
Combining Control Barrier Functions and Behavior Trees
for Multi-Agent Underwater Coverage Missions

Özer Özkahraman and Petter Ögren
KTH Royal Institute of Technology

{ozero, petter}@kth.se

Abstract— Robot missions typically involve a number of de-
sired objectives, such as avoiding collisions, staying connected to
other robots, gathering information using sensors and returning
to the charging station before the battery runs out. Some of
these objectives need to be taken into account at the same
time, such as avoiding collisions and staying connected, while
others are focused upon during different parts of the executions,
such as returning to the charging station and connectivity
maintenance.

In this paper, we show how Control Barrier Functions(CBFs)
and Behavior Trees(BTs) can be combined in a principled
manner to achieve both types of task compositions, with
performance guarantees in terms of mission completion. We
illustrate our method with a simulated underwater coverage
mission.

I. INTRODUCTION

Behavior Trees (BTs) are a framework for designing
and implementing sequential behavior switching in artificial
intelligence (AI) applications [1]. They have been shown
to generalize a set of earlier control architectures [1], [2],
such as the Teleo-reactive approach [3], Decision Trees, the
Subsumption architecture [4] and Sequential behavior com-
positions [5]. BTs were first used in games where some AI-
controlled characters had to react to the player in increasingly
complex ways [6]. In the domain of such games, the player is
an unknown and dynamic part of the environment that might
act in unforeseeable ways, so the AI-controlled character
needs to react in real-time to what the player does. This
situation is also present in many robotics applications, where
the environment has some part that cannot be predicted or
controlled, such as the actions of nearby humans, or the
location of unknown obstacles. Yet the robot is still expected
to complete the given task.

Another similarity between robotics and games is that
usually there are tasks that need to be completed in some
order, such as first charging the battery and then moving an
object. BTs provide a framework in which such sequential
tasks can be encoded and executed in a structured and
transparent manner. BTs can also provide reactivity, in the
sense that when a previously completed task is undone by
an external effect, the planned sequence is interrupted to first
repeat the previously completed task, and then continue with
the sequence.

In addition to sequential tasks, robots often have parallel
tasks that need to be fulfilled simultaneously, such as avoid-
ing collisions and maintaining connectivity with other robots.

→

?

?

?

?Safe from
collisions

Avoid
collisions

Can reach
charger with

margin
→

? Dock with
charger

Charger
visible

Search
charger

Connected to
an agent

Rendezvous

Coverage
complete

Execute
coverage

plan

(a) Most conditions are satisfied and coverage is performed.
→

?

?

?

?Safe from
collisions

Avoid
collisions

Can reach
charger with

margin
→

? Dock with
charger

Charger
visible

Search
charger

Connected to
an agent

Rendezvous

Coverage
complete

Execute
coverage

plan

(b) The battery level is low and the robot is moving to the charger.

Fig. 1: The BT used for the multi-agent underwater coverage
mission. The trajectories of the mission can be seen in
Figure 5. In the figure, the satisfied conditions are blue, the
unsatisfied conditions are red, and the action that is currently
executing is yellow.

Control Barrier Functions (CBFs) [7], provide a framework
in which such parallel tasks can be taken into account. Using
CBFs we can explicitly formulate constraints in the control
space to guarantee invariance of some desired property. CBFs
have also been shown to be composable, such that multiple
CBFs that handle different constraints can be combined using

ar
X

iv
:2

00
8.

09
42

7v
1

 [
cs

.R
O

]
 2

1
A

ug
 2

02
0

Boolean operators, [8].
The BT for our Autonomous Underwater Vehicle (AUV)

application is shown in Fig 1. We will use this BT throughout
the paper as an example, and now provide an informal
description of how it works, but leave the details for Section
II. The ultimate goal of this BT, which is run on several
AUVs, is to jointly complete coverage of an area, while at
the same time also avoid collisions, stay within range of
the battery charger and stay connected to at least one other
agent. These four main objectives (conditions) are shown in
the ovals in the top row of Fig 1.

The conditions are ordered according to priority from left
to right, with safe from collisions being the most important.
Thus, only if safety is satisfied the battery level is considered,
and only if those two are satisfied, rendezvous with a group
member will be considered and so on. Thus, in Fig 1(a)
all the first three conditions are satisfied and coverage is
executed, while in (b) the distance to the charger is too long,
compared to the remaining battery, and the AUV ignores
coverage and connectivity, but not safety, to leave the group
and search for the charger.

In the proposed approach, we will use CBFs for main-
taining the conditions already met (blue in the figure),
while striving to satisfy the next one (red). However, the
approach is more complex than just maintaining a list of
CBFs. First note that there are inherent conflicts in the
mission, at some point, the battery level will force the
AUV to stop doing coverage, so we need a mechanism for
removing lower priority CBFs from the list of constraints.
Furthermore the topology of the BT, in terms of subtrees,
and the corresponding switching of tasks, has implications
for what CBF to apply. When searching for the charger, only
safety is considered while trying to get into visual range of
the charger. But then, during docking, both safety and charger
visibility are active CBFs. If the docking action accidentally
brings the charger out of view, the AUV will switch back to
searching for the charger before trying to dock once more.
But this is the only action for which charger visibility is part
of the active CBFs.

The main contributions of this paper are as follows. We
combine the BT structure, designed to handle sequential
objectives, with CBFs, created to handle concurrent objec-
tives, into a single framework. We furthermore show how to
provide formal guarantees, in terms of goal satisfaction, in
this framework.

The structure of this paper is as follows. First in Section II
we go through the relevant previous works, then in Section III
we outline the important parts of the two methods we make
use of in the rest of the paper. In Section IV we formally
define the proposed combination of the two methods. We
apply the approach to an AUV problem in Section V and
conclude our work in Section VI.

II. RELATED WORK

In this section we will discuss related earlier work on
Behavior Trees, Control Barrier functions, and approaches
to improving their performance.

A. Behavior Trees

One of the main gripes about BTs have been their con-
vergence properties to a successful final state. This has been
addressed in [1], [9]–[11]. In these papers, ideas from [3]
were extended to BT compositions. These also considered
the case of sequences, as a subset of all BT compositions,
where each action meets the preconditions of the next action
in the sequence.

Other properties such as robustness (regions of attraction),
safety (avoidance of some regions) and efficiency (conver-
gence within upper time bounds) of BTs where analyzed in
[1]. The focus of [1] was on sequential objectives, but the
case of concurrent objectives is mentioned, and the risk of
switching back and forth between actions trying to achieve
different objectives is noted. The approach of combining
CBFs and BTs proposed in this paper partially solves the
problem noted in [1].

In [10], [11] the core notation of BTs was extended by
adding pre- and post-conditions to the Action nodes and
thus removing Condition nodes. This modified model is
called extended Behavior Trees (eBT) and it is meant to be
interfaced with Hierarchical Task Network (HTN) planning.

A concept closely related to BTs is the Robust Logical-
Dynamical Systems proposed in [9]. There, sequences of
actions are ordered by their proximity to the goal, and
concatenated in a way so that each action pushes the state
towards the runnable conditions of the next. A probabilistic
analysis of convergence is presented, based on bounds on
success probability of each action, as well as an ambitious
implementation in a real robotic system.

B. Control Barrier Functions

The area of CBFs is currently receiving an increasing
amount of attention [7], [8], [12]–[16]. In [12], a method
to control a swarm of agents such that they all stay within
the safe set of states was proposed. The method takes into
account relative velocities and accelerations, in order to
ensure safety using CBFs. The authors present both phys-
ical experiments and simulations showing that the proposed
method keeps robots safe from collision while achieving their
tasks.

A method for determining control in a multi-robot setting
was proposed in [13], for a situation where the robots might
not have the motion models of their peers. The method takes
into account bounded accelerations and satisfies the safety
criteria while minimizing the effect on the desired control
input. The authors also extended the method to work in a
distributed manner.

A way to combine several CBFs using Boolean logic was
proposed in [8]. The example used concerns a group of single
integrator agents moving towards goal points while avoiding
collisions with each other and stationary disc shaped obsta-
cles. The method shows that the min and max operators on
barrier functions are analogous to and and or operators in
Boolean logic. The authors showed that these operations can
be used to compose multiple CBFs to work in tandem, in
order to satisfy a more complex goal. We base our method

TABLE I: The four node types of a BT.

Node type Symbol Succeeds Fails Running
Fallback ? If one child succeeds If all children fail If one child returns running
Sequence → If all children succeed If one child fails If one child returns running

Action (name) Upon completion When impossible to complete During completion
Condition (name) If true If false Never

on this work and build upon it by adding the switching
mechanisms of BTs.

A method based on CBFs that takes into account non-
linear disturbances and uncertainty was presented in [14].
The paper formulates the problem as an optimization prob-
lem to be solved in order to guarantee safe set invariance. The
method is illustrated using an inverted pendulum example.

A paper that is close in spirit to the AUV examples
presented here is [15], where the charge level of the robot is
included as part of its state, such that the forward invariance
of this extended state ensures the persistence of the task.
The authors used CBFs to synthesize controllers to keep
the robot from depleting its batteries. A persistent coverage
task is used as an example to show the success of the
method in simulation and with mobile robots. The work
takes into account the dynamics of the robots energy usage
and augments the state and dynamical model with it. By
rendering the augmented state forward invariant with the use
of CBFs, the robot is kept charged. The main difference
between this work and our work is that our method is more
general in terms of task switching, relying on the topology
of the BT to identify the proper CBFs.

The authors of [16] proposed a method to chain together
multiple behaviours in order to complete a high level mis-
sion. They argued that single behaviours are good for low-
level control, but they do not address missions with multiple
steps. They introduced a method called Finite-Time Conver-
gent CBFs that guarantees that the terminal configuration of
a behaviour overlaps with the initial configuration of the next
behaviour. They validate their claims on a team of mobile
robots. These ideas are similar to our method, but the work
proposed here goes further by using the flexible BT structure
to control the agent.

Composition of sequential and parallel constrained control
of multiple agents have been studied in [17]. Their method
combines linear temporal logics with control barrier func-
tions to achieve the desired behavior. However, their method
assumes that all obstacles are known, whereas our method
does not have such an assumption and reacts on-line to newly
discovered conditions.

Learning based approaches [18]–[20] have also been con-
sidered together with CBFs. In these works, the CBFs act as a
guardian to the learning system and keep it within known-to-
be-safe areas. These works are concerned with the unknowns
at the control level, where the full dynamics of the system
might not be fully known, and strive to fill in this gap by
learning.

To summarize, we note that convergence of BTs has been
addressed, but only for sequential structures, and never using

CBFs. Conversely, compositions of several CBFs have been
studied, sometimes in a switching setting, but never using a
BT to structure the switching. Thus, the combination of BTs
and CBFs has not been investigated earlier in the literature.

III. BACKGROUND

In this section we will provide a brief background on the
two core concepts being applied in this paper, CBFs and
BTs.

A. Control Barrier Functions

Let a system be described by ẋ = f(x, u), x ∈ Rn, u ∈
U ⊂ Rm. The key idea behind Control Barrier Functions [7]
is to specify a function h : Rn → R such that the so-called
safe set C is characterized by:

C = {x : h(x) ≥ 0}.

Then, given the system dynamics f(x, u), if we choose
controls u inside the set

K = {u ∈ U :
dh

dx
f(x, u) ≥ −α(h(x))}, (1)

we are guaranteed to stay in the safe set x ∈ C, see [7].
Above, α is a so-called class K function, that is α : R+ →
R+, α(0) = 0 and α is strictly monotonic increasing, see
Theorem 2 in [7].

B. Behavior Trees

A BT is a directed tree, with the usual definition of nodes,
edges, root, leaves, children and parents. In a BT, each node
belongs to one of the four categories listed in Table I. Leaf
nodes are either Actions or Conditions, while interior nodes
are either Fallbacks or Sequences.

A detailed comparison between Finite State Machines
(FSMs) and BTs can be found in [1]. Here, we note that
the actions of the BT correspond to the states of the FSM,
while the switching decisions that are distributed in the states
of the FSM are captured in the tree structure. This structure
is defined by the Fallbacks, Sequences and Conditions, of the
BT. Furthermore the switching decision in the BT is revised
every ∆t by sending a so-called tick to the root node.

The tick starts at the root of the BT and progresses down
to its children, in a particular order from left to right. When a
leaf is ticked, it returns either Success, Running or Failure to
its parent, which either ticks the next child, or forwards the
return status to its parent. We will now describe the different
node types in more detail.

?

Can reach
charger with

margin
→

? Dock with
charger

Charger
visible

Search
charger

Fig. 2: A subset of the BT in Figure 1.

Fallback.1 The Fallback node ticks its children in order
until one of them returns Success or Running. Any child re-
turning Success means that the Fallback also returns Success.
Any child returning Running means that the child needs more
time to execute the task, in which case the Fallback also
returns Running. If all children return Failure the fallback
also returns Failure. In other words, the Fallback node acts
like a contingency plan, where the next child is ticked as a
response to the failure of the previous child.

Sequence. The Sequence node ticks its children in order
until one of them returns Failure or Running. If a child
returns Success, the sequence immediately ticks the next
child. If a child returns Failure or Running, the Sequence
node returns the same result as the child. In other words, the
Sequence node acts as a list of actions to run in succession,
and quits when a Failure occurs anywhere in that succession.

To see how the components above can be combined into
a larger structure we look at the BT in Figure 2, which is
a subset of Figure 1. The action that is activated and get
to control the AUV depends on the outcomes of the two
conditions, which are summarized in Table II.

TABLE II: Return status and action running as a function of
the two conditions for the BT of Figure 2.

Can reach
charger
with margin

Charger vis-
ible

BT returns Action running

Success Success Success (none)
Success Failure Success (none)
Failure Success Running Dock with charger
Failure Failure Running Search charger

The top node in Figure 2 is a Fallback, which means that
as long as the first child returns success, it will return success
itself, as can be seen in the two first rows of Table II. In this
case, the charger can be reached with a sufficient margin, and
there is no need to worry about charging yet. Thus another
part of the larger BT in Figure 1 will be ticked.

If a sufficient battery margin is not present, the top
Fallback will tick its next child, which is a Sequence. This
will in turn tick its first child which is a Fallback again.
The second Fallback then ticks its first child, which is the

1Fallbacks are sometimes also called Selectors.

second Condition: Charger visible. If this Condition returns
Failure the Fallback will tick Search charger. If on the other
hand, the Condition returns Success the Fallback returns
Success and the Sequence above it ticks its next child, Dock
with charger. Thus we have covered all options described in
Table II. The whole BT in Figure 1 can be analyzed in a
similar way to see what actions are executed when.

As illustrated above, the simple BT components can be
combined to provide fairly rich switching strategies. Note
also that the tree structure makes the design very modular, it
was quite straightforward to just pick a subtree and analyze
it without knowledge of the rest of the BT. For the interested
reader, a number of different design principles can be found
in [21].

Finally, note that the actions represent continuous time
controllers ẋ = f(x, ui), whereas the BT is executed in
discrete time at intervals of ∆t. Thus any switch between
controllers ui can only occur at intervals of ∆t. This results
in a possible reaction delay in the switching with at most
∆t, while at the same time guarantees that the number of
switches in a finite time interval is bounded and solutions
are well defined.

IV. COMBINING CBFS AND BTS

In this paper we are studying the problem of combining
CBFs with BTs to create controllers that take a number of
mission objectives into account, concurrently when needed,
and sequentially when appropriate. First we will present
the nominal design, then a simple example illustrating the
approach, then two extensions, to more complex BTs and
more complex constraints.

A. Nominal Design

BTs can be constructed in many different ways, so first
we define the general topology of BTs that we consider in
this paper as follows.

Definition 1 (Concurrent Goals BT (CG-BT)): A
Concurrent Goals BT (CG-BT) is of the following
form:

Sequence(Fallback(C1,A1), . . ., Fallback(CN ,AN)),
where Ci is a condition, or a combination of conditions in
the form of a BT, and Ai is an action, or a BT including
both actions and conditions.

We use the name Concurrent Goals BT since it only
returns Success if all the conditions (goals) Ci are satisfied
at the same time.

Lemma 1: Given a Concurrent Goals BT, if the conditions
Ci are invariant, as in the returns do not change, under the
actions to its right, Aj , j > i, and the execution of Ai

satisfies Ci within some finite time T , then all Ci will be
satisfied within some time TN .

Proof: We proceed by induction. First, if C1 is not
satisfied, then A1 will execute, and satisfy C1 within time
T . For the induction step, we note that if Ck is not satisfied,
while Ci, i < k are satisfied, then Ak will execute, keeping
Ci, i < k invariant, and satisfy Ck within time T . Therefore

we can conclude by induction that all Ci will be satisfied
within some time TN .

Remark 1: Note that the assumptions of Lemma 1 are
quite strong. In many examples, as will be shown below, they
are not satisfied. But the result will still give important in-
formation on what designs to aim for and what performance
can be expected from a given design.

Remark 2 (Conflicting goals): Note that it is easy to con-
struct conflicting goals. For example, the following design
Sequence(Fallback(x > 0, A1), Fallback(x < 0, A2)),
includes conditions (goals) that are impossible to achieve
simultaneously. Clearly we cannot have x > 0

∧
x < 0, and

it is impossible for A2 to achieve x < 0 while keeping x > 0
invariant.

For the AUV example, Table III lists the set of conditions
to satisfy for each action. Note that this example is a bit
more complex than Lemma 1, as it contains two nested BTs
of the form CG-BT. In Section IV-C below, we will describe
how to produce this table from the topology of the BT.

TABLE III: Conditions to be kept invariant for the BT of
Figure 1.

Action Higher priority conditions to be kept invari-
ant

Avoid Collisions (none)
Search charger Safe from collisions
Dock with charger Safe from collisions AND Charger Visible
Rendezvous Safe from collisions AND Can reach charger
Execute Coverage Safe from collisions AND Can reach charger

AND connected

In order to apply Lemma 1 above we need the conditions
Ci to be invariant under the actions to its right, Aj , j > i,
and the execution of Ai satisfy Ci within some finite time
T . To achieve such guarantees we use CBFs, and make the
following assumption and definitions

Assumption 1: Each condition Ci : Rn → {0, 1} can be
formulated in terms of a CBF hi, see (1), as follows

Ci = (hi(x) ≥ 0) (2)
Given this assumption, we define the following sets of

controls, where Ki ⊂ U guarantees invariance of Ci, K̄j ⊂
U guarantees invariance of all Ci, i ≤ j and K̂k ⊂ U
guarantees invariance of a subset of Ci, i ≤ j.

Definition 2: Let

Ki = {u ∈ U :
dhi
dx

f(x, u) ≥ −α(hi(x))} (3)

K̄j =

j⋂
i=1

Ki (4)

K̂k = {K̄j : j ≤ k, K̄j 6= ∅ ∧ (j = k ∨ K̄j+1 = ∅)} (5)

Note that K̄j might be empty. This happens for example
when the conditions are conflicting, see Remark 2, such as
when Execute Coverage requires the AUV to go north and
Can reach charger requires it to go south. Thus, to address
the problem of a possibly empty K̄j , we define K̂k to be the

intersection of the largest set of constraints Cj , j ≤ k that is
still non-empty.

To apply Lemma 1 above we need controllers Ai that
satisfy Ci within some finite time, while respecting the other
constraints Cj , j < i. A set of different approaches to find
such controllers can be envisioned. Ideally, a time optimal
control approach to find a ui(t) that satisfies hi(x) ≥ 0 might
be applied

min
ui,x,T

∫ T

0

1dt (6)

s.t. ẋ = f(x, ui)

x(0) = x0, x(T) : hi(x(T)) ≥ 0

u ∈ K̄i−1

With lesser computational resources a reactive approach
might also be used. Either one that locally maximizes the
progression towards Ci, hi(x) ≥ 0

ui = argmaxuḣi(x, u) (7)

s.t. u ∈ K̂i−1

or one that is close to some other control choice k(x) that
is designed to satisfy Ci, as in the CBF-QP of [7],

ui = argminu||u− k(x)||2 (8)

s.t. u ∈ K̂i−1

In this paper we will use the minimally disturbing version
in (8).

Given the components above, we define the CBF-BT as
follows.

Definition 3 (CBF-BTs): A Control Barrier Function Be-
havior Tree (CBF-BT) is a BT such that:
• The BT is structured and indexed as a Concurrent Goals

BT as defined in Definition 1.
• Every Condition node Ci is associated with a CBF hi

and returns Success if hi(x) ≥ 0.
• Every action Aj makes use of the hi according to (8).
With this definition we can formulate the second Lemma
Lemma 2: A CBF-BT will satisfy all constraints in finite

time (See Lemma 1) if K̄i = K̂i and

maxu∈K̂i−1
ḣi(x, u) ≥ ε > 0, (9)

for some ε > 0, throughout the execution.
Proof: First note that K̄i = K̂i guarantees that there

are no conflicts between the conditions, and the achieved
constraints will be invariant [7]. Then ḣi(x, u) ≥ ε > 0
implies that the next constraint will be satisfied in finite time.
Finally the result follows from Lemma 1.

B. Simple example

To illustrate the approach so far we will look at the
example in Figure 3 which is less complex than Figure 1. The
BT has four concurrent objectives, in the following priority
order: C1: Safe from collisions, C2: Can reach goal with
battery margin, C3: Preferred safety margin ok and C4: At

→

?

?

Go to
pointCan reach

goal with
margin

Go to point,
conserving

charge

?

Safe from
collisions

Avoid
collisions

Preferred safety
margin ok

Avoid
unsafe
area ?

At point

Fig. 3: A simple BT for getting to a goal location with desired
margins on battery and obstacle clearance.

point, each paired with an action to achieve the condition.
The conditions to be used as CBFs are given by Table IV,
and the detailed vehicle model can be found in Section V.

TABLE IV: Conditions to be kept invariant for the BT of
Figure 3.

Action Higher priority conditions to be kept invari-
ant

Avoid Collisions (none)
Go to Point, Con-
serving Charge

Safe from collisions

Avoid Unsafe
Area

Safe from collisions AND Can reach goal with
battery margin

Go to point Safe from collisions AND Can reach goal with
battery margin AND Preferred safety margin ok

In Figure 4, three different simulated trajectories are
shown. The upper plot shows that it is impossible to satisfy
all constraints at the same time using a reactive controller.
Trying to achieve C4 while satisfying C1 and C3 results in
the battery running out before reaching the goal.

The middle plot shows the effect of running the BT in
Figure 3 without incorporating any constraints, i.e., ignoring
ui ∈ K̂i, in the actions. In this case, Goto point would go
straight towards the goal C4, until hitting the light blue area
and violating C3. Then the BT would switch to Avoid unsafe
area and move out of the area, then switch back to Goto point
and so on. A naive design leading to the battery running out
while chattering.

The bottom plot shows the proposed design. Initially, Goto
point is active, moving towards the goal while choosing
controls in K̄3 = K̂3 satisfying all other constraints. Then,
there is a conflict between Preferred safety margin ok and
Can reach goal with battery margin, as the battery level is
not high enough to reach the goal along the detour. This
makes K̄3 = ∅ and thus K̂3 = K̄2, which effectively ignores
Preferred safety margin ok while still satisfying Safe from
collisions and Can reach goal with battery margin.

Thus, with several concurrent objectives, we have seen
how the proposed approach provides graceful performance
degradation to the CBFs when some constraints are con-
flicting, as well as reduces chattering of naive BT designs.

Fig. 4: The trajectories of the simple test case.

However, we want to apply it to more complex designs
exploiting the switching structure of the BTs more.

C. Recursive application of Lemma 1

We will now see how we can analyze more complex
BTs by a recursive application of Lemma 1, and get the
results of Table III. Looking at Figure 1 we see that it is
a nested combination of two BTs of the CG-BT form, see
Definition 1.

Applying Lemma 1 at the top level we get Table V. Here
the recharging sub-BT is treated like any other action, and
gets a set of constraints to satisfy, i.e. Safe from collisions.
Applying Lemma 1 at the sub-BT designed to take care of
recharging we get Table VI, where we include the constraint
given by the upper level. Note that Tables V and VI, together
give Table III.

D. More complex Constraints

In this section we show how to transform a tree of
conditions into a Boolean expression such as the one used
for CBFs in [8]. Note that in Lemma 1, the conditions are
either atomic conditions, or a tree of atomic conditions.

Since this mapping is only for condition nodes, the Run-
ning return state does not need a representation, and we
identify Success with the Boolean TRUE and Failure with the
Boolean FALSE. Let c be any tree node and let cc represent
its ordered list of children that does not include any actions.

Definition 4 (Expand):

Expand(c) =

c, c is atomic∨

ci∈cc Expand(ci), c is Fallback∧
ci∈cc Expand(ci), c is Sequence

Using these definitions, and the approach proposed in [8] we
can convert a tree of constraints into a single CBF.

V. PERSISTENT AUV COVERAGE

TABLE V: Conditions to be kept invariant for the top level
BT of Figure 1.

Action Higher priority conditions to be kept invari-
ant

Avoid Collisions (none)
Recharge sub-BT Safe from collisions
Rendezvous Safe from collisions AND Can reach charger
Execute Coverage Safe from collisions AND Can reach charger

AND connected

TABLE VI: Conditions to be kept invariant for the Recharge
sub-BT of Figure 1.

Action Conditions from
parent BT

Conditions from
this BT

Search charger Safe from colli-
sions

(none)

Dock with charger Safe from colli-
sions

Charger visible

The problem considered is a set of AUVs that are per-
forming an underwater coverage task in order to check the
seabed for anomalies. The area to be covered is thought
to have no obstacles, and a lawnmower pattern plan is
made. The AUVs are expected to always have a connected
buddy for redundancy. The AUVs run on battery, and can
recharge in seabed mounted recharging stations. They can
furthermore communicate with other AUVs within a given
communication radius rc ∈ R+ and sense the seabed with a
given range rs ∈ R+. The AUVs are modeled as kinematic
points with bounded velocity and limited battery,

ẋi = ui, (10)

ḃi = −kb||ui||, (11)

where xi, ui ∈ R2, are the position and control input
respectively, ||ui|| ≤ vmax, ||ui|| ≤ bi . b ∈ [0, 100] is the
battery charge level, and kb ∈ R+ is the fuel efficiency of
the AUV.

The AUVs should follow some safety constraints in order
of importance:

1) The AUVs must not get closer than some safety margin
ms to each other and to static obstacles ok.

2) The battery level bi must be kept at a level such that the
AUV can always reach the charging station position qi
with some margin mb.

3) The AUVs are required to be connected to at least one
other AUV while executing the plan for redundancy.

These requirements are formalized into conditions as:

||xi − xj || ≥ ms, ∀(i, j), i 6= j (12)
||xi − ok|| ≥ ms, ∀(i, k) (13)
||xi − xj || ≤ rc, ∃(i, j), i 6= j (14)

bi ≥ ||xi − qi||/kb +mb (15)

In order to achieve the behavior we require, we design the
CG-BT as shown in Figure 1, with the corresponding CBFs
of Table III. The actions in this tree satisfy Lemma 1 by
design. For example, the Action Rendezvous will eventually
cause the Condition Connected to an agent to succeed by
moving the agents towards each other, allowing a connection
to be made.

It is clear that the charge margin condition will be even-
tually violated, independent of actions. When this happens,
the Execute coverage plan action will be stopped, and the
Charging subtree will be run instead. This switch constitutes
a switch of tasks, from doing coverage to charging, and thus
have different constraints applied as expected. The charging
subtree will then move the agent state to one where the
charge margin is satisfied, allowing Rendezvous and then
Execute coverage plan actions to be run in that order.

Having seen the desired effect on the simple test case,
we simulate a short but complete coverage mission with
three AUVs. In Figure 5, the trajectories of all the AUVs are
shown. A video of the simulation is also available online2.
Similar to the simpler test case, the obstacles are unknown
and no re-planning is done. The CG-BT shown in Figure 1
is used on individual agents. All of the constraints are in
effect and checked throughout the simulation. The coverage
plan is set to be a simple lawnmower pattern with parallel
turns and 3 lanes. The safety margin ms is shown as filled
disks for each agent. The AUVs are identical and have
the communication range rc, shown as same-colored circles
around each AUV in the figure. The charging station for each
AUV is at their individual initial positions.

In order to see the reaction of the system to unforeseen
events, one of the AUVs (leftmost initial position, pink, solid
curves) is started with only 30% battery charge and the
obstacles are scattered such that it affects one agent (middle
initial position, yellow, dashed curves) more than the others.
This setup thus has multiple symmetry-breaking conditions
in it such that all AUVs will be in different states throughout
the simulation and must react accordingly to these unplanned
circumstances.

As can be seen in Figure 5b, the first agent that started
with less charge than the others had to return to its charging
station soon after the mission started. At this point, the
connectivity constraint is not satisfied as expected. Agent
one later rendezvous with the group after its charged (c).

Shortly after the rendezvous with agent one, the other two
AUVs run out of battery and return to their charging stations
(d). Meanwhile agent one is running the Execute coverage
plan action which satisfies the connectivity constraint in a
one-sided manner, by staying within communication range
of the other agents. Even though agent one is trying to do
coverage, it is essentially ’dragged’ by the charging agents
due to the CBFs.

Once the charging agents are done, we see that they all
return to executing the coverage plan (e). At this point, agent
one, which has been staying as close to its coverage plan

2https://youtu.be/TAi7zwfKw6o

https://youtu.be/TAi7zwfKw6o

Fig. 5: The trajectories of the complex coverage mission (video available online2).

waypoint as it can without leaving the communication range,
moves ahead of the other agents but runs out of battery
again. Agent one goes back to charge after the group resumes
coverage and then rendezvous with the group a second time
and completes the mission (f). At this point, all agents have
enough battery charge to return to their base stations and
re-start the entire mission.

This simulation shows that the proposed method of CBF-
BTs is capable of fulfilling the parallel tasks of avoiding
collisions and keeping connectivity together with one of the
sequential tasks of charging and following the coverage plan.
When the tasks become impossible to execute simultane-
ously, the CBF-BT is capable of prioritizing between the
tasks as we observed when agents gave up on connectivity
while going to re-charge.

VI. CONCLUSIONS
In this paper, we proposed a general purpose reactive

control method called Control Barrier Function Behavior
Trees (CBF-BTs), that is able to take both concurrent and
sequential objectives into account. We have shown theoretical
guarantees for goal satisfaction of CBF-BTs, and shown how
they can be used to understand behavior even in cases where
the underlying assumptions are not met. The approach was
illustrated with a collaborative AUV coverage mission.

ACKNOWLEDGMENT
This work was supported by Stiftelsen for Strategisk

Forskning (SSF) through the Swedish Maritime Robotics
Center (SMaRC) (IRC15-0046).

REFERENCES

[1] M. Colledanchise and P. Ögren. How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and Decision Trees. IEEE
Transactions on Robotics, 33(2):372–389, April 2017.

[2] M. Colledanchise and P. Ögren. How Behavior Trees generalize
the Teleo-Reactive paradigm and And-Or-Trees. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 424–429, October 2016.

[3] Nils Nilsson. Teleo-reactive programs for agent control. Journal of
artificial intelligence research, 1:139–158, 1993.

[4] Rodney A Brooks. Elephants don’t play chess. Robotics and
autonomous systems, 6(1-2):3–15, 1990.

[5] Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Se-
quential composition of dynamically dexterous robot behaviors. The
International Journal of Robotics Research, 18(6):534–555, 1999.

[6] Damian Isla. Gdc 2005 proceeding: Handling complexity in the halo
2 ai. Retrieved October, 21:2009, 2005.

[7] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro No-
tomista, Koushil Sreenath, and Paulo Tabuada. Control barrier
functions: Theory and applications. In 2019 18th European Control
Conference (ECC), pages 3420–3431. IEEE, 2019.

[8] Paul Glotfelter, Jorge Cortés, and Magnus Egerstedt. Nonsmooth
barrier functions with applications to multi-robot systems. IEEE
control systems letters, 1(2):310–315, 2017.

[9] C. Paxton, N. Ratliff, C. Eppner, and D. Fox. Representing robot
task plans as robust logical-dynamical systems. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019.

[10] F. Rovida, B. Grossmann, and V. Krüger. Extended behavior trees
for quick definition of flexible robotic tasks. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 6793–6800, September 2017.

[11] F. Rovida, D. Wuthier, B. Grossmann, M. Fumagalli, and V. Krüger.
Motion Generators Combined with Behavior Trees: A Novel Approach
to Skill Modelling. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5964–5971, October
2018.

[12] Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Con-
trol barrier certificates for safe swarm behavior. IFAC-PapersOnLine,
48(27):68–73, 2015.

[13] Li Wang, Aaron Ames, and Magnus Egerstedt. Safety barrier cer-
tificates for heterogeneous multi-robot systems. In 2016 American
Control Conference (ACC), pages 5213–5218. IEEE, 2016.

[14] Thomas Gurriet, Andrew Singletary, Jacob Reher, Laurent Ciarletta,
Eric Feron, and Aaron Ames. Towards a framework for realizable
safety critical control through active set invariance. In 2018 ACM/IEEE
9th International Conference on Cyber-Physical Systems (ICCPS),
pages 98–106. IEEE, 2018.

[15] Gennaro Notomista, Sebastian F Ruf, and Magnus Egerstedt. Persisti-
fication of robotic tasks using control barrier functions. IEEE Robotics
and Automation Letters, 3(2):758–763, 2018.

[16] Anqi Li, Li Wang, Pietro Pierpaoli, and Magnus Egerstedt. Formally
correct composition of coordinated behaviors using control barrier
certificates. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3723–3729. IEEE, 2018.

[17] Mohit Srinivasan, Samuel Coogan, and Magnus Egerstedt. Control
of multi-agent systems with finite time control barrier certificates and
temporal logic. In 2018 IEEE Conference on Decision and Control
(CDC), pages 1991–1996. IEEE, 2018.

[18] David D Fan, Jennifer Nguyen, Rohan Thakker, Nikhilesh Alatur,
Ali-akbar Agha-mohammadi, and Evangelos A Theodorou. Bayesian
learning-based adaptive control for safety critical systems. arXiv
preprint arXiv:1910.02325, 2019.

[19] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick.
End-to-end safe reinforcement learning through barrier functions for
safety-critical continuous control tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3387–3395,
2019.

[20] Mohammad Javad Khojasteh, Vikas Dhiman, Massimo Franceschetti,
and Nikolay Atanasov. Probabilistic safety constraints for learned high
relative degree system dynamics. arXiv preprint arXiv:1912.10116,
2019.

[21] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics
and Al: An Introduction. CRC Press, 2018.

	I Introduction
	II Related work
	II-A Behavior Trees
	II-B Control Barrier Functions

	III Background
	III-A Control Barrier Functions
	III-B Behavior Trees

	IV Combining CBFs and BTs
	IV-A Nominal Design
	IV-B Simple example
	IV-C Recursive application of Lemma 1
	IV-D More complex Constraints

	V Persistent AUV coverage
	VI CONCLUSIONS
	References

