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Abstract— This paper proposes an MPC-based controller to
efficiently execute multiple hierarchical tasks for underactuated
and constrained robotic systems. Existing task-space controllers
or whole-body controllers solve instantaneous optimization
problems given task trajectories and the robot plant dynamics.
However, the task-space control method we propose here relies
on the prediction of future state trajectories and the correspond-
ing costs-to-go terms over a finite time-horizon for computing
control commands. We employ acceleration energy error as the
performance index for the optimization problem and extend it
over the finite-time horizon of our MPC. Our approach em-
ploys quadratically constrained quadratic programming, which
includes quadratic constraints to handle multiple hierarchical
tasks, and is computationally more efficient than nonlinear
MPC-based approaches that rely on nonlinear programming.
We validate our approach using numerical simulations of a new
type of robot manipulator system, which contains underactu-
ated and constrained mechanical structures.

I. INTRODUCTION

Highly articulated robots are increasingly employed and
rely on hierarchical task execution to operate in dynamic
environments. The Operational Space Control (OSC) method
considers manipulators’ end-effector dynamics, virtually de-
coupling closed-loop task-dynamics in the end-effector’s op-
erational space [1]. In particular, OSC computes dynamically
consistent torque commands needed for robots to effectively
track motion and force trajectories. A detailed analysis of
OSC for constrained and underactuated robotic systems is
presented in [2]. In recent times, the OSC method has
been extended to the Whole Body Control (WBC) method
which incorporates floating base robots [3], multi-contact,
and dynamically consistent constraints, task and posture
primitives [4]. WBC has been broadly applied to bipedal
humanoid robots [5]–[8] and mobile humanoid robots [9].
In the case of bipedal humanoids, the WBC method has
been employed to achieve multi-contact balance behaviors
[5], [10] and various complex motions such as dynamically
walking, jumping, climbing up a ladder [11], and hand
manipulation [12]. Several other relevant whole-body control
techniques have been proposed such as [13], which relies on
the manipulation of contact forces on the ground and multi-
contact points.
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Although OSC and WBC are capable of computing control
commands fast and establishing a real-time feedback loop,
they are both based on instantaneous optimization, e.g., least-
square error minimization. For this reason, the control com-
mand is only optimal locally at each time instance. Model
Predictive Control (MPC) offers an alternative in which
an optimal control problem can be recursively solved over
a finite-time horizon [14], [15]. MPC has been employed
successfully for the control of robotic manipulators [16],
[17]. Nonlinear MPC (NMPC) is employed for the control of
manipulators in the presence of external disturbances [18],
for image-based visual servoing with visibility constraints
[19], and as a robust control strategy [20]. Also, MPC solves
practical problems in robotics such as collision avoidance
[21] or singularity avoidance [22] over a finite time horizon.
In addition, whole body MPC is achieved using Sequential
Linear Quadratic (SLQ) programming for mobile manipula-
tors [23]. In the case of locomotion for quadruped robots,
MPC has been employed to find contact forces that allow a
lumped mass model of the robot to track desired trajectories
obtained via WBC [24].

Two significant issues arise when trying to replace the
conventional OSC or WBC with MPC: 1) Dealing with
the whole-body nonlinear dynamics, and 2) Dealing with
the task hierarchy commonly imposed in highly articulated
robots performing multiple tasks. Most robotic systems are
nonlinear, constrained, and sometimes underactuated. Of-
ten, simplified models such as a linearized CoM model
of a walking robot are employed to approximate contact
forces during locomotion and used in MPC structures [24].
However, such methods employ an additional WBC step to
generate actuator commands. In our approach, we remove
the need to rely on simplified models for control and directly
linearize complex multi-body models of robotic systems to
reduce the computation time of MPC [25]. The main reason
why robots have been employing OSC and WBC methods
is that they can be simply executed using a single Quadratic
Programming (QP) optimization step, which is substantially
faster than employing MPC or NMPC. Another reason why
OSC and WBC have become popular is because they can
compute control commands achieving multiple task goals
and organized as a hierarchy, for instance using projection-
based methods [26] or Hierarchical QP (HQP) [27] at each
time instance. To achieve better control performance over
a finite-time horizon, we propose to transform OSC and
WBC into a convex MPC while fulfilling multiple task goals
and constraints as required for control of complex robotic
systems.
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Next, we summarize the main contributions of our work.
We formulate a new MPC as a transformation of WBC
and OSC for effective control of underactuated and con-
strained robots. To the best of our knowledge, this is the
first study to propose an MPC-based extension of WBC
for the execution of hierarchical tasks. We linearize the
nonlinear robot dynamics with respect to nominal joint space
trajectories obtained via Inverse Kinematics (IK) or Inverse
Dynamics (ID) operations applied to previously defined task
trajectories. The running cost for the proposed MPC is
constructed to mimic the optimization cost associated with
WBC and OSC. Furthermore, we classify the task hierarchy
as being either a weak hierarchy or a strong hierarchy
each associated with a corresponding quadratic inequality
constraint. Weak hierarchy implies that the tracking error of
higher prioritized task must be equal or smaller than that
of lower prioritized task. Strong hierarchy of multiple tasks
impose the constraints that the higher prioritized task error
has to be strictly smaller than that of lower prioritized task. In
our MPC-based approach, the cost and constraint functions
associated with the execution of the hierarchical tasks are
convex quadratic functions and the system dynamics are
linearized as previously mentioned; thus, each finite-horizon
optimal control problem can be associated with a Quadrati-
cally Constrained Quadratic Program (QCQP), which can be
solved using convex optimization tools.

For validation, we apply the proposed convex MPC-based
approach to Scorpio, a unique robotic manipulator equipped
with 7 moving DOF, where two of them are implemented
using mechanical parallelograms corresponding to movement
elevations. Although the robotic manipulator is able to handle
high-payload objects effectively due to the distinctive mech-
anisms, the control problem of the robotic system becomes
more complicated. More specifically, in each parallelogram,
there exist one driving joint, two passive joints, and one
kinematic constraint. We validate the proposed QCQP-based
MPC by demonstrating numerical simulations of this robot
Scorpio, while the results are compared with the behavior
resulting from using a simpler WBC controller.

The remainder of this paper is organized as follows. We
briefly review WBC for underactuated and constrained robots
in Section II. In Section III, we present the proposed MPC-
based approach and explain its implementation via convex
optimization tools. In Section IV, we apply the proposed
methodology to Scorpio, which is a unique underactuated
and constrained manipulator. Numerical simulations are also
provided to show the effectiveness of the proposed control
method.

II. PRELIMINARIES

A. Notation

We represent the sets of n dimensional real vectors and
m × n matrices by Rn and Rm×n, respectively. Sn+ and
Sn++ denote the sets of n × n positive semi-definite and
positive definite matrices, respectively. Given n real numbers
a1, · · · , an, diag(a1, · · · , an) represents the n × n matrix
whose diagonal terms are a1, · · · , an. bdiag(A1, · · · ,An)

denotes the block diagonal matrix constructed by matrices
A1, · · · ,An of compatible dimensions. A† denotes the
Moore-Penrose pseudo inverse of A, which is a real matrix.
In addition, we express a discretized interval of [a, b] as
[a, b]d where a and b are integers with a ≤ b. Finally, 1n ∈
Rn denotes the n-dimensional vector whose components are
all equal to 1.

B. Whole Body Controller

The rigid body dynamics equation for n DOF robots
actuated by m joints (m ≤ n) is expressed as follows:

M(q)q̈ + b (q̇, q) + J>c (q)Fc = U>Γ (1)

where q ∈ Rn, M(q) ∈ Rn×n, b(q, q̇) ∈ Rn, Jc(q) ∈
Rnc×n, Fc ∈ Rnc , U ∈ Rm×n, and Γ ∈ Rm de-
note the joint position vector, mass/inertia matrix, sum of
Coriolis/Centrifugal and gravity forces, constraint Jacobian,
constraint force, selection matrix, and torque command,
respectively. For the simple notations, let us consider M,
b, and Jc to be equal to M(q), b(q̇, q), and Jc(q). The
constraints that we consider are xc = fc(q) = c where
fc : Rn 7→ SE(3) and c is a constant vector in SE(3), then,

ẋc =
∂fc
∂q

q̇ = Jcq̇ = 0,

ẍc = J̇cq̇ + Jcq̈ = 0.

(2)

To incorporate these constraints in the equation of motion,
the null-space projection matrix of the constraint Jacobian
is defined as Nc = I − JcJc ∈ Rn×n where Jc =
M−1J>c (JcM

−1J>c )†. The constraint force Fc can be ob-
tained as follows:

Fc = J
>
c (U>Γa − b) + ΛcJ̇cq̇ (3)

where Λc = (JcM
−1J>c )†. After substituting equation (3)

into (1), we obtain the constrained dynamics equation of a
robot as follows:

Mq̈ + bc = N>c U>Γ. (4)

where bc = N>c b + J>c ΛcJ̇cq̇. The dynamics equation in
the constrained task space could be formulated by right
multiplying the above equation by J1M

−1, where J1 denotes
the task Jacobian for x1. The operational space dynamics
then becomes

ẍ1 − J̇1|cq̇ + J1M
−1bc = J1|cM

−1U>Γ (5)

where ẍ1 denotes the acceleration for the task x1 in the
constrained task space and J1|c = J1Nc. Given q, q̇ and
the desired task acceleration, ẍd1, a constrained optimization
problem is formulated to obtain the torque command as
follows:

min
Γ

(MΓ− b)>Λ1|UNc
(MΓ− b) (6)

whereM = J1|cM
−1U>, b = ẍd1−J̇1|cq̇+J1|cM

−1bc, and
Φ−1 = UM−1 (UNc)

>. The weighting matrix is computed



as follows:

Λ−1
1|UNc

=MΦM>

=J1|cM
−1U>

(
UM−1N>c U>

)†
UM−1J>1|c

=J1UNcUNcM
−1J>1

(7)

where UNc := M−1N>c U>
(
UNcM

−1N>c U>
)†

and
Nc = N2

c is an idempotent matrix. When UNcUNc = Nc,
it is clear that Λ−1

1|UNc
= J1NcM

−1J>1 = Λ−1
1|c .

When there exists many solutions for Γ to achieveMΓ =
b?, WBC minimizes the weighted torque norm fulfilling the
optimization

min
Γ

Γ>Φ−1Γ

s.t. MΓ = b?.
(8)

When b? = b and UNcUNc = Nc, the optimal solution for
the above optimization problem (8) can be explicitly written
as

Γ? = ΦM>(MΦM>)−1b = ΦM−1Λ1|UNc
b

= UNc
>

J>1|cΛ1|UNc
b = UNc

>
J>1|cΛ1|cb

(9)

because NcM
−1 = M−1N>c . This control command for

the task x1 is identical to the WBC command proposed in
[5]. What we’ve newly done above is to formalize the WBC
controller as an optimization problem. One advantage of this
optimization-form WBC is the ability to incorporate equal-
ity or inequality constraints embedded in the optimization
problem. When we want to consider more constraints, it is
possible to add explicit constrains directly.

C. Multiple Tasks with Hierarchies

We consider multiple hierarchical tasks using WBC.

Definition 1. Let us consider nt hierarchical tasks,
x1, · · · , xnt . We can express a task hierarchy among the
given tasks as x1 � · · · � xnt where xa � xb represents
that xa has higher priority than xb.

The basic approach of WBC for multiple tasks is to
employ lexicographical optimization. Given nt hierarchical
tasks, the solution to the hierarchical WBC problem leads to
the control command:

Γ? =UNc
>

N>c

nt∑
k=1

Γk = UNc
>

N>c

nt∑
k=1

J>prec(k)Fk,

Fk =(Jprec(k)|cM
−1U>UNc

>
J>prec(k)|c)

−1bk (10)

=Λprec(k)|cbk (when UNcUNc = Nc),

bk =ẍdk − J̇prec(k)|cq̇ + Jprec(k)|cM
−1b

where Jprec(k) = JkNk−1, Nk = Nk−1 − Jprec(k)Jprec(k),
N0 = I, and Jprec(k)|c = Jprec(k)Nc. We note that the tasks
are controllable using actuated joints when UNcUNc = Nc,
because

Mq̈ + N>c b+ J>c ΛcJ̇cq̇ = (UNc)
>Γ?

= N>c

nt∑
k=1

J>prec(k)Fk.
(11)

The task space dynamics for the k-th prioritized task xk are
obtained by left-multiplying by JkM

−1 as follows:

ẍk − J̇k|cq̇ + JkM
−1(N>c b+ J>c ΛcJ̇cq̇)

= JkM
−1N>c

k∑
j=1

J>prec(j)F j

(12)

where JkM
−1N>c J>prec(j)F j = 0 for all j > k. Because

JkM
−1N>c J>prec(j)F j = JkM

−1N>c N>j−1J
>
j F j

= JkNj−1NcM
−1J>j F j = 0

where JkNj−1 = 0 as shown in Appendix A in [26]. Based
on the previous recursive null space projections and the
above decoupled task space dynamics, the desired hierar-
chical tasks are effectively controlled in order of priority.
Although this WBC projection-based method is straightfor-
ward, it does not allow to incorporate inequality constraints
and it is only instantaneously optimal.

III. THE PROPOSED MPC

We propose to replace WBC with MPC to execute multiple
hierarchical tasks more efficiently. Before constructing an
MPC, we specify the state space model of the robot dynamics
from (1) as follows:

ẋ(t) = f(x(t)) + g(x(t))u(t),

f(x(t)) =

[
q̇

−M−1b

]
,

g(x(t)) =

[
0n×m 0n×nc

M−1U> −M−1J>c

] (13)

where x = [q>, q̇>]> ∈ Rnx , and u = [Γ>, F>c ]> ∈ Rnu .
More specifically, the dimensions of the state and the input
are nx = 2n and nu = m+ nc. Given a finite-time horizon
[t0, tf ], we formulate an optimal control problem as follows:

min
x(.),u(.)

`f (x(tf )) +

∫ tf

t0

`(x(t),u(t))dt

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t),

hi(x(t),u(t)) ≤ 0,

he(x(t),u(t)) = 0, x(t0) = x0

(14)

where hi and he are inequality and equality constraint
functions, respectively. `f (.) and `(.) are the cost at the
terminal state x(tf ) and the running cost, respectively. In
view of (6), the performance index for the WBC problem is
equal to:

`(.) = u>Wuuu− 2b>Wbuu + b>Λ1|UNc
b,

`f (x(tf )) = b>Λ1|UNc
b

(15)

where Wuu = bdiag(M>Λ1|UNc
M,Wc), Wbu =

[Λ1|UNc
M, 0], and Wc ∈ Snc+ denotes a weighting matrix

for the constraint force. In addition, we choose the classical
PD control law:

ẍd1(t) = Kp(x
d
1(t)− x1(t)) + Kv(ẋ

d
1(t)− ẋ1(t)) (16)



where Kp = diag(Kp1 , · · · ,Kpdim(x1)
) and Kv =

diag(Kv1 , · · · ,Kvdim(x1)
) are proportional and derivative

gain matrices, respectively. We note that Wu, Wbu, Λ1|UNc
,

and b depend on the state x. In addition, both the running
cost ` and the final cost `f are nonlinear. The state space
model of the system is also nonlinear. Therefore, we have
formulated a nonlinear optimal control problem. The rest
of this section explains the process of formulating this non-
linear optimization as a convex MPC problem in the discrete
time domain.

A. QCQP to Control Hierarchical Tasks in the Discrete
Domain

As a first step, we obtain a linearized state space model of
the robotic systems in (13). Consider the finite-time horizon
TN = [t0, tN ]. The time domain is normalized by using a
dilation coefficient σ = tN − t0 and let τ = σ−1(t − t0) ∈
[0, 1] for the unit interval. Then, we can convert the nonlinear
dynamics of the robot as

ẋτ =
dxτ
dt

=
dxτ
σdτ

= f(xτ ) + g(xτ )uτ . (17)

Note that the dynamics in (17) are expressed in the normal-
ized time domain. We now linearize these nonlinear dynam-
ics given a reference trajectory (xdτ ,u

d
τ ). By neglecting terms

of order higher than 1, this process produces the following
approximated linear system

dxτ ≈ (Ad
τxτ + Bd

τuτ + rdτ )dτ (18)

where rdτ = σ
[
f(xdτ ) + g(xdτ )udτ

]
−Ad

τx
d
τ −Bd

τu
d
τ , Ad

τ =
σ∇x(f(x) + g(x)u)|(xdτ ,udτ ), and Bd

τ = σ∇u(f(x) +

g(x)u)|(xdτ ,udτ ) = σg(xdτ ). A simple method to obtain the
discrete-time state space model is to integrate the above
differential equation:∫ τi+∆τ

τi

dxτ =

∫ τi+∆τ

τi

(
Ad
τxτ + Bd

τuτ + rdτ
)
dτ (19)

from which we obtain the following discrete-time state space
model:

xi+1 = Ad
ixi + Bd

iui + rdi (20)

where Ad
i = Ad

τi∆τ + I, Bd
i = Bd

τi∆τ , and rdi = rdτi∆τ .
The concatenated state vector and control input are defined
as

X i = [x>0 , x
>
1 , · · · ,x>i ]> ∈ R(i+1)nx ,

U i = [u>0 , u
>
1 , · · · ,u>i ]> ∈ R(i+1)nu .

(21)

Using these vectors, we can re-write the state space model
as

xi = Aix0 + BiU i−1 + Ri1i,

Bi = [Bi−1|0, · · · , Bi−1|i−2, Bi−1|i−1],

Ri = [Ri−1|0, · · · , Ri−1|i−2, Ri−1|i−1]

(22)

where Ai =
∏i
j=0 Ad

i−j when i ≥ 1 and A0 = I.
In addition, Bi|i−β = (

∏β−1
j=0 Ad

i−j)B
d
i−β , and Ri|i−β =

(
∏β−1
j=0 Ad

i−j)r
d
i−β when β ≥ 1. Otherwise, when β = 0,

Bi|i = Bd
i and Ri|i = rdi , respectively. By concatenating the

equation (22) for all i ∈ {0, · · · , N}, the state equation can
be written as follows:

XN = Adx0 + BdUN−1 + Rd
N1nX (23)

where nX = dim(X ) = (N +1)nx. Also Ad, Bd, and Rd
N

are formed by stacking the terms from i = 0 to i = N in
(22).

Definition 2. Consider nt hierarchical tasks, x1 � x2 �
· · · � xnt . Let the position trajectories, xdk(t), be given. We
can also express the hierarchy in terms of the resulting task
tracking errors over a finite-time horizon [t0, tf ] as follows:

‖e1(t)‖2 + ε1 ≤ · · · ≤ ‖ent(t)‖2 + εnt

where ek(t) = xdk(t)− xk(t) for all t ∈ [t0, tf ]. In addition,
εk ≥ 0 where εk−1 ≤ εk, k ∈ {1, · · · , nt}, and ε0 = 0.

Let qi = q(ti) and q̇i = q̇(ti) where ti ∈ [t0, tN ]d. We
can specify and approximate the constraint ‖ek(qi)‖+ εk ≤
‖ek+1(qi)‖ + εk+1 where ek(qi) = xdk(ti) − ftk(qi) with
ftk : Rn 7→ Rdim(xk) being a continuous function for the
k-th task xk as follows:

‖ek(qi)‖2 − ‖ek+1(qi)‖2 + εk − εk+1 (24)

≈ (qdi − qi)>
(
J>kdi

Jkdi − J>k+1di
Jk+1di

)
(qdi − qi) + εk(k+1)

= q>i Jkdi q − 2q>i Jkdi q
d
i + qd>i Jkdi q

d
i + εk(k+1) ≤ 0

where Jkdi = J>
kdi

Jkdi − J>
k+1di

Jk+1di
, Jkdi =

∂ftk
∂q (qdi ),

and εk(k+1) = εk − εk+1. Now, the above approximated
constraints are convex quadratic functions. The concatenated
form of the above equations is as follows:

X>NJ d
kiXN + Zd

kiXN + Edki ≤ 0 (25)

where J d
ki = bdiag(0, · · · , Ĵki , · · · ,0) ∈ RnX×nX , Zd

ki =

[0, · · · , Ẑ>ki , · · · ,0] ∈ R1×nX , and Edki = qd>ki Jkdi q
d
ki

+
εk(k+1). Each sub-matrix is specified as follows:

Ĵki =

[
Jkdi 0

0 0

]
∈ Rnx×nx ,

Ẑki =
[
(−2qd>ki Jkdi )>, 0

]>
∈ Rnx .

(26)

We consider the quadratic constraints expressed by (25) for
all k ∈ {1, · · · , nt} and i ∈ {1, · · · , N} then simply express
the entire quadratic inequality constraint as G(XN ) ≤ 0. The
case ε(k−1)k = 0 is called as weak hierarchy, which means
to allow that the tracking error of the higher prioritized task
can be equal to that of the lower prioritized task. The case,
ε(k−1)k < 0, the error norm for the (k−1)-th task ‖ek−1‖ is
strictly smaller than the k-th task error ‖ek‖, which is called
a strong hierarchy.

Thirdly, we construct a convex (quadratic) approximation
of the nonlinear performance index in (15) to make the
problem tractable. We aim to solve the nonlinear optimal
control problem in (14), which we call PQCQP (x0,TN ) as



follows:

min
XN ,UN−1

L(XN ,UN−1)

s.t. XN = Adx0 + BdUN−1 + Rd
N1nX ,

G(XN ) ≤ 0,

H(XN ) = 0,

x(t0) = x0

(27)

and

L(XN ,UN−1) =X>NWxxXN + WxXN

+ U>N−1WuuUN−1 + WuUN−1

(28)

where H : RnX 7→ R(N+1)nc is the linearized constraint
function in terms of the stacked state vector XN . In detail,
the kinematic constraint is approximated as follows:

fc(qi) ≈ fc(qdi ) + Jc(q
d
i )(qdi − qi) = c (29)

where qdi denote the nominal joint position in the i-th
discrete time step. In turn we can express the above equality
constraint in terms of the state.[

−Jc(q
d
i ) 0

]
xi +

[
Jc(q

d
i )qdi + fc(q

d
i )− c

]
= 0

(30)
We consider this linear equality constraint for all i ∈
{1, · · · , N} in the convex optimization by concatenating in
an appropriate form. In addition, Wxx, Wx, Wuu, and Wu

represent the weighting matrices, respectively. We utilize the
nominal trajectories to shape the quadratic cost by assuming
there exists feedback control gains Kp and Kv for b̌:

b̌i ≈
[
−ǨpJ̌id −ǨvJ̌id

]︸ ︷︷ ︸
Cdi

xi +
[

ǨpJ̌idq
d
i + Ǩvψid

]︸ ︷︷ ︸
cdi

where ψkdi =
[
ẋd>1 (ti), · · · , ẋd>nt (ti)

]>
, Ǩp = bdiag(Kp1 ,

· · · ,Kpnt
), Ǩv = bdiag(Kv1 , · · · ,Kvnt

), and J̌id is the
stack of the Jacobians for all tasks such as

J̌id =

 J1di
...

Jntdi

 ∈ R
∑nt
i=1 dim(xi)×n. (31)

Then, the running and final costs can be approximated as˜̀(ti) = u>i Wd
uuiui + x>i Wd

xxixi + Wd
uiui + Wd

xixi + C1,˜̀
f (x(tN )) = x>NWd

xxNxN + Wd
xNxN + C2

where

Wd
uui =Wuu|(xdi ),

Wd
xxi =Cd>

i Λǐ|UNc
Cd
i |(xdi ),

Wd
ui =− 2b̌>i Wbu|(xdi ),

Wd
xi =2cd>i Λǐ|UNc

Cd
i |(xdi )

(32)

Λǐ|UNc
is the task inertia matrix computed by using the

stacked Jacobian J̌id . C1 and C2 is the sum of the remaining
terms in the running and terminal costs, which are dropped in
the quadratic approximation of the latter. The approximated

running cost can be stacked for the augmented vectors XN

and UN−1 such that

Wuu =bdiag(Wd
uu0

, · · · ,Wd
uuN−1

),

Wxx =bdiag(Wd
xx0

, · · · ,Wd
xxN ),

Wu =[Wd
u0
, · · · ,Wd

uN−1
],

Wx =[Wd
x0
, · · · ,Wd

xN ].

(33)

Finally, the formulated MPC problem in (27) becomes a
QCQP by approximating the performance index, the system
dynamics, and the constraints along the nominal trajectories.
The detailed process is described in Algorithm 1.

B. Nominal Trajectories from IK and ID

We assume trajectories for the hierarchical tasks, x1 �
x2 � · · · � xnt , are given over a finite-time horizon xdk(t)
where k ∈ {1, · · · , nt} and t ∈ [t0, tf ]. We need to convert
these task trajectories into state space reference trajectories to
be employed in our MPC. In this section, we obtain nominal
trajectories in joint position and velocity space by solving the
inverse kinematics problem. Let the initial state be given as
x0 = [q>0 , q̇

>
0 ]>. We can recursively compute the nominal

trajectories with respect to the desired task specifications.
Let us consider the discretized time domain as described in
Section III-A. We start from xdki+1

− xdki = Jkdi (qdi+1 − qdi ).
We can update the desired joint velocity for nt hierarchical
tasks using the null space projection method proposed in
[26]:

Qi = J†
1di

(xd1i+1
− xd1i) +

nt∑
k=2

∆qki ,

∆qki = (Jkdi Pk−1di
)†
(
xdki+1

− xdki − Jkdi ∆qk−1i

)
,

Pkdi
= Pk−1di

− (Jkdi Pk−1di
)†(Jkdi Pk−1di

)

(34)

where P0di
= I, and ∆q0 = 0. The (i+ 1)-th desired value

for the state xdi = [q>i , q̇
>
i ]> is obtained as follows:

qdi+1 = qdi + Qi,

q̇di+1 = (qdi+1 − qdi )σN−1
(35)

where i ∈ {0, · · · , N − 1}, qd0 = q0, and q̇d0 = q̇0.
Given the desired state trajectories xdi , WBC can be utilized
to obtain the instantaneous input reference, udi to control
the hierarchical tasks as described in (10). These nominal
trajectories for the state and input are utilized to compute
the matrices Ad, Bd, Rd

N , Wxx, Wx, Wuu, and Wu in
(27).

C. The proposed convex MPC

Based on the formulated QCQP, we construct a convex
MPC problem considering an Np prediction horizon, Tp|s =
[tsNe , tsNe+Np ]d and an Ne execution horizon, Te|s =
[tsNe , t(s+1)Ne ]d where s ∈ {0, · · · , N−1

e N−1}. Our MPC
consists of an iterative process solving the formulated QCQP
over different prediction horizons as shown in Algorithm
1. The output of this algorithm consists of the entire state
trajectory X ? and the corresponding control input U?.



Algorithm 1: Algorithm for the proposed MPC

Data: x0, TN = [t0, tf ]d, xdk(t) where
k ∈ {1, · · · , nt}, t ∈ TN , x1 � · · · � xnt

Result: X ? and U?

xd(0:N) ← IK w.r.t. xdk(ti) for all k ∈ {1, · · · , nt};
ud(0:N−1) ← ID w.r.t. xdk(ti) for all k ∈ {1, · · · , nt};
x̃← x0, X ? ← ∅, U? ← ∅ ;
for s← 0 to N−1

e N − 1 do
(X ∗Np ,U

∗
Np−1)← PQPQC(x̃,Tp|s) in (27) ;

X ? ← [X ?>, X ∗>Ne+1]>, U? ← [U?>, U∗>Ne ]
> ;

x̃← x∗Ne+1 from X ∗Np ;
end

Yaw2 Yaw1

X

Z

Elevation
Parallelism 1

 

Elevation
Parallelism 2

 

3DOF Wrist

Fig. 1. Scorpio model and parallelograms: Ppi (q) and ϕi denote the
pivoting end-part and constrained position of the i-th parallelogram.

IV. NUMERICAL SIMULATION

In this section, we validate the proposed convex MPC-
based approach by using Scorpio, which is a unique type
of robotic manipulator. We briefly introduce the manipula-
tor including mechanical parallelisms and demonstrate the
numerical simulations for the proposed convex MPC-based
approach. We compare the results of the proposed method
with those obtaining by applying WBC to show its efficiency.
The simulation is implemented on a laptop with MATLAB1

and we obtain analytic expressions of the terms in the state
equation by using Mathematica2 and FROST [28].

A. Underactuated and Constrained Robotic Manipulator

Scorpio is a unique robotic manipulator that is designed
to efficiently handle heavy objects using low power. In
particular, two mechanical parallelograms compensate for
the gravitational force of the robot’s load, enhancing its
lifting capabilities. However, many complicated problems,
i.e., passive joints and constraints, arise due to the use of

1The MathWorks Inc., MATLAB, Version R2019b, Natick, MA (2018)
2Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL

(2019).

0 0.2 0.4 0.6 0.8
-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8

-0.4

-0.2

0

-0.6

(a)
time (s)

(b)
time (s)

el
bo

w
 p

os
iti

on
 (m

)

0 0.2 0.4 0.6 0.8
-0.4

-0.2

0

0.2

(d)
time (s)

0 0.2 0.4 0.6 0.8

-0.4

-0.2

0

-0.6

(c)
time (s)

w
ris

t p
os

iti
on

 (m
)

w
ris

t p
os

iti
on

 (m
)

el
bo

w
 p

os
iti

on
 (m

)

Fig. 2. Elbow and wrist positions in Cartesian space: (a) wrist position
controlled by WBC, (b) elbow position controlled by WBC, (c) wrist
position controlled by MPC, (d) elbow position controlled by MPC. Dotted
lines represent the desired trajectories and solid lines indicate the results
achieved using WBC or MPC. Red and blue lines in (a) and (c) represent
the data in the x and y directions. In (b) and (d), x and z positions are
represented by red and blue lines, respectively.

the unique mechanical structures as shown in Fig 1. More
specifically, the robot has 11 DOFs and 4 of them are
passive joints describing the parallelograms’ motions. For
each parallelogram, the y position in the body frame is not
controllable because of the type of mechanical structure.
Therefore, the constraint Jacobian for each parallelogram is
computed as follows:

Jc(q) =

[
Jxpi(q)
Jzpi(q)

]
, Jpi(q) =

 Jxpi(q)
Jypi(q)
Jzpi(q)

 (36)

where Jpi(q) =
∂Ppi
∂q (q) ∈ R3×11. The dimension of the

constrained dynamics described using the null space matrix
Nc becomes 6 which is identical to the number of active
joints.

B. Execution of Two Hierarchical Tasks

In this numerical simulation, we define two hierarchical
tasks: control of the elbow position in the x and z directions,
xe ∈ R2, and control of the wrist position in the x and
y directions, xw ∈ R2 where xw � xe. For the sake
of simplicity, we reduce the dimension of the state by
making the 3 wrist joints completely rigid because the wrist
joints do not affect the defined tasks. In this simulation,
we set Kp = diag(40, 40) and Kv = diag(2, 2). The
full time horizon is defined as TN = [t0, tf ] = [0, 0.8]
with 0.01 s time increments, which means N = 80. We
set the prediction and execution steps as Np = 10 and
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Fig. 3. Error of the wrist positioning task: the upper graph shows the
wrist positioning error in the x direction and the lower graph shows the
positioning error in the y direction.

Ne = 3, respectively. The initial configuration of the robot
is [−90◦, 0◦, 0◦, 0◦, −90◦]. We set the desired trajectories
of both tasks using a linear interpolation between the initial
and final positions. More specifically, we consider xe(t0) =
[0.0780, −0.3622], xe(tf ) = [0.1780, −0.1597], xw(t0) =
[0.0531, −0.4634], and xw(tf ) = [−0.0469, −0.5634].

C. Comparison with WBC

In this section, we compare the simulation results con-
trolled by the proposed MPC controller with those exe-
cuted by WBC as described in Section II. Fig. 2 shows
the simulation results implemented by both WBC and the
proposed MPC. Firstly, WBC instantaneously minimizes the
positioning error by considering the task hierarchy shown
(a) and (b) in Fig. 2. WBC minimizes the higher prioritized
task xw error. Sequentially, the lower prioritized task xe is
controlled by keeping the optimized task error for xw. On
the other hand, the proposed MPC considers the finite-time
prediction horizon and we do not have cascaded optimization
structures. For these reasons, the wrist positioning task xw
has a little bit larger errors than those by WBC as shown
(a) and (c) in Fig. 2. However, the proposed MPC-based
approach reduces the errors of the elbow positioning task
which has lower hierarchy as shown in (b) and (d) subfigures
of Fig. 2.

The position errors of both tasks are shown in Fig. 3 and
Fig. 4. The maximum errors of the wrist position driven
by WBC and the proposed MPC are [0.0177, 0.0375] and
[0.0208, 0.0413], respectively. For the elbow positioning
task, both control approach produce the maximum errors
[0.1310, 0.3033] and [0.0577, 0.3057] respectively. We also
compute the norm of each error to show that the defined
task hierarchy is valid in these numerical simulations. Fig.
5 shows the error norms of all tasks over the finite-time
horizon TN . The error norms for the wrist positioning task
is smaller than those for the elbow positioning task over TN .
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Fig. 4. Error of the elbow positioning task: the upper and lower graphs show
the position errors of the elbow positioning task in the x and z directions,
respectively.

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8

time (s)
0 0.2 0.4 0.6 0.8

time (s)

ta
sk

 e
rr

or
 n

or
m

ta
sk

 e
rr

or
 n

or
m

Elbow task 
Wrist task

Elbow task 
Wrist task

WBC MPC
0

20

10

ac
cu

m
ul

at
ed

 ta
sk

 e
rr

or
 n

or
m

(b) (c)

(a)

Fig. 5. Task error comparison over the time horizon TN : (a) task
error norms when applying WBC, (b) task error norms when applying the
proposed MPC, (c) accumulated task error norms over TN .

Also, we accumulated the error norms, which are 15.7235
and 11.5531, and compare them with each other in Fig. 5(c).
The proposed MPC-based control approach obtains smaller
task error and keeps the defined hierarchy over the finite-time
horizon.

V. CONCLUSION

This paper proposes a control approach for executing
multiple hierarchical tasks on underactuated and constrained
robots. To the best of our knowledge, this paper is the first
one to implement WBC to constrained and underactuated
robots executing hierarchical tasks within the framework
of (convex) MPC. Conventional WBCs and OSCs generate
instantaneously optimal (myopic) solutions which are not
optimal over longer time horizons. However, the proposed
control approach can obtain recursively optimal solutions
over finite time horizons. Another contribution of this paper
is the formulation of quadratic constraints that reflect the
hierarchy of tasks assigned to the robots. Compared to WBC,



the proposed MPC-based method reduces significantly the
sum of errors for all tasks over the full time horizon.

Our extensive numerical simulations have shown that the
computational time can be significantly reduced by lineariz-
ing the state equation and by convexifying all costs and
constraint functions. In future work, we will analyze the
computational cost of the algorithm in more detail and we
will propose ways to reduce it. Furthermore, we will validate
the proposed method through numerous (real) experiments
using real robots like Scorpio. Furthermore, we will extend
our approach for the case of robotic systems operating in
uncertain (stochastic) environments (subject to, for instance,
stochastic disturbances) by employing stochastic MPC tech-
niques.
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