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Abstract— We consider a counter-adversarial sequential
decision-making problem where an agent computes its private
belief (posterior distribution) of the current state of the world,
by filtering private information. According to its private be-
lief, the agent performs an action, which is observed by an
adversarial agent. We have recently shown how the adversarial
agent can reconstruct the private belief of the decision-making
agent via inverse optimization. The main contribution of this
paper is a method to obfuscate the private belief of the agent
from the adversary, by performing a suboptimal action. The
proposed method optimizes the trade-off between obfuscating
the private belief and limiting the increase in cost accrued
due to taking a suboptimal action. We propose a probabilistic
relaxation to obtain a linear optimization problem for solving
the trade-off. In numerical examples, we show that the proposed
methods enable the agent to obfuscate its private belief without
compromising its cost budget.

I. INTRODUCTION

A Bayesian agent, henceforth referred to as the agent or
the decision maker, gathers information and uses a filter to
compute its posterior distribution over the state of nature.
We refer to this posterior distribution as the private belief of
the agent. Based on its private belief, the agent makes a de-
cision that maximizes its expected utility. The corresponding
decision is observed by an adversarial agent, whose objective
is to reconstruct the private belief of the decision maker. A
schematic representation of this setup is shown in Figure 1.

In this paper, we study the counter-adversarial problem
of protecting the private belief of the decision maker, by
allowing it to make suboptimal decisions. The objective
of the decision maker is to prevent the adversarial agent
(henceforth, the adversary) from accurately estimating its
private belief, thus preventing the adversary from predicting
its future behavior. At the same time, the decision maker
has to limit its increase in cost (due to taking a suboptimal
action). A schematic representation of the counter-adversarial
setup is shown in Figure 2.

This counter-adversarial decision-making problem has a
vast number of applications, ranging from security of cyber-
physical systems to protection of investment strategies. One
potential area of application is social learning [1], [2]. A
number of agents acts sequentially, and each computes a
private belief by combining private observations with actions
performed by previous agents (the public belief). With our
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framework, an agent could act in a self-centered way and
hide its actual private belief from the other agents. This has
potential applications in analysing how social and economic
herding occurs.

Another example is portfolio optimization (e.g., [3]). An
investor decides how to invest its capital in a certain set
of stocks, based on public information and its expertise. A
competing investor wants to make an informed investment
decision as well, but does not have the expertise and knowl-
edge of the main investor. By observing the actions of the
main investor, the competitor wants to infer the private belief
of this investor. We have recently shown in [4] how this can
be done using inverse programming. There are several ways
to hide investment decisions, such as using dark pools, delay
information or fractional investments. In this paper, we study
how the investor can keep its private belief obfuscated from
the competitor, by slightly altering its portfolio allocation
(while limiting the decrease in its risk-adjusted return).

To summarize, the problem we study in this paper is:
How should an agent modify its optimal decision
in order to not expose its private belief, while
limiting its cost increase due to taking a suboptimal
decision?

The main contributions of this paper are as follows:
• We propose a class of counter-adversarial decision-

making problems. The goal of protecting the private
belief of the decision maker is made formal, by defining
a range of qualitative and quantitative measures;

• The trade-off between obfuscating the private belief
and limiting the increase in cost is formulated as an
optimization problem;

• The aforementioned optimization is, in general, not
computationally tractable (especially for large decision
systems). We derive a probabilistic relaxation that relies
only on linear programming;

• Lastly, the algorithms are validated and evaluated in nu-
merical experiments. We highlight insights and intuition
that can be drawn from the experiments.

The paper is organized as follows. Section II provides
formal details on how decision-making is modeled and
analyses how, and under which circumstances, the agent’s
privacy can be compromised. Different metrics to measure
the success of the agent in protecting its private belief are
presented in Section III. In Section IV, a tractable solution
to solving the trade-off cost-privacy is derived. Finally, in
Section V, the performance of the proposed methods is
evaluated in numerical experiments.
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Fig. 1: Adversarial sequential decision-making scheme. A sensor measures the current world state, xk, and turns it into abstract
information Ik. By filtering this information, using (1), an agent denoted Original Decision Maker (ODM) obtains a private
belief πk. Acting rationally according to (2), the ODM minimizes a cost function c(xk, uk) and performs decision u∗k with
cost c∗k. The adversary observes this decision and reconstructs a set of beliefs, Π(u∗k), using the inverse optimization relation
(4), that includes the ODM’s private belief. The extent to which its privacy is compromised is discussed in Section III-C.

A. Related work

The works [5]–[7] present overviews of the topic of
privacy for systems and control. Methods from different
fields are used to address the trade-off between privacy
and system performance, such as information theory [8],
hypothesis testing [9], and differential privacy [10]. The latter
started as a method used for static-database applications, but
due to its mathematical rigor and strong guarantees made its
way to the privacy of dynamical control systems [11].

In this work, we study privacy in the context of inverse
problems. Inverse optimal control is an area that focuses
on the problem of reconstructing the optimal cost function
for a certain system and policy [12]. This framework was
recently revisited in [4], [13], [14], where inverse filtering
is used to infer different characteristics of the system, such
as sensor specifications from the sequence of private beliefs.
Specifically, in [4] it was shown how the set of private beliefs
consistent with the agent’s actions can be estimated. The
current paper is an extension of this work to the counter-
adversarial setup, where privacy-preserving measures are
taken to obfuscate the set of private beliefs.

We propose a probabilistic framework based on a similar
concept to that of randomized actions in Markov Decision
Processes, covered in [15]. This idea originated from the
introduction of “mixed strategies” in the field of game theory
[16]. For approximate methods to convexify the problem,
we focus on Monte Carlo integration [17]. This method is
particularly useful for integration in high-dimensional spaces,
since it has been shown to have an accuracy in terms of the
standard deviation of the error independent of the number of
dimensions.

II. SEQUENTIAL DECISION MAKING FRAMEWORK

In this section, we define our notation and analyse the
framework presented in Figure 1 in two separate compo-
nents. First, we introduce the model under which sequential
decisions are made by the decision maker. Then, we provide
the relevant details from previous work on how the adversary
estimates the decision maker’s private belief. We conclude
the section with an application example of this framework.

A. Notation

All vectors are column vectors and inequalities between
vectors are considered element-wise. The ith element of a
vector v is [v]i. A probability density function is denoted
as p(·), the vector of ones as 1, and the set of positive real
numbers as R+. The distance between the sets C and D
is defined as dist(C,D) = inf{‖x− y‖ |x ∈ C, y ∈ D}.
Throughout this paper, we use the terms decision and action
interchangeably.

B. How the decision maker acts

In this section, we analyse the Original Decision Maker
(ODM) in Figure 1. The world, or environment, is described
by a sequence of states modeled as a random variable xk ∈
X , where X is the state-space and k represents discrete time.
At each time instant k, some information Ik is collected from
the environment. In order to make a decision, the agent filters
the information Ik, to obtain a probabilistic rating over the
different states of nature – its private belief:

πk(x) = p(xk = x | Ik ), (1)

where p(·) is a conditional density function.
The agent can act on the world by making a decision

uk. Each decision has an associated cost c(xk, uk), that also
depends on the state of the world. Assuming that it acts
rationally, the agent selects the action that minimizes its
expected cost under its current belief πk(x) of the world:

min
uk∈U

Exk

{
c(xk, uk) | Ik

}
(2)

s.t. uk ∈ C,

where C is the set of feasible actions. To yield a tractable
analysis, X is assumed to be discrete (X = {1, . . . , X})
and the agent’s actions, uk ∈ U where U = RU is the
decision set, are assumed to obey affine constrains. Then,
(2) is equivalent to:

min
uk∈U

X∑
i=1

[πk]ic(i, uk) (3)

s.t. Auk ≤ b,
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Fig. 2: A Counter-adversarial Decision Maker (CDM) uses an obfuscator block to transform its decision u∗k into a suboptimal
decision ūk with cost c̄k, by optimizing a privacy measure Ψ(ūk) defined in (6). The adversary observes the decision (now
ūk) and, again, reconstructs a set of beliefs (now Π(ūk)). The new decision ūk is chosen such that the CDM’s privacy is
not compromised (according to Section III-C).

where A and b define the affine constraints. The resulting
resulting optimal decision for the ODM is u∗k, with an asso-
ciated cost c∗k = Exk

{
c(xk, u

∗
k) | Ik

}
=
∑X
i=1[πk]ic(i, u

∗
k).

The decision u∗k made by the ODM is then publicly available.

C. What the adversary can infer from the agent’s actions

This section analyses the second component of Figure 1,
the Adversary block. We say that the privacy of the decision
maker is compromised, if, by observing its decision u∗k, the
adversary is able to estimate the agent’s private belief πk.
It has recently been shown how the private belief can be
exposed from the actions. In [4], it is shown that if the agent’s
constraint set C is affine and its cost function c(xk, uk) is
convex and known to the adversary, the latter is able to
reconstruct a set of private beliefs, Π(u∗k), consistent with
the decision u∗k made by the agent. This is summarized in
the following theorem.

Theorem 1 (Set of consistent private beliefs Π, from [4]).
The ODM could only have made decision u∗k, if and only if
its private belief πk lies in the set Π(u∗k), defined by:

Π(u∗k) = (4)
π ∈ RX :

∃λ ∈ RU , ν ∈ RN s.t.

πT1 = 1, π ≥ 0, λ ≥ 0,

[λ]j = 0 if [u∗k]j 6= 0, j = 1, . . . , U,
X∑
i=1

[π]i∇uc(i, u∗k)− λ+AT ν = 0.


.

Proof (Outline). The theorem follows by deriving the
Karush-Kahn-Tucker conditions for (3) and considering the
ODM’s private belief πk as an unknown variable. Full details
are available in [4].

Remark 1 (Estimating cost functions). Although Theorem 1
was derived for the case where the cost function is assumed
to be known by the adversary, it can also be applied in cases
where it is unknown but can be estimated. For example, using
revealed preferences the cost function represents the agent’s
preferences and is estimated from its choices [18], [19].

D. Example – Portfolio optimization

We now exemplify of how the two components described
can be applied in an investment scenario, summarizing the
complete framework from Figure 1.

A Markowitz-type investor has access to some private
information, Ik. Based on this information, it estimates the
optimal investment allocation, with respect to maximizing
the risk-adjusted return in a regime-switching market sce-
nario [3], [20]. The optimization problem (2) the ODM (i.e.,
the investor) solves, at each timestep, is the following:

min
uk∈RU

Exk

{
γuTk Σxk

uk − µTxk
uk | Ik

}
(5)

s.t. 1Tuk = 1, uk ≥ 0,

where uk ∈ RU is the portfolio allocation vector and [uk]i
represents the fraction of the capital that is invested in stock
i at timestep k. The mean vector µxk

∈ RU and covariance
matrix Σxk

∈ RU×U can be computed according to the state
of the market conditions, xk. The risk aversion parameter γ
quantifies the trade-off between the two terms of the expected
value, which are how much return is expected versus how
risky the investment is. The constraint 1Tuk = 1 implies
that all the money has to be allocated, and uk ≥ 0 enforces
that the investor is allowed to buy but not sell stocks.

Crucial to the success of any investor is how well it can
estimate the current market conditions xk. This estimate
depends on the private information set Ik available to each
investor. In our scenario, we assume that a rival investor
(i.e., an adversary) has access to less (or worse) private
information and aims to estimate the private belief of the
investor solving (5). In Section II-C it was shown how the
rival can do this, and in the next section we propose a
framework for how the investor can prevent it.

III. COUNTER-ADVERSARIAL DECISION-MAKING

In this section, we propose a privacy-preserving decision
maker that modifies its actions in order to obfuscate its
private belief from the adversary. The new framework is
shown in Figure 2.

A. General setup

At each timestep, the ODM collects information from the
world and performs an action (Section II-B). It asks itself: If I



publicly announce the decision u∗k, what is the set of beliefs
Π(u∗k) consistent with my decision that the adversary can
determine? It was seen in Section II-C that this set includes
the actual private belief, πk, and, therefore, the privacy of
the ODM can be compromised.

In this section, we propose a Counter-adversarial Decision
Maker (CDM), that uses the blue block in Figure 2, called an
Obfuscator, to conceal its private belief from the adversary.
While the ODM performs the optimal action u∗k with cost
c∗k, the CDM performs a suboptimal action ūk with cost c̄k.

B. Problem formulation

Performing a suboptimal action ūk entails an increase in
cost (c̄k ≥ c∗k). Thus, protecting its privacy comprises a trade-
off between how much the decision maker is able to obscure
its private belief versus how much it is willing to pay for
doing so, due to performing a suboptimal action. This can
be formulated as:

Problem 1 (Obfuscating the private belief). How can an
agent obfuscate its private belief πk from an adversary, while
keeping its cost as small as possible?

A straightforward approach for solving Problem 1, that
explicitly reflects the trade-off, is the following:

Approach 1 (Direct way of obfuscating the private belief).
The CDM addresses Problem 1 by solving the following
optimization problem:

max
ūk∈U

Ψ(ūk) (6)

s.t. ūk ∈ C,
Exk

{
c(xk, ūk)

}
≤ c∗k(1 + cb).

The objective function Ψ(ūk) quantifies the decision maker’s
privacy level. The last constraint corresponds to how much
it is willing to pay, c̄k, to protect its private belief πk, and
the term cb ∈ R+ is its obfuscation cost budget – the cost
the agent allocates to obfuscating its private belief.

C. Quantification of the level of privacy

Measures to quantify attacks have, for a long time, been
a central aspect in the fields of privacy and security. In this
paper, we quantify it by means of evaluating the privacy
level of the defender (i.e., the decision maker), according to
one of the measures presented next. Obfuscating the deci-
sion maker’s private belief consists of making a suboptimal
decision ūk, such that the set of private beliefs reconstructed
by the adversary, Π(ūk), from (4), maximizes one of the
following privacy measures:

a) Infeasibility

Ψ(ūk) =

{
0, if Π(ūk) = ∅,
−∞, otherwise.

(7)

By optimizing this objective function, the agent takes
a decision that makes the adversary’s reconstruction in-
feasible. Although its privacy is preserved, the adversary
might realise that the agent is obfuscating its belief.

b) Non-uniqueness feasibility

Ψ(ūk) =

{
0, if ∃z ∈ Π(ūk) s.t. z 6= πk,

−∞, otherwise.
(8)

Under this criterion, the reconstructed set cannot be a
unique point. However, even though the adversary is
supposedly not able to uniquely determine the agent’s
private belief, additional knowledge of the agent’s
model might allow it to more confidently identify the
actual private belief (see [21]).

c) Non-existence feasibility

Ψ(ūk) =

{
0, if {πk} ∩Π(ūk) = ∅,
−∞, otherwise.

(9)

This criterion states that the reconstructed set cannot
include the actual private belief, πk /∈ Π(ūk). It can
either be a single element different from the private
belief, or a set of elements that does not include it.

d) Desired obfuscation

Ψ(ūk) = −dist(πdk,Π(ūk)). (10)

In this case, the agent wants the adversary’s set of
beliefs to be as close as possible to a desired belief
πdk . For example, in the portfolio optimization case, if
the agent’s private belief is that the market conditions
are improving, it might want the adversary to believe
they are declining.

e) Maximal obfuscation

Ψ(ūk) = dist(πk,Π(ūk)). (11)

This criterion states that the agent wants the recon-
structed set to be as distant as possible from the actual
private belief, which is a generalization of Criterion c).

D. Computational tractability

In general, problem (6) is tractable if Ψ(ūk) is a concave
function. From the different measures of privacy that we
presented in the previous section, it can be seen that requiring
concavity is typically a strong and unrealistic condition to
impose. Motivated by this, in the next section we present a
probabilistic relaxation of (6) that relies only on sampling
and linear programming.

IV. PROBABILISTIC FRAMEWORK

The privacy-preserving decision ūk performed by the
CDM requires it to solve the generally intractable optimiza-
tion problem (6). In this section, we propose a sampling-
based probabilistic relaxation to yield a computationally
feasible algorithm to obtain ūk.

A. Probabilistic relaxation of Approach 1

In the context of game theory, we say that the CDM in
Section III-B follows a pure strategy, in the sense that it
solves a deterministic decision problem. Since this strategy
could be uncovered by the adversary, a way to obfuscate is to
use a mixed strategy instead – to introduce a chance element



in the agent’s decision process. This idea is similar to using
randomized actions in Markov decision processes [15].

Motivated by this, in this section we propose a Probabilis-
tic counter-adversarial Decision Maker (PDM), that uses a
mixed strategy for the obfuscator block. The randomization
involves assigning a probability to each possible action, ūk,
which is now a sample from a distribution. The objective of
the PDM is to maximize its expected privacy level, while
limiting its expected cost. Unlike the CDM, that performs
actions that obfuscate its private belief from the adversary
at every timestep, the PDM’s actions obfuscate its private
belief on average.

Approach 2 (Obfuscation of the private belief on average).
The PDM’s approach to Problem 1 consists of sampling its
actions from the distribution ūk ∼ pūk

(·) over RU :

max
pūk

Eūk∼pūk

{
Ψ(ūk)

}
(12)

s.t. support(pūk
) ⊆ C,

Eūk∼pūk

{
Exk∼πk

{
c(xk, ūk)

}}
≤ c∗k(1 + cb).

B. Computationally feasible formulation

The optimization problem (12) is still intractable since
the PDM optimizes over the infinite space of probability
distributions in RU . To make it tractable, we use the Monte
Carlo integration technique [17]. This technique consists
of performing numerical integration using random samples,
which in our case gives rise to the following assumption:

Assumption 1. The distribution pūk
(·) is assumed to be of

the form:

pūk
(ūk) =

M∑
l=1

[p]lδ(ūk − ū(l)
k ), (13)

where δ is the Dirac delta, M is the number of samples,
p ∈ RM is a probability mass vector (i.e., [p]l ≥ 0 and∑M
l=1[p]l = 1), and {ū(l)

k }Ml=1 is a set in C.

Under Assumption 1, the optimization problem (12) re-
duces to the relaxed problem solved by the PDM:

max
p∈RM

M∑
l=1

[p]lΨ(ū
(l)
k ) (14)

s.t. [p]l = 0 if ū(l)
k /∈ C,

M∑
l=1

[p]l
{ X∑
i=1

πic(i, ū
(l)
k )
}
≤ c∗(1 + cb),

[p]l ≥ 0, l = 1, . . . ,M,
M∑
l=1

[p]l = 1,

which is a finite-dimensional linear program and, therefore,
computationally efficient to solve using existing solvers.
Under appropriate assumptions on how the points {ū(l)

k }Ml=1

are selected, the solution of (14) will tend to that of (12) as
M tends to infinity.

Fig. 3: Action space at a certain timestep, showing the actions
( ), ( ), ( ) chosen by the different decision makers. For the
PDM, the set {ū(l)

k }Ml=1 (defined in (13)) is shown in small
circles ( ), and the probability mass vector p resulting from
solving (14) is represented by the bars ( ). In this case, two
actions had a positive probability of being chosen.

Fig. 4: Belief space at a certain timestep. The actual private
belief πk is marked in black ( ). The green ( ), blue ( )
and orange ( ) points are the set of beliefs reconstructed by
the adversary, consistent with the ODM, CDM and PDM’s
chosen action, respectively. In this example, all the sets have
a single element, but this is not always the case. The dashed
lines measure the privacy level obtained by each agent.

V. NUMERICAL EXAMPLE

We now evaluate and visualize our theoretical framework
in the adversarial portfolio allocation setup presented in
Section II-D. We first clarify implementation details and then
compare the performance of each of the decision makers
presented, by analysing their actions, costs, and the set of
beliefs that the adversary can reconstruct.

A. Implementation details and conventions

In order to be able to visualize the results, we randomly
generate a three-regime portfolio allocation scenario, where
U = X = 3. This means that both action and belief spaces
are represented by two-dimensional unit simplices.

The three other parameters in (6) and (14) – namely, cb,
Ψ(ūk) and the set {ū(l)

k }Ml=1 – were chosen as follows. The



cost budget was chosen to be cb = 0.1, which corresponds
to the agent allocating 10% extra of the optimal cost to
obfuscate its private belief. The privacy measure Ψ(ūk)
was chosen to be the measure of maximal obfuscation,
corresponding to item e) of Section III-C. Since the set
Π(ūk) is described by convex inequalities, the term Ψ(ūk)
thus becomes, by definition:

Ψ(ūk) = dist(πk,Π(ūk)) = min
y∈Π(ūk)

‖πk − y‖2 . (15)

Finally, the set {ū(l)
k }Ml=1 was generated by computing a reg-

ular grid over the simplex – in the future, more sophisticated
sampling could be considered.

Throughout this section, we use the following convention
in the figures:
• The results obtained by the Original Decision Maker

(ODM), that solves problem (3) from Section II, are
labeled with ( );

• The results obtained by the Counter-adversarial De-
cision Maker (CDM), that solves problem (6) from
Section III, are labeled with ( );

• The results obtained by the Probabilistic counter-
adversarial Decision Maker (PDM), that solves problem
(14) from Section IV, are labeled with ( ).

B. Actions selected by the different decision makers
Figure 3 shows the actions chosen by each of the three dif-

ferent decision makers at a particular timestep k. The ODM
selects action u∗k, which is the optimal action performed
if there is no adversary. The CDM, that is employing the
generally intractable approach, selects ūck. Finally, the PDM
takes a random action between those marked as ( ), where
each has a probability given by the vector p, here represented
as the bar on top of each action. The randomly chosen action
is denoted as ūpk.

C. The adversary’s belief estimates
The sets of beliefs that the adversary can reconstruct from

each of the agent’s actions at this timestep (as described in
Section II-C) are illustrated in Figure 4. The actual private
belief πk of the decision makers is shown in black. The
privacy of the ODM is compromised, since its private belief
belongs to the set of beliefs reconstructed by the adversary
(πk ∈ Π(u∗k) ⇔ dist(πk,Π(u∗k)) = 0). On the other hand,
the suboptimal actions performed by both the CDM and
the PDC have allowed them to successfully obfuscate their
private belief (πk /∈ Π(ūck) and πk /∈ Π(ūpk)). Nevertheless,
according to the maximal obfuscation criterion chosen, the
level of privacy depends on the distance between πk and
Π(ūk), shown in dashed lines and computed by (15).

Figure 5 summarizes these distances over multiple
timesteps. The PDM is, on average, better at obfuscating its
private belief than the CDM. This is due to the latter having
the possibility of obtaining a local minimum when solving
optimization problem (6). Moreover, its budget constraint is
hard (compared the PDM, which only needs to satisfy the
budget on average). Finally, note that the ODM’s privacy is
always compromised (the distance is zero).

Fig. 5: Privacy level of the decision makers at multiple
timesteps, measured by the distance between their actual pri-
vate belief πk, and the set of beliefs Π(ūk) reconstructed by
the adversary. On average, the PDM is better at obfuscating
its private belief than the CDM, while the ODM’s privacy is
always compromised.

Fig. 6: Normalised cost increase for the counter-adversarial
decision makers, given by the difference between c̄k and c∗k,
at each timestep. On average, the CDM incurs in a lower
cost than the PDM’s.

D. Cost increase for different decision makers

Above, we saw qualitatively (in Figure 5) that the counter-
adversarial decision makers can obfuscate their private belief.
We now quantify this and study their increase in cost accrued
due to taking the suboptimal action.

Recall that to obfuscate their private belief, the agents al-
locate a cost budget cb. In Figure 6, we show the normalised
difference between the costs c̄k incurred by the two counter-
adversarial decision makers, CDM and PDM, and the optimal
cost c∗k incurred by the ODM, over multiple timesteps. It can
be seen that the CDM incurs, on average, on a lower cost
than the PDM. It should also be noted that while the CDM
never violates the cost budget constraint, the PDM fulfills
the requirement of not violating it on average.

Figures 5 and 6 show the trade-off between preserving the
agent’s privacy and limiting its cost. The more the agent aims
to protect its privacy, the more it needs to perform an action
further from the optimal one. Therefore, as expected, for
either of the counter-adversarial approaches, a higher privacy



Fig. 7: Trade-off between level of privacy and obfuscation
cost budget, according to the privacy criterion chosen. The
privacy level of the agents increases with their cost budget,
until saturation. The plot shows an average over 20 simula-
tions for each cost budget, under certain market conditions.

level entails a higher cost, and vice-versa. The fact that the
PDM’s cost is, on average, higher than the CDM’s, is thus
explained by the fact that its privacy is, on average, higher.

E. Influence of the cost budget on the level of privacy

Recall that the previous results were obtained for a fixed
cost budget cb. As a final result, we show in Figure 7 how
the privacy level of the agents varies with the budget they
allocate to obfuscate their private belief. At a certain budget,
the privacy level saturates since the furthest action away from
the optimal is already selected. We can also see that the
PDM saturates at a higher cost and has, on average, a higher
privacy than the CDM for any cost budget.

VI. CONCLUSIONS

In this paper, we studied counter-adversarial decision-
making. It has recently been shown that an adversary can
reconstruct data private to a decision-making agent by ob-
serving its actions. We proposed a framework for trading
privacy against cost-optimality: by performing a suboptimal
action, the decision maker can conceal its private belief.
Several measures to quantify this trade-off were discussed.
The solution to the trade-off resulted in an intractable op-
timization problem, for which we derived a probabilistic
relaxation that relies only on linear-programming. The frame-
work and the proposed methods were evaluated in numerical
experiments with promising results – the decision maker was
able to obfuscate its private belief from the adversary, while
respecting the cost budget allocated to protecting its privacy.

A. Future Work

Future work involves relaxing the assumption that the
adversary knows the decision maker’s cost function to the
case where it has to estimate it, as well as investigating
problem-specific ways of generating the samples for problem
(14). Further, it was shown in [21] that, if the adversary
has knowledge of how the decision maker is updating its

private belief, it is possible to infer a full Bayesian posterior.
It would be interesting to incorporate counter-adversarial
decision-making to this setting.
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