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Abstract— A method is presented to obtain inner estimates
of the region of transverse contraction (ROTC) which are
invariant regions in which trajectories of a stochastic system
converge to a stochastic limit cycle. Using the framework of
Polynomial Chaos Expansions (PCE) the stochastic system is
represented by a higher dimensional deterministic system. First,
the connection between the stability of the periodic orbits of
the stochastic system and the stability of the limit cycle of its
PCE system is established. Then transverse contraction criteria,
as well as invariance conditions, are formulated for the PCE
system to certify an ROTC estimate for the PCE system. From
this, and by leveraging the established stability connection, an
ROTC estimate of the stochastic system is retrieved. Finally, an
optimization program, based on matrix sum-of-squares verifi-
cation techniques, to implement the contraction and invariance
criteria is proposed.

I. INTRODUCTION

The analysis of regions in which a limit cycle is a
stable attractor is of relevance to many applications, such
as robotics [1], biology [2], aerospace [3] and wind energy
[4]. While for deterministic systems these regions have been
widely studied, attractive regions of limit cycles of uncertain
systems, which represent a broader and more realistic class of
systems, have been much less considered. In [5] robust sets
in a state-action space are obtained from viability theory for
limit cycles of systems representing legged locomotion. In
[6] two methods based on describing functions and integral
quadratic constraints are proposed to analyze the stability
of limit cycles of an aeroelastic plant. One of the reasons
contributing to the relatively sparse coverage of this research
is that, in general, the location of the periodic orbit of an
uncertain system depends on the realization of the uncer-
tainty. This excludes the use of well-established Lyapunov
arguments for the analysis of the attractive region as these
require the knowledge of the location of the attractor.

An approach for stability analysis which does not require
the information on the limit cycle location is given by
contraction methods [7]. In contraction analysis the evolution
of an incremental distance defined between any two neigh-
boring trajectories in a given region is considered. If the
distance is decreasing over time then all trajectories in the
region eventually converge to a single trajectory. Since two
neighboring trajectories which converge to a periodic orbit
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will never converge to a single trajectory, a weaker form of
contraction for systems with periodic solutions is considered.
This is called transverse contraction and requires contraction
to hold only in the subspace which is transversal to the
system’s flow [8], [9]. While transverse contraction has been
studied for deterministic systems [9], [8], the application to
uncertain systems has so far mostly been limited to the case
of affine uncertainty [4].

Many analysis methods for the stability of limit cycles are
based on Poincaré maps or suitable modifications of it [1],
[4]. While being a powerful tool, they are often only well-
defined in a region close to the limit cycle and significantly
increase the computationally complexity of the problem.

In this work, we propose an approach to inner approximate
the attracting region of a limit cycle, which we refer to
as region of transverse contraction (ROTC). Our approach
extends the existing methods in the following ways.

We provide an analysis tool which is applicable to the
broad class of stochastic systems given by second order
random processes. These systems have finite second moment
and are affected by uncertainty which can come from any
probability distribution with finite second moment. As such,
second order processes represent most processes of the
real world [10]. By using the framework of Polynomial
Chaos Expansion (PCE), second order processes can be
represented by a higher dimensional deterministic system.
For an overview of PCE see, e.g., [11]. By applying PCE
to stochastic systems with limit cycles we allow to con-
sider uncertainties coming from a wide range of probability
distributions as opposed to most existing approaches which
employ robust control-based deterministic approaches. With
a similar motivation, PCE has been previously employed
to analyse regions of attraction of stochastic systems with
equilibrium points in [12]. With respect to limit cycles,
PCE has been used to investigate the statistical properties of
stochastic periodic orbits [13], [14]. While in [13] the authors
have found PCE to accurately represent the spatial statistics
of stochastic systems with limit cycles for short time hori-
zons, the limitations of PCE for analysing the purely spatial
statistics of limit cycles such as peak amplitude variations
are revealed. These limitations are due to the nature of PCE
which represents combined spatial and temporal statistics.
In this work we explore these limitations and leverage the
accuracy of PCE in representing the combined statistics of
limit cycles. Based on these finding a connection between
the periodic behavior of both the stochastic and the PCE



system representations is drawn. This allows the analysis of
the attractive regions of the stochastic system’s limit cycle by
considering the deterministic PCE representation. Based on
the PCE representation we further extend the existing trans-
verse contraction notions by formulating rigorous criteria for
an invariant and contracting region around the stochastic
limit cycle which provide an inner estimate of the ROTC.
An optimization program is proposed which employs sum-
of-squares verification tools for polynomial matrices [15], [4]
to compute an inner estimate of the ROTC. The method is
demonstrated by an example from the literature.

A. Notation

Let (Θ,F , µ) be a probability space, where Θ is a sample
space, F is a σ-algebra and µ is the probability measure.
A random variable with finite second moment is denoted
by ξ : Θ→ R, ξ ∈ L2(Θ, µ) where Ll, 1 ≤ l ≤ ∞, is the
Lebesgue space (see, e.g. [11]). Here, ξ is considered one-
dimensional for simplicity, although the proposed approach
also holds for multidimensional random variables. Let Pd
denote the ring of all d-variate polynomials with real coeffi-
cients and let Pd≤r denote those polynomials of total degree at
most r ∈ N0. A polynomial g(x) : Rn → R, g(x) ∈ Pd≤r is
called a sum-of-squares (SOS) if it can be written as g(x) =∑
i qi(x)2, qi(x) ∈ Pn≤r/2. Moreover, g is SOS if and only if

there is a matrix Q � 0 such that g(x) = v(x)TQv(x), where
v(x) is the monomial vector. The set of all SOS polynomials
in the indeterminant x is indicated by Σ[x]. The polynomial
degree of g is denoted by ∂(g).

II. PROBLEM STATEMENT

The aim of this work is to obtain an invariant region in
which a stochastic system is transversely contracting to an
uncertainty-dependent periodic orbit.

A. Stochastic system and orbit

We consider continuous time second order processes,

ẋ(t, ξ) = f(x(t, ξ), φ(ξ)), (1)

where x ∈ Rn is the random state variable, φ(ξ) ∈
L2(Θ, µ;Rm) is a vector of L2-bounded uncertain param-
eters and f : Rn × Rm → Rn is a polynomial function in
x and φ. The initial state is random as well, x(0) = xini(ξ).
We further assume the support of ξ to be finite. Uncertainty
distributions with typically infinite support, such as Gaussian
distributions, can be considered by truncating the distribution
tails, which in practice leads to negligible approximation
errors [16]. In this work we consider stochastic systems
(1) which, for initial conditions in some region K ⊂ Rn,
converge to an uncertainty-dependent periodic orbit for every
realization of the random variable ξ.

Definition 1: Let ψ(x†ini, ξ
†, t) denote the flow of the

system (1) with initial condition x†ini and for a realization
ξ† ∈ Θ. A periodic orbit Γξ† is defined by a solution
u(t, ξ†) = ψ(x†ini, ξ

†, t) which satisfies u(0, ξ†) = u(Tξ† , ξ
†)

with the period given by the minimum nontrivial Tξ† > 0,

Γξ† = {x ∈ Rn|x = u(t, ξ†), t ∈ [0, Tξ† ]}. (2)

In particular, the periodic solution u(t, ξ) is considered to
depend continuously on the random variable. The union of
periodic orbits for all realizations of ξ ∈ Θ is denoted by

Γ :=
⋃
ξ∈Θ

Γξ, (3)

and refered to as the stochastic periodic orbit of (1).

B. Local stability of periodic orbits

Asymptotic stability of an equilibrium point is concerned
with the convergence of trajectories of a system to a point in
the state space. When convergence of trajectories to a limit
cycle is considered a different notion of asymptotic stability
is needed as two neighboring trajectories do not converge to
a single point but instead to a set in which they will remain
apart. Thus, the notion of asymptotic orbital stability can
be defined instead [17]. The definition for a deterministic
system fdet(x) with periodic orbit Γdet is given as follows.

Definition 2: Let K ⊆ Rn be a region with Γdet ⊂ K. The
periodic orbit Γdet is called asymptotically orbitally stable if
it is stable and attractive. It is stable if ∀ε > 0, there is a
δ > 0 such that ∀xini ∈ K with dist(xini,Γdet) < δ we have
that dist(ψ(xini, t),Γdet) < ε, ∀t > 0. It is further attractive if
there is a δ > 0 such that ∀xini ∈ K with dist(xini,Γdet) < δ
we have limt→∞ dist(ψ(xini, t),Γdet) = 0.

We extend this definition for a stochastic system (1).
Definition 3: The stochastic periodic orbit Γ as given in

(3) is called stochastically asymptotically orbitally stable if
Definition 2 holds for the periodic orbits Γξ of all ξ ∈ Θ.
That is, ∃ δ such that ∀xini ∈ K with dist(xini,Γ) < δ we
have limt→∞ dist(ψ(xini, ξ, t),Γ) = 0, ∀ξ ∈ Θ.

With Definition 3, we introduce the set R∗

R∗ :={xini ∈Rn| lim
t→∞

dist(ψ(xini, ξ, t),Γ) = 0, ∀ξ∈ Θ}, (4)

which is the region in which a system is converging to
its stochastic limit cycle Γ. Often referred to as region of
attraction in studies of attractive equilibrium points, for
reasons presented in the following we refer to R∗ as the
region of transverse contraction (ROTC) of the system (1).

C. Polynomial Chaos Expansion

Polynomial Chaos Expansions (PCE) can be used to
approximate stochastic processes with finite second moment.
The PCE of a stochastic system results in a deterministic
representation of the system at the cost of a higher state
dimension. For an overview see, e.g., [11].

To approximate random variables with PCE, an orthogonal
polynomial basis Q = {Φi|i ∈ N} ⊆ P is defined using

〈Φi(ξ),Φj(ξ)〉 =

∫
Θ

Φi(ξ)Φj(ξ)dµ(ξ) = γiδij , (5)

where γi := 〈Φi(ξ),Φi(ξ)〉 is the normalization factor and
〈·, ·〉 denotes the inner product in L2, representing integration
(i.e. expectation) with respect to µ. For optimal convergence
of the expansion, there is a specific orthogonal polynomial
basis corresponding to the type of probability distribution of



the random variable [10]. The PCE of a square-integrable
vector-valued random variable y(ξ) ∈ L2(Θ, µ;Rn) is then

y(ξ) =

∞∑
i=0

ȳiΦi(ξ), (6)

with vector valued PCE coefficients, also referred to as the
stochastic modes, ȳi = [ȳ1i

, ..., ȳni
]T , which are obtained,

e.g., from a Galerkin projection

ȳi = γ−1
i 〈y(ξ),Φi(ξ)〉. (7)

The expansion series in (6) is infinite and needs to be
truncated for practical purposes. With a truncation order p,
the PCE represents a n-dimensional stochastic system as a
n(p+1)-dimensional deterministic system. The deterministic
equations are obtained by projecting the system onto each of
the (p+1) basis functions, as in (7). See e.g. [12] for details.
We denote all PCE coefficients of y(ξ) by ȳ = [ȳ0, ..., ȳp]

T ,
with each stochastic mode ȳi as defined above.

The moments of the random variable y(ξ) can be retrieved
from the PCE coefficients of its L2-optimal expansion. The
first moment (mean) of y(ξ) is found as

m := E[y(ξ)] = 〈y(ξ),Φ0〉 = ȳ0. (8)

The second central moment (variance) of y(ξ) is given by

σ2 := E[|y(ξ)− E[y(ξ)]|2] =

p∑
j=1

ȳ2
jγj , (9)

where the sum is to be taken separately over all PCE
coefficients of each component of y.

The PCE of a stochastic system (1) is denoted by

˙̄x = f̄(x̄), (10)

where x̄ ∈ Rn(p+1) are the vector of PCE coefficients of
the state x ∈ Rn, and f̄ : Rn(p+1) → Rn(p+1) specifies
the PCE coefficient dynamics. The overbar notation indicates
variables in the PCE representation.

D. PCE for limit cycle systems

It has been previously shown [18] that PCE’s of stochastic
systems with limit cycles are able to accurately represent the
short-time statistical variations of the system’s trajectories.
However, the PCE fails to accurately reproduce the spatial
statistical properties (such as the location of the mean limit
cycle, or the variance of particular solutions of interests such
as peak amplitude values [3]) of the periodic solution for long
time spans, even for high truncation orders. Several modified
PCE approaches have been proposed to obtain more accurate
long-term representations of the purely spatial variations
of a limit cycle. For example, an equation-free approach
essentially resulting in studying the dynamics on Poincaré-
map-like hyperplanes was proposed in [19]. Alternatively,
a better suited basis for oscillatory responses can be used,
such as Wiener-Haar wavelets proposed in [18], or Fourier
polynomials which were introduced in [3].
For the purpose of the analysis presented here, the exact
spatial statistics of the periodic orbit are not required to be

known. This allows us to leverage short-time accuracy of
the PCE in order to represent the statistical behavior of the
trajectories in the vicinity of a periodic solution. As for the
periodic solution itself we take advantage of the fact that
the qualitative behavior is still accurately captured by the
PCE. That is, the PCE dynamics are able to discriminate
between the existence or not of a periodic attractor, while
we do not attempt to use it to characterize other properties,
e.g., the mean or variance of amplitude and/or frequency.
More precisely, we find the following.

Lemma 1: If the system (1) has a stochastic periodic
solution u(t, ξ), then the PCE coefficient system (10) also
has a periodic solution ū(t).

Proof: The PCE coefficients of a random process are
obtained from the projection (7), in particular

f̄(x̄(t)) = γ−1〈f(x(t, ξ), φ(ξ)),Φj(ξ)〉

= γ−1

∫
Θ

f(x(t, ξ), φ(ξ))Φi(ξ)dµ(ξ). (11)

Since the polynomial basis {Φi(ξ)}∞i=0 is time invariant, the
projection of a variable or process which is periodic for all
ξ in the domain of integration onto a member Φi(ξ) of the
basis is a linear combination of periodic quantities and thus
is also periodic. �
Similarly as before for the stochastic system, we define for
the PCE system the set containing the periodic solution as

Γ̄ = {x̄ ∈ Rn(p+1)|x̄ = ū(t), t ∈ [0, T ]}. (12)

For small t, the periodic solution of (10) represents the
spatial statistics of the periodic solutions u(t, ξ) but for
t � 0 the PCE solutions converge to a periodic behavior
which differs from the spatial statistics of u(t, ξ). This can be
intuitively understood by considering that PCE represents the
‘full’ statistics, which includes spatial and temporal statistics.
Trajectories starting from the same initial condition in the set
Γ but with a different realization of the uncertainty will, in
general, not only vary in the exact location of the periodic
solution but also in the speed with which they travel the orbit,
i.e. their frequency. Considering, for example, the mean of
the spatial variability over all trajectories after a certain time
t has passed, one clearly sees that, in general, they differ
significantly from the spatial variability one would expect
to find from, e.g., hyperplane considerations. An illustration
of the temporal and spatial variation is provided in Figure
1. Note, that the reverse of Lemma 1 does not necessarily
hold when the expansion (6) is truncated. Since we consider
second order processes the expansion series is, however,
convergent and in the remainder we will work under the
commonly made assumption that the truncated PCE system
represents the properties under consideration (i.e., short-time
accuracy of statistics and periodicity of solutions) accurately.
To consider the truncation error, procedures as in [20] and
[21] can be taken into account.

III. REGIONS OF TRANSVERSE CONTRACTION

The aim in this work is to obtain inner estimates of R∗
by means of PCE representations. The first step towards
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Fig. 1. Illustration of two trajectories starting from the same initial point
for two different realizations of the uncertainty, ξ1 and ξ2. Both follow a
limit cycle corresponding to their uncertainty. The state of both trajectories
at the same time t1 and t2 is indicated. The mean and variance of those
states for each fixed time (as given by the PCE representation) clearly differ
from a purely spatial mean and variance at a fixed location, here indicated
by the hyperplane in blue.

this goal is to establish a connection between the stochastic
orbital stability of a the stochastic orbit and the deterministic
orbital stability of the PCE orbit.

Proposition 1: Let K ⊂ Rn be a region such that Γ ⊂ K
and further Γ̄ ⊂ K̄ ⊂ Rn(p+1), where

K̄ = {x̄ ∈ Rn(p+1) | x̄i = γ−1
i 〈x,Φi〉, x ∈ K}. (13)

Then the orbit Γ defined in (3) is stochastically asymptoti-
cally orbitally stable in K if the PCE orbit Γ̄ is asymptoti-
cally orbitally stable in the region K̄.

Proof: Asymptotic orbital stability of Γ̄ in K̄ implies that
any solution starting at x̄ini in the neighborhood of Γ̄ even-
tually converges to it, i.e. ψ̄(x̄ini) → Γ̄ as t → ∞. Further,
xini(ξ) =

∑p
i=0 x̄iniiΦi(ξ) from the PCE representation (6).

Let ψ̄(·, ·) be the flow of the PCE system (10). Assume,
that ∃xini(ξ) for which ψ(xini(ξ), t) 6→ Γ as t → ∞. Then
limt→∞ ψ(xini(ξ), t) = limt→∞

∑p
i=0 ψ̄(x̄ini, t)iΦi(ξ) =∑p

i=0 ūi(t)Φi(ξ) = u(ξ, t), which is in contradiction with
the assumption. The statement of the proposition follows. �

Leveraging Proposition 1, the stochastic orbital stability
of the orbit Γ can be investigated by analyzing the orbital
stability of the PCE orbit. The problem is addressed by first
finding regions in which a PCE system is converging to Γ̄ and
then retrieving from them a region in which the stochastic
system converges to Γ. This results in inner estimates of R∗.

A. Transverse contraction criteria

Since the location of both orbits are in general unknown,
Lyapunov arguments of stability cannot be employed for the
stability analysis. Instead, contraction methods [7] can be ap-
plied. More precisely, for systems with limit cycles so called
transverse contraction methods are used as the property of
contraction is required to hold only for a subspace transversal
to the flow of the system [8], [9]. Since the PCE system (10)
is a deterministic system, the deterministic approach is used
to analyze the transverse contraction proposed in [8].
Let δ be a virtual displacement, i.e. an infinitesimal displace-
ment of x̄ at fixed time for which a Finsler metric function

D(x̄, δ) = δTM(x̄, δ)δ measuring the squared distance with
respect to the metric M can be introduced. Further, let
K̄ ⊂ Rn(p+1) be a region with Γ̄ ⊂ K̄. A system f̄(x̄)
is said to be transversely contracting in K̄ if there exists a
Finsler function D(x̄, δ) satisfying

∂D

∂x̄
f̄(x̄) +

∂D

∂δ

∂f̄(x̄)

∂x̄
δ ≤ −βD(x̄, δ), (14)

for all δ 6= 0 and x̄ ∈ K̄, with a convergence rate β > 0,
such that the orthogonality condition

∂D

∂δ
f̄(x̄) = δTMf̄(x̄) = 0, (15)

holds. Conditions (14) and (15) imply that the distance
between any two trajectories in K̄ is decreasing in the
transverse direction, i.e. orthogonal to the system flow. For
a compact and positively invariant region R̄∗ ⊆ K̄ with
Γ̄ ⊂ R̄∗ it further holds that for every two solutions x̄(1)

and x̄(2) with initial conditions in R̄∗ there exists a time
reparametrization τ(t) such that x̄(1)(t) → x̄(2)(τ(t)) as
t→∞ [8]. From this follows that trajectories starting from
initial conditions x̄ini ∈ R̄∗ converge to the unique limit cycle
inside R̄∗ with convergence rate β. Formally, the region R̄∗
is then defined as:

R̄∗ = {x̄ini ∈ Rn(p+1) | lim
t→∞

dist(ψ̄(x̄ini, t), Γ̄) = 0}, (16)

where ψ̄(·, ·) is the flow of the PCE system (10). In the
following, we are interested in finding inner estimates R̄ of
the region R̄∗ of the PCE system and refer to such as ROTC
estimate. The following Theorem uses results from Theorem
3 in [8] and Theorem 1 in [22] to provide conditions for a
region to be an inner estimate of the ROTC.

Theorem 1: Let B : Rn(p+1) → R be a continuously
differentiable function and let R̄ = {x̄ ∈ Rn(p+1)|B(x̄) ≤
ρ} where ρ is a positive scalar such that Γ̄ ⊂ R̄. If
• there exists a metric function D(x̄, δ) = δTM(x̄, δ)δ, a

convergence rate β and a function λ(x̄) ≥ 0, such that

C(x̄)
∂f̄(x̄)

∂x̄

T

+
∂f̄(x̄)

∂x̄
C(x̄)− Ċ(x̄)+

+ 2βC(x̄)− λ(x̄)S(x̄) ≤ 0, ∀x̄ ∈ R̄, (17)

where S(x̄) := f̄(x̄)f̄(x̄)T , C(x̄) := M(x̄)−1 and
Ċ(x̄) = d

dt

(
M−1(x̄)

)
= −M−1(x̄)Ṁ(x̄)M−1(x̄), and

• the derivative of B with respect to time on the boundary
of R̄ is negative, i.e.,

∇B(x̄)f̄(x̄) < 0, ∀x̄ ∈ R̄◦, (18)

where R̄◦ := {x̄ |B(x̄) = ρ},
then the region R̄ is transversely contracting and invariant.
Thus, R̄ ⊆ R̄∗, i.e., R̄ is an inner estimate of the ROTC of
system (10), and all trajectories starting in R̄ converge to Γ̄.

A proof of the first property can be found in [8], which
shows how condition (17) certifies a positively invariant set
to be a transversely contracting region of a deterministic
system. The proof for condition (18) to show invariance of
R̄ is presented, e.g., in [23] and is omitted here for brevity.



B. Retrieving R from R̄
In order to retrieve an inner estimate R of the ROTC R∗

of the stochastic system we use an approach similar to the
one proposed in [12] for regions of attraction of equilibrium
points. More precisely, with an ROTC estimate R̄ obtained
for the PCE system from Theorem (1) we find the ROTC
estimate R for the stochastic system from the following.

Lemma 2: Let R̄ be an inner estimate of the ROTC for
the PCE system. Then the set

R = {xini |xini(ξ) =

p∑
i=0

x̄iniiΦi(ξ), ∀x̄ini ∈ R̄}, (19)

is an inner estimate of the ROTC for the stochastic system.
This Lemma results from the PCE representation (6) and
from Proposition 1 applied to the sets given by R̄ and R.

The region R as given by equation (19) is a stochastic
region. An explicit expression for this region can be obtained
by fixing the variance of the initial states to a desired value,
and representing the region R as the set of the mean values
which are contained in R̄ with that fixed variance. For more
details on this procedure we refer the reader to [12].

IV. ALGORITHM FOR COMPUTING ROTC

In this section we propose an optimization program to
compute an ROTC estimate R̄ for (1) by verifying the
conditions of Theorem 1. The optimization program consists
of two steps. In the first step, the region in which the system
is contracting is maximized by testing condition (17). This
contracting region will be denoted by Z̄ . In the second step,
the largest invariant set inside of the contracting region is
extracted in order to obtain a transversely contracting and
invariant region R̄.

A. Step 1: Maximizing the contracting region

In order to obtain a region Z̄ in which the system is trans-
versely contracting a metric has to be found which satisfies
condition (17). Let the region Z̄ be given by the sublevel
set ρ of a polynomial function z(x̄) = v(x̄)TZv(x̄), i.e.,
Z̄ := {x̄ | z(x̄) ≤ ρ}, where v(x̄) is the vector of monomials.
The optimization program both aims at finding a contraction
metric M which satisfies the transverse contraction condition
(17) for all x̄ ∈ Z̄ , as well as maximize the region Z̄
itself. Since we consider polynomial systems in this work, the
Positivstellensatz [24] can be used to obtain computationally
verifiable expressions for constraints such as (17). The proce-
dure consists of formulating set emptiness conditions which
are then relaxed to sum-of-squares (SOS) programs. This
approach was introduced in [24] and employed in several
previous applications, e.g. in [25], [26] among others. Note
that the contraction metric M as well as the condition (17)
are given by matrix polynomials (i.e. matrices with polyno-
mial entries). Applying the Positivstellensatz procedure thus
results in SOS matrix constraints. A matrix is SOS if it is
symmetric, with polynomial entries F (x) ∈ R[x]n×n, and
if for a vector of new indeterminants y = [y1, ..., yn]T the
scalar polynomial yTF (x)y is SOS in R[x, y] [15]. The set of
SOS matrices in x are in the following denoted by Σn×n[x].

In order to maximize the contracting region the program
optimizes over the sublevel set size ρ, while at the same
time optimizing over the shape of the region given by Z.
To prevent an increase of ρ by simple rescaling of Z the
trace of Z is fixed to a constant value a. We then obtain the
following optimization program.

max
C(x̄),λ(x̄),s1(x̄),s2(x̄),Z

ρ (20a)

subject to C(x̄)− l ∈ Σn×n[x̄], (20b)
− J(x̄)− βC(x̄) + λ(x̄)S(x̄)−

− s1(x̄)(ρ− z(x̄))− s2(x̄)(b(x̄)− ε) ∈ Σn×n[x̄], (20c)
s1(x̄), s2(x̄) ∈ Σn×n[x̄], (20d)

λ(x̄) ∈ Σ[x̄], (20e)
Z � 0, tr(Z) = a, (20f)

where J(x̄) := C(x̄)∂f̄(x̄)
∂x̄

T
+ ∂f̄(x̄)

∂x̄ C(x̄) − Ċ(x̄), b(x̄) =
f̄T f̄ and ε � 1 is a small fixed constant. The last term
in constraint (20c) serves to exclude equilibrium points at
which the dynamics are zero and thus (17) does not hold.
Resulting from the application of the Positivstellensatz are
the SOS matrix multipliers s1(x̄) and s2(x̄) which certify the
constraints, and l = εx̄T x̄ which enforces strict positivity of
C(x̄). The polynomial degree of the SOS multiplier and C
are in theory unlimited and subject to the choice of the user.

The program (20) has bilinear terms in the coefficients
of s1 and ρ/Z. A local optimum of (20) can be obtained by
turning the bilinear problem into a series of convex problems.
This is done by iteratively fixing ρ and Z while solving (20)
to obtain feasible SOS multipliers, and then solving (20) by
maximizing ρ over Z while keeping the obtained multipliers
fixed, until the result for ρ converges. Each of the iterative
steps is linear in the polynomial coefficients and can thus
be solved as a semi-definite program (SDP). This procedure
can be initialized with a unit matrix Z and a bisection on ρ.

Remark 1: Due to the fact that conditions (20b), (20c) and
(20d) represent SOS matrix constraints, solving the program
(20) implies an SOS program with 2n(p+1) indeterminants.
Due to the current capability of standard SDP solvers the
method is not yet applicable to problems with more than 4
to 6 PCE states, depending on the polynomial degree of the
problem. Current progress towards more powerful methods
to solve SOS programs, such as DSOS and SDSOS programs
[27], could offer a remedy.

B. Step 2: Finding an invariant region

In Step 2, the ROTC inner estimate R̄ is obtained as
the largest invariant region inside the contracting region Z̄
obtained in Step 1. In order to find the invariant set R̄,
condition (18) can be directly tested on the boundary of Z̄ .
In general, for a polynomial function r(x̄) = v(x̄)TRv(x̄)
an invariant region R̄ = {x̄ | r(x̄) ≤ ρinv} ⊆ Z̄ can be
obtained by applying the Positivstellensatz as in Step 1 to
the set containment condition on the invariant set. Setting
∂(z) = ∂(r) and ρinv = ρ, where ρ is obtained in Step 1,
the following SOS optimization program is formulated. The
program is started with the largest possible set inside Z̄ ,



e.g., the set Z̄ itself, which is then adjusted in the direction
of decreasing derivatives at the boundary of the set until
condition (18) is satisfied.

find R, h(x̄), s(x̄), ν (21a)

subject to ν < 0, (21b)

−
(
∇r(x̄)f̄(x̄)− νx̄T x̄

)
−h(x̄)(ρ−r(x̄)) ∈ Σ[x̄], (21c)

− (ρ− r(x̄))s(x̄)− (z(x̄)− ρ)) ∈ Σ[x̄], (21d)
s(x̄) ∈ Σ[x̄]. (21e)

The SOS polynomial s(x̄) certifies the set containment
R̄ ⊆ Z̄ in (21d), and the indefinite polynomial multiplier
h(x̄) results from the equality constraint in (18) imposed
in (21c). The variable ν is used to find an invariant region
R̄. Since this invariant region is characterized by inwards
pointing dynamics at the boundary, an invariant region is
found as soon as a negative value for ν has been reached.
Program (21) is thus initialized with a feasible positive ν
and (21) is repeatedly solved until a negative ν is found.
Due to bilinear terms in the decision variables, program (21)
is solved in the same iterative fashion as program (20).

C. Algorithmic options for the computation of R̄
If program (21) cannot find a region for which ν is nega-

tive the reasons can be the following: Either, the contracting
region Z̄ obtained in Step 1 is too small to contain an
invariant region, or the invariant region inside Z̄ has a shape
which cannot be fitted with a sublevel set of the polynomial
function r. In the first case, a larger region can be searched
for by increasing the polynomial degree of the metric and/or
SOS multipliers in Step 1. In the second case, the polynomial
degree of both z and r can be increased. To allow for both
Step 1 and Step 2 to result in larger ROTC estimates, more
flexible metrics and regions can be considered. For exam-
ple, composite metrics and regions (similar to an approach
taken for composite Lyapunov functions in [25]) or locally
piecewise constructed metrics (similar to an approach for
piecewise affine metrics in [9]) can be employed.

V. ILLUSTRATIVE EXAMPLE

We demonstrate the method on a stochastic system previ-
ously considered in a deterministic version in [9],

ẋ1 = −x1 + x2,

ẋ2 = x1 − (2 + φ(ξ))x2.
(22)

The stochastic parameter φ comes from a Gaussian distri-
bution with mean m = 0 and variance σ2 = 0.2 , i.e.
the random variable ξ has standard normal distribution. As
a basis for the PC expansion the Hermite polynomials are
chosen as these give optimal convergence in the L2-sense for
normal distributions. A truncation order p = 2 was used to
capture the significant PCE modes, the higher order modes
were negligibly small. For a metric inverse with ∂(C) = 2,
SOS multiplier degrees ∂(s1) = 2, ∂(s2) = 0, ∂(λ) =
0, ∂(s) = 2, ∂(h) = 2, a quadratic invariant and contracting
region with R being the identity matrix I6×6 was found with
a radius ρ = 5.
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[5] S. Heim and A. Spröwitz, “Beyond Basins of Attraction: Quantifying
Robustness of Natural Dynamics,” IEEE Trans. Robot., vol. 35, no. 4,
pp. 939–952, 2019.

[6] A. Iannelli, A. Marcos, and M. Lowenberg, “Nonlinear Robust Ap-
proaches to Study Stability and Postcritical Behavior of an Aeroelastic
Plant,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 703–716,
2019.

[7] W. Lohmiller and J.-J. E. Slotine, “On Contraction Analysis for Non-
linear Systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[8] I. R. Manchester and J.-J. E. Slotine, “Transverse contraction criteria
for existence, stability, and robustness of a limit cycle,” Syst. Control
Lett., vol. 63, pp. 32–38, 2014.

[9] P. Giesl and S. Hafstein, “Construction of a CPA contraction metric
for periodic orbits using semidefinite optimization,” Nonlinear Anal.,
vol. 86, pp. 114–134, 2013.

[10] D. Xiu and G. E. M. Karniadakis, “Modeling uncertainty in flow
simulations via generalized polynomial chaos,” J. Comput. Phys., vol.
187, no. 1, pp. 137–167, 2003.

[11] O. Le Maitre and O. Knio, Spectral methods for uncertainty quantifi-
cation. Springer, 2010.

[12] E. Ahbe, A. Iannelli, and R. S. Smith, “Region of attraction analysis
of nonlinear stochastic systems using Polynomial Chaos Expansion,”
ArXiv, p. 1911.00252v1, 2019.

[13] C. L. Pettit and P. S. Beran, “Polynomial chaos expansion ap-
plied to airfoil limit cycle oscillations,” Collect. Tech. Pap. -
AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., vol. 3,
no. April, pp. 1975–1985, 2004.

[14] P. S. Beran, C. L. Pettit, and D. R. Millman, “Uncertainty quantifica-
tion of limit-cycle oscillations,” J. Comput. Phys., vol. 217, no. 1, pp.
217–247, 2006.

[15] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and
robustness analysis of nonlinear systems via contraction metrics and
SOS programming,” Automatica, vol. 44, pp. 2163–2170, 2008.

[16] F. S. Hover and M. S. Triantafyllou, “Application of polynomial chaos
in stability and control,” Automatica, vol. 42, no. 5, pp. 789–795, 2006.

[17] J. K. Hale, Ordinary Differential Equations. R.E. Krierger Pub. Co.,
New York, 1980.

[18] C. L. Pettit and P. S. Beran, “Spectral and multiresolution Wiener
expansions of oscillatory stochastic processes,” J. Sound Vib., vol. 294,
no. 4, pp. 752–779, 2006.

[19] D. Xiu, I. G. Kevrekidis, and R. Ghanem, “An equation-free, mul-
tiscale approach to uncertainty quantification,” Multiphysics Model.,
vol. May/June, pp. 16–23, 2005.

[20] L. Fagiano, M. Khammash, and C. Novara, “On the guaranteed
accuracy of Polynomial Chaos Expansions,” in Proc. IEEE Conf.
Decis. Control. IEEE, 2011, pp. 728–733.
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