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Finite Data-Rate Feedback Stabilization of Continuous-Time Switched
Linear Systems with Unknown Switching Signal

Guillaume O. Berger and Raphaél M. Jungers

Abstract—In this paper, we study the problem of stabilizing
switched linear systems when only limited information about
the state and the mode of the system is available, which occurs
in many applications involving networked switched systems
(such as cyber-physical systems, IoT, etc.). First, we show that
switched linear systems with arbitrary switching, i.e., with no
constraint on the switching signal, are in general not stabilizable
with a finite data rate. Then, drawing on this result, we restrict
our attention to systems satisfying a fairly mild slow-switching
assumption, in the sense that the switching signal has an average
dwell time bounded away from zero. We show that under this
assumption, switched linear systems that are stabilizable in the
classical sense remain stabilizable with a finite data rate. A
practical coder—controller that stabilizes the system is presented
and its applicability is demonstrated on numerical examples.

I. INTRODUCTION

This paper studies two important and challenging features
of modern control systems: data-rate constraints and switch-
ing. Many modern control systems (such as IoT, networked
systems, etc.) involve spatially distributed components that
communicate through a shared, digital communication net-
work, that can carry only a finite amount of information per
unit of time. This limitation on the information flow can
have large negative effects on the performance of the control
loop. This has motivated a considerable amount of research
to study control problems subject to data-rate constraints, as
surveyed in [5], [13], [23]. On the other hand, many systems
encountered in practice involve switching between different
operation modes; e.g., due to the interaction of physical
processes and digital devices (as in cyber-physical systems),
external influences (e.g., human in the loop), discontinuous
dynamics (e.g., physical processes with impact), the nature of
the controller (e.g., logic-dynamic controllers), etc. Control
problems involving switching have also attracted a lot of
attention from the control community in recent years; see,
e.g., the surveys [8], [15], [18], and the references therein.

This paper focuses on the problem of limited data-rate
stabilization of continuous-time Switched Linear Systems
(SLSs). These are systems described by a finite set of linear
modes, among which the system can switch in time (see
Figure [I] for a representation). As paradigmatic examples of
hybrid and cyber-physical systems, SLSs naturally appear in
many engineering applications, or as abstractions of more
complex dynamical systems [6], [11], [16].
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Fig. 1. Control of switched linear systems over limited, digital communi-
cation networks.

Although control of switched systems and control with
data-rate constraints have been two active areas of research
for some time now, the study of control problems involving
switching and data-rate constraints simultaneously seems to
have not received much attention so far. (Some work has been
devoted to the stabilization of Markov jump linear systems
with data-rate constraints [12], [14], [20], [22]. However, the
information structure considered in these references implies
that the mode of the system is always known to the controller,
so that the problems of switching and state estimation with
limited information can be treated separately.) Combining
these two aspects in a unified framework is however essential
if we want to address control problems encountered in a
wide range of applications involving networked switched
systems, which generally imply that the controller has limited
information on both the state and the mode of the system.

When both state observation and switching signal obser-
vation are subject to data-rate constraints, the problems of
state estimation and switching are intrinsically coupled. For
instance, state encoding strategies must take into account
the fact that unobserved switching may occur during the
sampling interval. In particular, we will see that switched
systems with unconstrained switching signal have in general
an infinite stabilization entropy, meaning that they are not
stabilizable with any finite data rate. On the other hand, it is
a standard technique in stability and stabilizability analysis
of switched systems to impose slow-switching conditions—
generally described by a dwell time and/or an average dwell
time (ADT) [4], [8]—on the switching signal to reduce its
expressiveness. Recently, these techniques were used in the
context of limited data-rate control of SLSs [9], [19], [21].

Our work draws upon these references, especially [9], for
the formulation of the problem of interest, namely the sta-
bilization of SLSs under data-rate constraints and subject to
slow-switching assumptions. However, we consider different
objectives regarding the design of a control strategy with
finite data rate: while in [9], [19], [21], the ADT is used as



a design parameter to ensure stabilization of the system with
data-rate constraints, our goal here is to study the limited
data-rate stabilization of SLSs with arbitrary ADT.

The contribution of this paper is twofold. First, we show
that SLSs with no constraint on the switching signal, are in
general not stabilizable with a finite data rate. We present
an example of a SLS that is feedback stabilizable for any
switching signal in the absence of data-rate constraints, but
cannot be stabilized with a finite data rate. This motivates
the introduction of slow-switching assumptions in order to
make the problem of limited data-rate stabilization of SLSs
tractable, as otherwise the coder cannot transmit information
fast enough to the controller to achieve stabilization.

Secondly, we show that under a fairly mild slow-switching
assumption on the switching signal, SLSs that are stabilizable
in the classical sense remain stabilizable with a finite data
rate. More precisely, we show that any stabilizable (without
data-rate constraints) SLS with ADT bounded away from
zero can be stabilized by a coder—controller with finite data
rate. We present a sufficient upper bound on the data rate
depending on the system and the ADT, and we describe
the implementation of a coder—controller that stabilizes the
system. We stress out that in our analysis (unlike [9], [19],
[21]) the ADT is fixed, so that the controller has no influence
on the value of the ADT.

The paper is organized as follows. The problem of interest,
including the definition of SLSs, the basic assumptions on
the system and the concept of coder—controller, is formulated
in Section[lll Our main results are stated in Section[[TI} Then,
in Section we describe the implementation of a coder—
controller that stabilizes the system. Finally, in Section[V] we
illustrate the usage of the coder—controller with a numerical
example.

Notation. For vectors, ||| denotes the Euclidean 2-norm,
and for matrices it denotes the associated matrix norm (i.e.,
||[M]|| = largest singular value of M). B(&,r) is the closed
ball centered at £ € R? with radius r > 0. If f : A — B,
and A" C A, then f|4 denotes the restriction of f to the
domain A’. A function g : R>g — R>¢ is of class-K if it is
strictly increasing, continuous and ¢(0) = 0.

II. PROBLEM FORMULATION
A. Switched linear systems

Consider a continuous-time Switched Linear System (SLS)
with affine control input:

@(t) = Agyz(t) + Bypyu(t), x(0)€ K, t>0, (1)

where o(t) € ¥ == {1,..., N} and u(t) € R¢, A; € RIx4
and B; € R for all i € ¥, and K C R? is a compact
set with 0 € int(XK). The function o : R>g — X is called
the switching signal (or s.s. for short) and is assumed to be
piecewise constant and right-continuous.

The discontinuity points of o are called the “switching
times” or simply “switches”. For t > s > 0, we let N, (¢, s)
be the number of switches of o in the interval [s,t).

As we will see in Subsection SLSs under arbitrary
switching are in general not tractable for the problem of

stabilization with limited data rate. Therefore, in our analysis,
we make the assumption that the system is not switching too
fast, in the following sense:

Assumption 1: There is 7, > 0, called the Average Dwell
Time (ADT), and a constant Ny > 0 such that

t_
N,(t,s) < No+ —=

Vit >s>0.

a

The parameter Ny is fixed but not known by the controller
a priori.

The concept of ADT, introduced in [4], has become a stan-
dard assumption in the study of stability and stabilizability
of switched and hybrid systems [8], [16]. It has also received
attention in the context of control of switched systems with
limited information [9], [19], [21], [22].

Our goal is to stabilize (I) under data-rate constraints.
Clearly, a necessary condition is that the system is stabiliz-
able in the absence of data-rate constraints. Hence, we make
the following assumption on the stabilizability of (T):

Assumption 2: There is a feedback law ¢ : R4 x ¥ — R¢,
positively homogeneous in the 1st argument and piecewise
continuous, and constants D > 0 and p1, ue > 0 such that
(i) p1/74 < p2, and (ii) for every s.s. o, the solution of the
closed-loop system i(t) = A, )x(t) + Bogye(z(t),o(t))
satisfies

|z(t)|| < D|jz(0)]| e No B0ty >0, (2)

We assume that the feedback law ¢(-,-) and the parameters
D, 1, o are fixed and known by the controller.
Assumption 2] implies that the closed-loop system (T)) with
feedback control input u(t) = p(z(t),o(t)) is asymptot-
ically stable, for every s.s. satisfying Assumption [I] The
existence of a feedback control law satisfying (2) can be
ensured for instance if the system admits a multiple Control
Lyapunov Function (CLF) [8], [11]. An interesting situation,
on which we will come back in Subsection [[II-C| is when the
system admits a common CLF; in this case, @I) is satisfiable
with z11 = 0, so that Assumption 2] holds for any 7, > 0.

B. Coder—controller

We investigate the problem of stabilizing system (1) when
direct observation of the system is not possible. Information
about the mode and the state of the system will thus be
delivered by a coder connected to a controller via a digital
channel that can carry only a finite amount of information per
unit of time. The situation is depicted in Figure[I] At periodic
sampling times 1 = k7,, K = 0,1,2,3,..., the coder
observes the current state and mode of the system, and sends
one discrete-valued symbol e(T}), selected from a finite
coding alphabet &, to the controller. Neglecting transmission
errors and delay, at time 7}, the controller has the symbols
e(0),...,e(k) available and it generates a control input u(-)
for the coming epoch [T, Tk+1)-

More precisely, let 7, > 0 be a sampling period and
(Ex)ren a sequence of coding alphabets. The symbol sent
by the coder at time T}, := k7, is defined by

e(Ty) = w(x(To), - - ., o(Ty);0(To), ..., 0(Tk)),  (3)



where 73, : (RY)* x % — & is the coder function at time
T}, and x(-) is the state of the system. Assuming the channel
is noiseless and without delay, at time 7}, the controller has
the symbols e(7p), ..., e(T)) available and it generates the
input function u(-) defined on the interval [Ty, T;+1) by:

u() i1, 1rr) = Ce(e(To), - - - e(Tk)), 4)

where (i, : X ... x & — (R®)TxTk+1) is the controller
function at time T}, and it is assumed that u(-)|i7, 7, ,) i
integrable (i.e., L1). Let v = (Vi )ren and ¢ = (Ck)ren. The
pair (v, () is called a coder—controller.

At each time T}, the symbol e(T}) is transmitted via a
limited communication channel. Using binary representation
of the symbols, the averaged communication data rate (or
data rate for short) [in bits per unit of time] of the coder—
controller is given by

1 k—1
>, lomalél

In modern applications involving networked systems, the
communication capacity of the network is generally impor-
tant. However, there are usually many resources competing
for the same bandwidth (as for instance in IoT applications).
Therefore, it is essential to have coding—controlling strategies
with an averaged communication data rate as small as possi-
ble. The question of determining the smallest data rate that
is needed to achieve a given control task is also intriguing
from the theoretical point of view.

R(v,¢) = limsup
k—oc0

III. MAIN RESULTS
A. Finite data-rate stabilization

The control objective studied in this paper is the stabiliza-
tion of system (IJ), defined in Subsection[[I-A] under data-rate
constraints. More precisely, we want to show the existence
of a coder—controller, as described in Subsection [lI-B| with
finite data rate, that stabilizes the system:

Theorem 1: Consider system (1)) and let Assumptions
hold. There is a coder—controller (v, ¢) with R(7,¢) < oo
that satisfies the following properties there is A > 0 and a
class-KC function g(-) such that every trajectory z(-) of (I)
with control input u(-) defined by (3)-(@) satisfies

lz(®)] < g(llz(0)[l) e

We will provide a constructive proof of Theorem [I] More
precisely, in Section we describe the implementation of
a finite data-rate coder—controller achieving stabilization. A
precise upper bound on the data rate will be derived in due
course of the description of the coder—controller; see in
Section As for the decay rate ), it will be obtained in
the proof that the proposed coder—controller stabilizes the
system; see (I4) in Section The function g(-), however,
will not be explicitly characterized but its existence will be
demonstrated. As a class-KC function, g(-) satisfies g(r) — 0
when r» — 0. However, as it will be clear from the proof of

vt >0.

'A coder—controller that satisfies these properties will be said to
stabilize the system.

its existence, g(r) is not Lipschitz continuous at r = 0. This
lack of regularity is not due to potential sub-optimality of
the proposed coder—controller, or to the switching nature of
the system, but is intrinsic to any finite-data-rate stabilization
scheme for linear systems (including LTI systems); see for
instance [3, Proposition 2.2].

B. Necessity of the average dwell time

In this subsection, we would like to stress out the impor-
tance of Assumption E] in Theorem E} Therefore, we show
with a simple example that SLSs under arbitrary switching
(i.e., with ADT equal to zero) are in general not stabilizable
with a finite data rate:

Example 1: Consider system (I with d = 1, ¥ = {1, 2},
and matrices Ay = Ay = 0, By = —1 and By = 1. This
system is somehow the most basic affine-controlled SLS, and
it clearly satisfies Assumption 2] with p; = 0: for instance,
take (z(t),0(t)) = =B (t).

Proposition 2: System @ with As. and By, as in Exam-
ple [T] and under arbitrary switching, is not stabilizable by a
coder—controller with finite data rate.

Proof: Assume the contrary and let (v, () be a coder—
controller that stabilizes the system. For some 7" > 0 fixed,
let Uy be the set of all distinct input functions u(-) that can
be generated by the coder—controller, i.e., by —, on the
interval [0,7). Since R(7,() < oo, it follows that Uy is
finite, and by @]) Ur contains only L' functions.

Now, for each n € N, let o,,(+) be the s.s. that oscillates
between mode 1 and mode 2 with frequency 2/n: that is,
on(t) = 1if t € [0,1/n) + 2N/n, and 0, (t) = 2 if t €
[1/n,2/n)+2N/n. Then, by using an adaptation of the proof
of the Riemann-Lebesgue lemma [17, Corollary 14.5], one
can show that for any L' function f : [0,7") — R, it holds
that [ By, (1)f(t)dt — 0 when n — oo. Since Uz is finite,
this implies that for any € > 0, there is n € N5 such that
|fOT By, myu(t)dt| < e for all u € Ur.

Thus, for every u € Ur, |2(T)| > |2(0)| — e where x(-) is
a trajectory of (1) with s.s. o, and with input u. Since T and
¢ are arbitrary and K contains at least one point x(0) # 0
(since it has nonempty interior), this is a contradiction with
the hypothesis that (v, () stabilizes the system. ]

Summarizing, the above example shows that for the prob-
lem of limited data-rate stabilization of SLSs to be tractable,
the switching signal cannot switch too rapidly (or at least
not too rapidly during a too long period), as otherwise the
uncertainty on the mode of the system, and especially on
B,, between two transmission times (T}, T}1) will be so
large that the the system cannot be stabilized with a finite set
of inputs. This motivates the introduction of Assumption 1
which reduces the set of admissible switching signals by
restricting the number of switches in bounded intervals.

C. Comparison with other works

Our work is strongly connected with [9], [19], [21], where
the problem of limited data-rate stabilization of SLSs with
constraints on the ADT is also considered. The objectives
regarding the design of a control strategy with finite data



rate are however different. In [9], [19], [21], the sampling
frequency and the data rate of the coder—controller are fixed,
and the objective is to obtain a sufficient lower bound on the
ADT of the switching signal to ensure stabilization of the
system. In our work, however, we seek to obtain a coder—
controller, with suitable sampling frequency and data rate,
that stabilizes the system for any ADT such that Assump-
tion [2| holds. In particular, if Assumption [2| holds for every
T, > 0, then for any given value of the ADT, we describe
a coder—controller that stabilizes the system. By contrast, in
[9], [19], [21], even if the system admits a common CLF
(which implies that Assumption [2] holds for every 7, > 0;
see Subsection [[I-A), the lower bound on the ADT does not
converge to zero, even if the sampling frequency and the data
rate tend to infinity. The conservativeness of the lower bound
on the ADT proposed in [9], [19], [21] is mainly due to the
fact that its derivation is based on the decrease of a multiple
Lyapunov-like function for the sampled system. In particular,
the definition of this multiple Lyapunov-like function implies
that each change of mode causes a nonzero “jump” in the
value of the function; this results in nonzero lower bounds
on the ADT, even if the system admits a common quadratic
CLF; see, e.g., [9, Eq. (38)]. By contrast, our approach
relies on the convergence of a reference trajectory (by using
Assumption 2 and a suitable sampling frequency) and the
guarantee that the true state of the system does not stray
too far from the reference trajectory (thanks to a suitable
data rate); see Section below. Last but not least, another
difference of our framework with [9], [19], [21] is that we
do not impose any condition on the absolute dwell time of
the system.

IV. DESCRIPTION OF THE CODER—CONTROLLER

In this section, we describe the implementation of a coder—
controller that stabilizes system (1)) under Assumptions
The section is organized as follows. First, we discuss the
selection of the parameters of the coder—controller, which
depend on the system and the quantities appearing in As-
sumptions Then, we present the implementations of the
coder and the controller. Finally, we show that the proposed
coder—controller satisfies the assertions of Theorem [Il

A. Parameters definition
Let v = %maxieg Amax (4; + A;'—), and let
Ay = max [|A; — Ajfl, Az = max||B; — By.
Also, define
L=max{[lp(&d)]:i€Z, ¢ eRY, |i¢] =1},
Pick 75 > 0, « > 0 and n € N such that

DeH2nTs | oVnTs o -I-E(TL,TS) < e—unws/ra (3)

where (n, 75) = e/ 7, = D(Ag + AzL)H

2A strategy for choosing 75, «, n could be: first, choose Ts = n7s large
enough so that De(w1/Ta=n2)Ts < 1, Then, for this T, choose o, n such
that e”s o and e(n, Ts /n) are small enough for (§) to be satisfied.

We will need the following lemma:

Lemma 3: Let o > 0. There is an m-point quantizer () :
R? — Q C B(0, 1) satisfying (i) [|¢-Q(&) || < evif [|¢]| < 1,
(i) Q(&) = 0 if [|€]] < a/d"/?, and (iii)

d1/2 d
m=|9| <My = (2 Hﬂ —|—1> ) (6)
2«
where [-] is the rounding (to the nearest integer) operator.
Proof: See Appendix [ |

We will show that there is a coder—controller (v, ), with
sampling period 7, that stabilizes the system and operates
at data rate

101 . 1
RO3.0) = - | oming + 1 loga(n+ 1) + logs ]| )

S

where 7, is as in (6).
B. Coder implementation

Let 75, o and n be as above, and let () be the quantizer
associated to a as in Lemma [3| Also fix 7o > 0 such that
K C B(0, ro)E]The implementation of the coder is described
in Figure 2

The implementation deserves the following explanations.
At every time knts, k € N5, the coder computes the value

of N3 which is defined as the smallest integer in {0, ...,n}
such that 3, defined by
B :e“lN’zww—l—o’z—i—e’“Nsz,iwé (8)

where ¢ = De 12" § = """, & = "o, D(A; +
AyL), satisfies ||x(kns)| < Brri—1. We will see in Sub-
section that such an N}V always exists. Using this [y,
the coder updates the value of rj according to 7 = Brg—1-
If £ =0, simply use N§* = 0 and 7.

Using the above quantities, at time knrs, k € N, the coder
sends a symbol that encodes the following information: (i)
an approximation 7, of the current state x(kn7s) scaled by
1/rk, using the quantizer Q(-), (i) the current mode of the
system, o(knts), and (iii) the value of N;¥. Since 7 can
take at most 7i,, different values, o (knt,) at most || values,
and IV} at most n+1 different values, it holds that a coding
alphabet &y, of size log, M, + logy(n + 1) + logy|X| is
sufficient to encode the symbol e(kn7s). After this, at times
(kn+j)71s, 7 € {1,...,n—1}, the coder observes the current
mode of the system and sends a symbol that encodes this
mode. For this, a coding alphabet &, ; of size log,|X| is
sufficient. Hence, it follows that the averaged communication
data rate of the coder is equal to (7).

C. Controller implementation

Let 75, a and n be as in Subsection and Q(-) and
ro > 0 be as in Subsection The implementation of the
controller is described in Figure [3] See also Figure ] where
the different quantities appearing in the implementation of
the controller are represented.

3The assumption that the initial state of the system lays in a compact
set known from the coder—controller is made for convenience and simplicity
of the description of the coder—controller. This assumption can be removed
by using a “zooming-out” procedure as in [9].



Initialization: Let N§% = 0, and let ¢ be as in Subsec-

tion [V-Bl

Loop: at time kn7, for £k =0,1,2,...

o Observe z(knts) and o(knty).

o If k£ > 0: Let NV be the smallest integer in {0,...,n}
such that (3, defined by (8) with this N3V satisfies
||x(kn73)|| < Brri—1. Let r, = Brri—_1.

o Let n = Q(z(knts)/rr).

e Send a symbol e(knts) to the controller that encodes the
triple (ny, o(knts), N3V).

e Loop: at time (kn + j)7s for j =1,2,... ,n—1
— Observe o((kn + j)7s).

- Send a symbol e((kn + j)7s) to the controller that
encodes o((kn + j)7s).

Fig. 2. Coder implementation.

Initialization: Let N§™ = 0, and let 7y be as in Subsec-

tion [[V-Bl

Loop: at time kn7s for £ =0,1,2,...

« Receive symbol e(kn7s) and decode (ny, o(kn7s), N3¥).

o If & > 0: let §) be defined as in (§) with NV obtained
from the symbol, and let 7y, = Brrr_1.

o Let &y = rpms.

o For t € [knt,, (kn + 1)75): apply the input

u(t) = p(Tkn(t), o (knts))

where 2y, () is the solution of the auxiliary system (9)
with the boundary condition &, (kn7s) = &k, and with
i = o(knts).

o Loop: at time (kn + j)7s for j =1,2,...,
— Receive symbol e((kn + j)7,) and decode o((kn +

9)7s)-

- Let §pntj = Zontj—1((kn +5)7s).
— For t € [(kn + j)7s, (kn + j 4+ 1)7,): apply the input

u(t) = o((kn+j)7s))

where &y, (+) is the solution of the auxiliary system
(@) with the boundary condition &y, ; (kns) = kntj
and with ¢ = o((kn + j)7s).

n — 1.

(p(xkn-‘r] ( )

Fig. 3. Controller implementation.

The implementation deserves the following explanations.
At each time knT,, k € N, the controller receives the symbol
e(knts) that encodes 7, o(kns) and NiV. Based on this, it
is able to compute Sj, and 7, and thus to compute &g, which
is an approximation of the current state x:(knts). Then, on
the interval [kn7,, (kn + 1)7,), the controller simulates the
following auxiliary system:

ClAj(t) = Aii'(t) + Bi@(i'(t)’ i)a (9)

with the boundary condition Z(kn7s) = &k, and with i =
o(knts). Using the simulated trajectory, denoted by &, (-),
the controller applies on the system the control input defined
by U’(t) = Qp(i'kn(t)’ Z)

The same procedure is repeated for each j € {1,...,n —

70

Fig. 4. The different quantities involved in the implementation of the
controller. For this example, the coder—controller is applied on the system
#(t) = Bo(yyu(t), where By = —1 and By = 1, and with ¢(z,1) = =
and ¢(x,2) = —x/2. The switching signal o(-) is represented in black,
and the signal &(-) obtained from the sampled measurements o ((kn+j)7s)
(decoded from the symbols e((kn + j)7s)) is represented in green.

1}t Epnj is defined as &4 j—1((kn + j)7s). Then, on the
interval [(kn+ j)7s, (kn+j+1)7s), the controller simulates
the auxiliary system (9) with the boundary condition &((kn+
J)Ts) = Ekn+j and with ¢ = o((kn+j)7s), decoded from the
symbol e((kn+j7)7s); and it applies on the system the control
input defined by u(t) = @(&kn+;(t), 1) where &xp4;(-) is the
simulated trajectory.

D. Proof of the correctness of the coder—controller

In this subsection, we prove the correctness of the coder—
controller. Concretely, first we prove that for each £ € N,
there exists N € {0,...,n} such that 3 defined by (B)
with this NJ¥ satisfies ||z(kn7s)| < Bgrr—1. Secondly, we
prove that the coder—controller stabilizes the system. For the
sake of conciseness, in the following, we will sometimes use
the abbreviations ¢, = kn7s and Oy = [tk, tkt1)-

Proof of Part 1 (existence of N} ): For each j € N, let
bs be a boolean variable indicating whether or not the mode
of the system has changed at least once during the interval
[j7s, (5 + 1)7s): that is, b7 = 1 if No((§ + 1)7s,575) > 1,
and b5 = 0 otherwise. For keN,let Nf ="} s
Clearly, it holds that N} < min{n, Ny (txy1,tx) ﬁ» We will
show that NV < Nk—l (for all £ > 1).

Let 6(-) be the switching signal defined by 6(t) = o(j7s)
if t € [j7s,(j + 1)7s) with j € N (i.e., 6(-) is the “sample
and hold” of o(-) with period 75). Then, for every k € N,
it holds that f@k 1520 (t)dt < Nj7, where 15.,(-) is the
indicator function of the set {t > 0:6(t) # o(t)}.

Fix k € N, and let Z;(-) be the solution of the ODE

{ in(t) = Asy@n(t) + By p(@n(t), 6(t)),
ZTp(ty) = &pny, T € Op = [th, tpt1).
By Assumption [2} it holds that

|7k (t)]| < Dl|&enllerNe 12t Vi€ @ (10)

Moreover, by definition of gﬁkn+j(~) (see Subsection [[V-C),
it holds that for every j € {0,...,n—1}, Zgnt,(t) = Tx(¢)
when t € [(kn + j)7s, (kn + j + 1)7s).



Now, assume that ||z(t)|| < 7. We will use the above to
show that N7V, < ;. Indeed, by the definition of 7 and
Ekn, it holds that ||, || < r and ||x(tg) —Ekn || < arg. Thus,
by using a classical argument on the sensitivity of solutions
of ODEs w.r.t. initial conditions and system parameters (see
Lemma @] in Appendix [B), we get that

UNTg

l2(thg1) — Tr(trgr)|| < " arp+

/@ eV || AA)E () + AB(E)u(t)|| dt

where AA(t) = Aa(t) - A(}(t), AB(t) = Ba(t) - B&(t) and
u(t) = p(&r(t),5(t)) (u(t) is the input applied to the system
at time ¢). Combining the above with (I0) and the definition
of Ay, Ay, L, we obtain

Ja(tisr) = Eltrsn)l| < ™ art

e¥nTs / 1&760(t)(A1 —+ AQL)H-%k(t)H dt
O

(1)

Moreover, by (T0), ||Zx(trs1)| < DryettNe—#2n7 Hence,
combining with (1), we get that S;11, defined by () with
Np¥, = Ni, satisfies ||[z(tgr1)|| < Bryark.

To conclude the proof of Part 1: observe that since k € N
is arbitrary and since ||z(tx)|| < 7k holds true for k = 0 (by
definition of ry), we obtain, with an inductive reasoning, that
NP < Ny, < n holds true for every k € Nyq. |

Proof of Part 2 (stabilization property): By definition of
By and 7, it holds that for all k € N, ||z(t)|| < Bir, where
By = szl B, We will show that 5 — 0 geometrically as
k — oo. Indeed, by the definition @]) of f3,, it holds that for
all k£ € Ny,

B = e D= N T (4 e N a4 N
k swW
<em X NI (v +a+ N3ve).

< ¥ {ark + Ni7s (A + AQL)DTkeﬂlN;} .

From Jensen’s inequality,
_ o _ w1k
HZ:lW +a+ Nve) < [; 2521(1/’ +a+Ngve)|".

Thus, using the fact that NJ < Ny _; < N, (tg,t4-1) for
all ¢ € Ny (see Part 1), we obtain that for all k£ € N+,

B < (emiNateOp gk p = a4 NG (t, 0)z.

Now, by Assumption [I] and by condition (5), we have that
limsupy,_, .o ok < p < e~HMn7s/Ta where p is the left-hand
side term of (3)). On the other hand, by Assumption [I] again,
it holds that lim sup,, _, . e #No(kn7e.0) < guin7s/Ta  Thys,
there is C' > 0 such that for every k € N, g} < Ce H*
where

= p1/7e —log(p)/(nrs) > 0. (12)

It follows that for all k € N, |lz(t)| < roCe "' and the
same holds for [|€x,|| (since &gy, = reme and ||ng|| < 1).
Now, to obtain an upper bound on ||z(¢)||, observe that
from (I0), there is D’ > 0 such that for every k¥ € N,
|2k (t)|] < D'ry for all t € ©. Since ||p(Zk(t),d(t))] <
L||Zx(t)]|, it follows that ||u(t)|] < LD'ry for all t € ©y.

Thus, by a similar argument as in the proof of Lemma [4] and
since ||z(tg)|| < rg, there is D” > 0 such that for every
keN, ||z(t)]| < D"ry for all t € O. This shows that there
is C' > 0 such that

[z < C'e™#* Wi >0. (13)

Secondly, we claim that the system controlled by the
coder—controller is Lyapunov stable, meaning that there is
a class-K function h(-) such that every trajectory of (I)) with
input defined by @B)-@) satisfies ||z(¢)|| < h(]|z(0)]]) for all
t > 0. The proof of this claim is along the same lines as the
proof of [10, Theorem 1], and thus, omitted hereﬁﬂ

Finally, we combine the above Lyapunov stability property
with the exponential decay property (I3), to show that
the coder—controller stabilizes the system in the sense of
Theorem |1} Therefore, let A be any real such that

0< A< p, (14)

where p is as in (I2). It is readily seen that |z(t)|| =
(&)1 | (1) |MF < h(lla(0)[)1=Y/(C"ekt) M for all
t > 0. Hence, we get the desired property, taking g(r) =
h(r)1=>/nC" " which is clearly a class-KC function. This
concludes the proof of Part 2. [ ]

In this subsection, we have shown that the coder—controller
defined in Subsections was well defined and that
it satisfies the assertions of Theorem [I] In the next section,
we will demonstrate its practical applicability on a numerical
example.

V. NUMERICAL EXPERIMENTS

Consider the SLS with matrices A; = 0.1 =1.0 ,
_[-05 20

1.5 0.1
A B =|'. By =
2= | =1500p Y~ 1|72~

stabilizable, in the sense of Assumption E} via the feedback
law u(t) = K,z (t) with Ky = [ -0.43 - 0.43 ] and K5 =
[-0.38—-0.52], and with D =1, 3 = 0 and po = 0.15.

First, we have simulated the system with ADT 7, = 1.0 s.
We have used the values 7, = 0.008, o = 0.05 and n = 100
for the parameters of the coder—controller, which satisfy (5).
With these values of the parameters, the average data rate of
the coder—controller is of 145 bits/s. A sample execution of
the coder—controller, applied on the system with this ADT,
is represented in Figure [5}(top). We observe that the state of
the system converges to zero, as predicted.

Then, we have simulated the system with a smaller ADT,
namely 7, = 0.25 s. We have used the values 7, = 0.002,
a = 0.05 and n = 400 for the parameters of the coder—
controller, which satisfy (B). The average data rate of the
coder—controller is of 523 bits/s. A sample execution of the
coder—controller, applied on the system with this ADT, is
represented in Figure [5}(bottom). Again, we observe that the
sampled trajectory converges to zero, as predicted.

[ (1) } . This system is

“In fact, [10, Theorem 1] shows Lyapunov stability in terms of the
“e—0 definition”. The equivalence of the “e—§ definition” with the “class-xC
function definition” can be found in [7, Lemma 4.5], [2, Lemma 2.5].

SProperty (ii) in Lemrna and the fact that ¢(0,7) =0 forall : € &
are crucial here; see [10, Theorem 1].
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Fig. 5. Evolution of z(t) and u(t) for a sample execution of the coder—

controller applied on the system presented in Sectionm with different values
for the ADT. The black curve below the plot represents the switching signal.
The orange and red curves represent the trajectories Z(t) simulated by the
controller (see () to define the input u(t).

VI. CONCLUSIONS

In this paper, we have first shown that continuous-time
switched linear systems with arbitrary switching have in
general an infinite stabilization entropy, meaning that they
cannot be stabilized with any finite data rate. This motivated
the introduction of a fairly mild slow-switching assumption
on the system. This assumption requires that the switch-
ing signal has an average dwell time bounded away from
zero. Under this assumption, switching linear systems that
are stabilizable in the absence of data-rate constraints are
stabilizable by a coder—controller with finite data rate. We
have described the implementation of such a coder—controller
and demonstrated its applicability on a numerical example.
In future works, the question of potential improvement of
the data rate of the coder—controller will be investigated. As
a few examples, one could introduce the use of Lyapunov
functions, as in [9], [19], [21]; refine the analysis of the
propagation of reachable sets during sampling intervals, by
using tools from multilinear algebra, as in [1]; consider
additional assumptions on the system.
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APPENDIX
A. Proof of Lemma 3]

Let S = {—[1/8],...,[1/B]} where 8 = 2a/d'/?.
Clearly, |S| = 2[1/8] + 1. Then, define @' = 8S x...x 3S
(d times) and Q be the orthogonal projection of Q' on



B(0,1). Let Q(&) be defined as the closest point in Q to
&. Then, it is clear that Q(-) satisfies (i)—(iii).

B. A useful lemma

The following lemma is inspired from well-known results
on the sensitivity of solutions of ODEs to initial conditions
and system parameters (see, e.g., [7, Theorem 3.4]), with a
specific adaptation to the case of linear ODEs:

Lemma 4: Let x; : Rsg — R%, i = 1,2, be the solutions
of the respective ODEs

Zi(t) = Ai(t)zi(t) +wi(t), t>0, i=12,

where A;(t) € R™? and w;(t) € R for all t > 0. Let v
be such that v > 2 Anax(Ai(t) + A;(t) ") for all ¢ > 0 and
i € {1,2}. Then, it holds that

l21(t) — 22(t)l| < € [l21(0) — z2(0)| +

t
/ /)| AA(s)a(s) + Aus)]| ds,
0
where AA(s) = A1(s) — Aa(s), Au(s) = ui(s) — ua(s).

Proof: Let w(t) = x1(t) — z2(¢t) and h(t) = ||w(t)].
Then, (e "*h(t)) = —ve "'h(t)+ e~ w(t) Tw(t)]/h(t).
It holds that (for simplicity of notation, the dependence on
t is assumed implicitly)

U/Tli) = ’(1)—r [Alﬂfl — AQiL’Q + Uy — 'LLQ]

= w' [Ajw + AAzs + Aul
= %(wTAlw +w AT w) + w' (AAzy + Au)
< vllwll* + | AAzs + AullJw].

Injecting this in the expression of < (e~“*h(t)), we obtain
that for all ¢t > 0, $(e7"*h(t)) < |AAb)z2(t) + Au(t)].
The conclusion of the proof then follows by integration, and

multiplication by e"?. [
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