )
+ 4 max [ ()10, ¥ £ > 0. (50)
J1=U,

Defining |x4,(0)| = max;=0.1,2{|X;(0)|}, since ¥ > 0, then

[Xo(t)] < B(IXW(0),0)(1+7), Vt>0,  (51)
X1 ()] < B(IX(0),0)(1+7), Vt>0,  (52)

and
IX2(t)] < B(IXA(0)],0)(L+7 +5%), VE>0.  (53)

By recursively applying these steps, and since 7 € (0,1) for
hypothesis, for each i € Z%; we state:

()] < 8 ( mx [ )|,0) Z”

7=0
31_5<.n%ax |>2j(0)|,0>, V>0, (54)
Then
1
<1 G(0),0), ¥t>0. (55
max (0] < 1= (max[%:(0)1.0) 65
Define w(s) = f(s,0), s > 0. By definition of KL

functions, w is Ko, and hence invertible. Since (53) holds
for any ¢ > 0, then

N =)o),

The value of ¢ in does not depend on the system
dimension. From (54), (533) and (56), String Stability is
ensured according to Definition [T}

We focus now on the possibility to ensure Asymptotic
String Stability. This second part of the proof is based on a
composition of Lyapunov functions (see [18]). We consider
the function W; associated with the i-th dynamical system,
for i € Z9, that is described in and satisfies the
condition in (32).

0=w" Ve>0. (56)

Let us consider the time derivative of W; in (37). Since
we consider the dynamics in (24) and (Z3) with respect
to Xi = Xi — Xe.i» We define Ap; = Ap; — Ap, then
for the macroscopic functions 1, and ¢}, the following
inequalities are proved:

‘wZAp‘ S YAp \/ 02Ap,i

A ‘ o\ 3
1 < 1 :
= A~2_7 AN.
war | 71 28 e (A
7=0 7=0
1 : :
< Yap—= Ap3
7 P /72+1 = ]
1
<Yap T |Ap;] (57)

=0

where we have used the inequality |z|s < |x|;. In the same
way we can prove that

i (IR
iAol < VAo = Z | Avj] (58)
=0

Then,

; ; 1 [ . [
alap| + b, < Nl > AR+ byas Y |Av;]

§=0 §=0
_ aYAp 0 00
_ 1 : 0 b'yAv 0 0 ~
- i+1; 0 0 0 0N
= 0 0 00 )
2 ~
< —== max{ayap buao} 31Nl (59)

j=0
Let x and Y. be the extended lumped state of the platoon

and the extended equilibrium point respectively, defined in

a similar way as (1) and (12). Let us consider ¥ = ¥ — Xe
and the parameters d; > 0 to define a composite function

We(X):

N
We(X) =D d;W (%) (60)
i=0
It clearly verifies
a |x* < We(X) < aclxl? 61)
where
a, = min{di}a, &= max{d Ta. (62)
i€ i€T

The time derivative of W, in (60) satisfies the inequality

N i—1
We(0) < di [—altl® + Y kilgylIl (63)
i=0 j=0



where
ko =0, (64)

~ 2
k; = — max{ayap, byay} > 0, i > 1. (65)
Vi
Let us introduce the operator ¢ : R2V+1 — RN*1  defined
as

(%) = [IXol, [xa], ooy [ )" (66)
Then, equation (63) can be rewritten as
N 1, -
We(X) < 560" (DS + ST D)o(x)  (67)
where
D = diag(do, dy, ..., dy) (68)

and S is an NV x N matrix whose elements are

« 1=17
Si; =18 —ki i<j (69)
0 i>j

For a¢ > 0, each leading principal minor of S is positive
and hence it is an M-matrix. By [18, Lemma 9.7] there
exists a matrix D such that DS + ST D is positive definite.
Consequently, W, in is negative definite. It follows
that W, in (60) is a Lyapunov function for the overall
platoon system described by (28). Therefor, there exists a
KL function B, : Rt x Rt — Rt such that

IX(®)] < Be(IX(0)],2), V= 0. (70)
Condition in (70) ensures the asymptotic stability:
. o _ . 0
tli>r£10|xl(t)\ =0, Viely. (71)

The platoon system is proved to be String Stable by (53]
and (56). Consequently, for each i € Z% the state evolution
|X:i| is constrained by a bound that is independent from the
system dimension. Furthermore, from (71)) Asymptotic String
Stability is ensured according to Definition [2]



	I Introduction
	II Modeling and String Stability definitions
	II-A Platoon modeling
	II-B String Stability definitions

	III Control tools
	III-A Spacing policy
	III-B Macroscopic information

	IV Mesoscopic control law
	IV-A Control strategy for variable spacing policy
	IV-B String Stability analysis

	V Simulations
	VI Conclusions
	References
	Appendix
	A Proof of Lemma 1
	B Proof of Theorem 1


