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Abstract— This paper focuses on a specific class of convex
multi-agent programs, prevalent in many practical applications,
where agents cooperate to minimize a common cost, expressed
as a function of the aggregate decision and affected by un-
certainty. We model uncertainty by means of scenarios and
use an epigraphic reformulation to transfer the uncertain part
of the cost function to the constraints. Then, by exploiting
the structure of the program under study and leveraging
on existing results in the scenario approach literature, and
in particular using the so called support rank notion, we
provide for the optimal solution of the program distribution-
free robustness certificates that are agent-independent, i.e., the
constructed bound on the probability of constraint violation
does not depend on the number of agents, but only on the
dimension of the agents’ decision. This leads to a significant
improvement as it substantially reduces the number of samples
required to achieve a certain level of probabilistic robustness
as the number of agents increases. Our certificates can be
used alongside any convex optimization algorithm centralised,
decentralised or distributed, to obtain an optimal solution of the
underlying problem. Our theoretical results are accompanied
by a numerical example that investigates the electric vehicle
charging problem and validates that the obtained robustness
certificate is independent of the number of vehicles in the fleet.

I. INTRODUCTION

A. Motivation

A vast amount of today’s challenges in the domains of
energy systems [1], [2], traffic networks [3], economics
[4] and the social sciences [5], [6] revolve around multi-
agent systems, i.e., systems which comprise different enti-
ties/agents that interact with each other and make decisions,
based on individual or collective criteria. Existing literature
provides a plethora of methods to solve such problems.
Each method is appropriately designed to fit the structure
of these interactions and the agents’ incentives. To address
challenges, related to the computational complexity issues
and privacy concerns of solving a multi-agent optimization
problem in a centralised fashion, several decentralised or
distributed coordination schemes have been proposed [7],
[8]. In the decentralised case, agents optimize their cost
function locally and then communicate their strategies to
a central authority that is responsible for the information
they exchange. In the distributed case, a central authority
is absent and agents communicate via a connected network
usually with their local objective functions and local decision
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sets only known to them. In most practical applications,
the presence of uncertainty in such problems constitutes a
critical factor that, if not taken into account, could lead to
unpredictable behaviour. As such, it is of major importance to
accompany the solutions of such algorithms with robustness
certificates that can mitigate the effects of uncertainty.

In this paper we focus on a specific class of multi-
agent optimization programs, where the agents’ strategies
are subject to constraints separable among agents and cou-
pled via a common convex cost that is a function of the
aggregate decision. This formulation has been considered in
[9] and is extended to our set-up to account for the case,
in which the cost function is affected by uncertainty. As in
[9] the constraints of each agent are of deterministic nature.
Problems whose structure shares similarities with ours have
been considered in [10], [11], [12], though under a purely
deterministic and competitive set-up. In our case, the sample
set and probability distribution of the uncertain parameter are
considered unknown, which urges us to adopt a data-driven
approach, where the uncertainty is represented by means of
scenarios that could be either available as historical data,
or extracted via some prediction model. Working under the
theoretical framework of the so called scenario approach
[13], [14], [15] and based on the results of [16], we aim
at improving the probabilistic guarantees that the optimal
value of the cost will not escalate after the occurrence of
a new yet unseen uncertainty realisation. This is achieved
by transferring the uncertain part of the cost function to the
constraints, using an epigraphic reformulation and providing
feasibility probabilistic guarantees for the optimal solution of
this equivalent problem. Our choice for using the scenario
approach instead of other available techniques lies in the
fact that it is a distribtion-free methodology, i.e., it requires
no knowledge of the uncertainty set or the probability
distribution, unlike robust [17] and stochastic optimization
[18], where this information is necessary.

In [19] it is shown that the number of support constraints/
support samples (at the core of the scenario approach theory)
of a convex optimization problem, can in turn be bounded
by the dimension of the optimization variable. This fact
is then used to provide probabilistic feasibility guarantees
for the optimal solution in an a priori fashion. In [16]
a tighter bound is offered exploiting the property that, in
many cases of practical interest, a random constraint may
leave a subspace of the decision space unconstrained for
all uncertainty realizations. As such, [16] introduces the
concept of the support rank, obtained by removing from
the problem’s dimension the dimension of the maximal



unconstrained subspace.

B. Contributions

The main contributions of this paper are as follows:

1) Leveraging the results in [16], we construct an upper
bound for the number of support samples shown to be
agent independent, i.e., it only depends on the dimen-
sion n of agents’ decision vectors and does not change
as the number of agents N increases. Specifically, we
show that the support rank of the random constraint can
be upper bounded by the quantity n+ 1. This refined
bound constitutes a major improvement for this class
of problems, when compared with the bound of the
problem’s dimension nN + 1 provided by the classic
results in the scenario approach [19].

2) An immediate consequence of our main result is that
the number of samples required to provide identi-
cal probabilistic guarantees with the classic scenario
theory, is substantially less as the number of agents
increases. This is of crucial importance in large-scale
applications, where a large number of agents is present.

A similar claim that agent independent bounds could be de-
rived for a class of games with structure similar to that of our
optimization problem, was conjectured in [20], [21]. Therein,
by adopting a variational inequalities approach, the authors
provide probabilistic guarantees for the Nash equilibria of a
game affected by uncertainty. The developed a priori bound,
is agent dependent and equal to the dimension of the problem
under study nN+1. To the best of our knowledge, this is the
first time that agent independent robustness certificates are
provided for optimization programs of this class.

The rest of the paper is organized as follows: Section
II introduces the problem under study and presents our
motivating example, i.e., the electric vehicle charging control
problem. Section III contains the theoretical analysis and
proof of the main results, namely, providing agent indepen-
dent distribution-free probabilistic guarantees for the class of
problems under study. Section IV provides a numerical study
for the electric vehicle application introduced in Section II.
Finally, Section V concludes the paper and provides some
potential future research directions.

II. PROBLEM STATEMENT

A. Robust optimization programs with uncertain cost

Let N = {1, . . . ,N} be the index set of all agents, where
N denotes their total number and xi the strategy of agent
i taking values in the deterministic set Xi ⊆ Rn. We denote
x= (xi)i∈N ∈X =∏

N
i=1 Xi⊆RnN the collection of all agents’

strategies. The cost function is affected by an uncertainty
parameter θ defined on the (possibly unknown) probability
space (Θ,F ,P), where Θ is the sample space, equipped with
a σ -algebra F and a probability measure P. The vector x−i =
(x j) j∈N , j 6=i ∈ ∏

j∈N , j 6=i
X j ⊆Rn(N−1) denotes the collection of

the decision vectors of all other agents’ strategies except
for that of agent i. The symbols x and (xi,x−i) are used

interchangeably in this paper, depending on the context.
Finally, define {θm}m∈M ∈ΘM , where M = {1, . . . ,M} as a
finite collection of M independent and identically distributed
(i.i.d.) scenarios/realisations of the uncertain vector θ , where
ΘM is the cartesian product of multiple copies of the sample
space Θ.

We consider the following program:

P : min
{xi∈Xi}i∈N

J(x), (1)

where J(x) = f (x)+max
θ∈Θ

g(x,θ) and f : X→R, g : X×Θ→
R is the deterministic and the uncertain part of the cost
function, respectively. In addition, we impose the following
standing assumption

Assumption 1: 1) The deterministic part f is jointly
convex with respect to all agents’ decision vectors, and
the sets Xi are nonempty, convex and compact for any
i ∈N .

2) The uncertain part g takes the aggregative form

g(x,θ) = ∑
i∈N

gi((xi,x−i,θ), where

gi(xi,x−i,θ) = xT
i (A(θ)σ(x)+b(θ)).

Note that σ : X → Rn is a mapping (xi)i∈N 7→ ∑
i∈N

xi

and A : Θ→Rn×n, b : Θ→Rn are uncertain mappings
with A(θ)< 0 and A(θ) = AT (θ) for all θ ∈Θ.

Under Assumption 1 the function J is convex, as the point-
wise maximum of a countable number of convex functions
is itself a convex function [22]. From Assumption 1.2 the
uncertain counterpart of the cost function under study takes
the form

g(x,θ) = σ(x)T (A(θ)σ(x)+b(θ)).

Since g is convex, using an epigraphic reformulation we
recast P to the equivalent semi-infinite program

P
′
: min
{xi∈Xi}i∈N ,γ∈R

f (x)+ γ

subject to h(x,γ,θ)≤ 0, ∀ θ ∈Θ, (2)

where h(x,γ,θ) = g(x,θ)−γ . Note that lifting the dimension
of the problem by one by introducing the epigraphic variable
γ , allows moving the uncertain part from the cost function
to the constraints. In addition, if (x∗,γ∗) is the optimal
solution of problem P

′
, then x∗ is the optimal solution of

the original problem P. Due to the presence of uncertainty
and the (possibly) infinite cardinality of Θ, problem P

′

is very difficult to solve, without imposing any further
assumptions on the geometry of the sample set Θ and/or
the underlying probability distribution P. To overcome this
issue, we adopt the scenario approach [23], which involves
drawing a finite number of samples from the sample set
Θ and forming an optimization program subject to a finite
amount of constraints. This program, known in the scenario
approach literature as a scenario program, constitutes an
approximation to the original semi-infinite program P

′
. In

addition, it circumvents the challenges of its semi-infinite



counterpart. The corresponding scenario program of the
uncertain semi-infinite program P

′
is thus given by

P
′
SC : min

{xi∈Xi}i∈N ,γ∈R
f (x)+ γ

subject to h(x,γ,θm)≤ 0, ∀ m ∈M , (3)

where {θm}m∈M ∈ΘM are i.i.d. multi-samples of cardinality
M.

The proposed structure captures a wide class of engi-
neering problems. A notable application that constitutes our
motivating example is the electric vehicle (EV) charging
problem detailed in the next subsection.

B. Example: Electric vehicle charging control

Let xi = (x(t)i )n
t=1 denote the charging schedule of each

electric vehicle i over a charging period of duration n.
The electricity price is considered to be a random vari-
able affected by uncertainty. All electric vehicles cooperate
with each other choosing their charging schedules so as to
minimize the total electricity cost, while satisfying certain
imposed constraints. Taking all these aspects into account,
we consider the following uncertain electric vehicle charging
problem

PEV : min
x∈RnN

f (x)+max
θ∈Θ

g(x,θ),

subject to xi ∈ [xi,xi],
n

∑
t=1

x(n)i ≥ Ei, for all i ∈N , (4)

where f (x) = ∑
i∈N

fi(xi,x−i) = σ(x)T p0(σ(x)) is the deter-

ministic part of the electricity cost that depends on a nominal
electricity price p0(σ(x)) = A0σ(x) + b0 that is, in turn,
a function of the aggregate consumption of the vehicles.
Respectively, g(x,θ) = ∑

i∈N
gi((xi,x−i,θ) = σ(x)T p(σ(x),θ)

constitutes the uncertain part of the electricity cost, where the
price p(σ(x),θ) = A(θ)σ(x)+b(θ) is additionally affected
by the uncertain parameter θ extracted from the support set Θ

according to a probability distribution P, where Θ and P are
considered unknown. Both A0,A(θ) ∈ Rn×n are symmetric
positive semi-definite matrices and b0,b(θ) ∈ Rn for any
θ ∈Θ. The vectors xi,xi ∈Rn constitute the lower and upper
bound of the charging rate of vehicle i ∈N , respectively,
while Ei ∈ R is the final energy to be achieved by each
vehicle i ∈N by the end of the charging cycle.

Following the same lines as in Section II-A, we apply an
epigraphic reformulation to obtain the following equivalent
semi-infinite program

P
′
EV : min

(x,γ)∈RnN+1
f (x)+ γ,

subject to xi ∈ [xi,xi],
n

∑
t=1

x(n)i ≥ Ei for all i ∈N ,

g(x,θ)≤ γ for all θ ∈Θ. (5)

Since electricity price volatility is an outcome of a variety of
unpredictable factors, such as the cost of fuels, the operating
cost of power plants, the maintenance of transmission and

distribution networks and the weather conditions, it is very
difficult to address the problem using traditional probabilistic
approaches. We thus adopt a scenario-based scheme. For the
convenience of the reader, some basic concepts related to
the scenario approach are introduced in the next subsection,
appropriately adapted to fit in our context.

III. AGENT INDEPENDENT PROBABILISTIC FEASIBILITY
GUARANTEES

A. Basic concepts in the scenario approach
The concept of the support sample and support constraint

is at the core of the scenario approach and is defined as
follows.

Definition 1: (Support Sample/ Support Constraint [19])
Fix any i.i.d. multisample {θm}m∈M ∈ ΘM and let x∗0 =
x∗0({θm}m∈M ) be the unique optimal solution of the scenario
program, when all the M samples are taken into account. Let
x∗−s = x∗−s({θm}m∈M \ θs) be the optimal solution obtained
after removal of sample θs. Then, if x∗0 6= x∗−s we say that
the sample θs is a support sample. The constraint that corre-
sponds to the support sample is called a support constraint.

We introduce the following assumption:
Assumption 2: (Adapted from [16])
1) For each multi-sample {θm}m∈M , the scenario pro-

gram P
′
SC admits a feasible solution.

2) The optimal solution (x∗,γ∗) of the scenario program
P
′
SC is unique.

Note that in case multiple optimal points exist, one can use
a convex tie-break rule to select a unique solution.

In many practical applications there are cases where a
random constraint may leave a linear subspace unconstrained
for any possible sample θ ∈ Θ. This observation motivated
the concept of the support rank as introduced in [16]. The
notion of the support rank is presented formally in Definition
2. Let y ∈Y⊆Rd , where d is the dimension of the decision
vector y. Consider the following semi-infinite optimization
program

min
y∈Y

cT y

subject to l(y,θ)≤ 0, ∀ θ ∈Θ. (6)

Denoting the collection of all the linear subspaces as L ,
we consider all the linear subspaces L ∈L that, under the
presence of the random constraint (6), remain unconstrained
for any uncertainty realization θ ∈ Θ and any point y ∈ Y ,
i.e., the set

U =
⋂

θ∈Θ

⋂
y∈Y
{L ∈L : L⊂ F(y,θ)},

where F(y,θ) = {ξ ∈ Rd : l(y+ξ ,θ) = l(y,θ)}.

Definition 2: (Support rank [16])
The support rank ρ ∈ {0, . . . ,d} of a random constraint
equals to the dimension of the problem d minus the dimen-
sion of the maximal1 unconstrained linear subspace Lmax, i.e,
ρ = d−dim(Lmax).

1By maximal unconstrained subspace we mean the unique maximal
element Lmax ∈U for which L⊆ Lmax, for all L ∈U .



From the support rank lemma (see Lemma 3.8 in [16])
we have that Helly’s dimension can be upper bounded by
the support rank instead of the dimension d of the problem,
which is a more conservative but useful upper bound [19],
i.e, ζ ≤ ρ ∈ {0, . . . ,d}. Keeping this relation in mind, our
main goal is to obtain a bound for the support rank for the
problem P

′
, thus improving the robustness certificates of its

optimal solution.

B. Bounding the support rank

The following proposition, which together with Theorem
1 constitute the main results of this paper, aims at finding an
upper bound for the support rank ρ of the random constraint
(2), that is independent from the number of agents involved
in the optimization program.

Proposition 1: Under Assumption 1, the support rank ρ

of the random constraint (2) in P
′
, has an agent-independent

upper bound, and in particular, ρ ≤ n+1.
Proof: The dimension of the problem under study is

d = nN +1, due to the presence of the epigraphic variable.
Let L be the collection of all linear subspaces in RnN+1. We
aim at finding the dimension of the subspace that remains
unconstrained for a scenario program subject to the random
constraint h(x,γ,θ) ≤ 0 for any uncertain realisation θ ∈ Θ

and any decision vector (x,γ) ∈ X ×R. We first define the
collection of linear subspaces that are contained in all the
sets F(x,γ,θ):

U =
⋂

θ∈Θ

⋂
(x,γ)∈RnN+1

{L ∈L : L⊂ F(x,γ,θ)},where

F(x,γ,θ) ={(ξ ,ξ ′) ∈ RnN+1 :
h(x+ξ ,γ +ξ

′,θ) = h(x,γ,θ)}

In our case, h(x+ξ ,γ +ξ ′,θ) = h(x,γ,θ) yields:

σ(x+ξ )T (A(θ)σ(x+ξ )+b(θ))− (γ +ξ
′) =

= σ(x)T (A(θ)σ(x)+b(θ))− γ,

⇐⇒ σ
T (x)A(θ)σ(ξ )+σ

T (ξ )A(θ)σ(x)+

σ
T (ξ )A(θ)σ(ξ )+σ

T (ξ )b(θ)−ξ
′ = 0,

⇐⇒ σ
T (ξ )AT (θ)σ(x)+σ

T (ξ )(A(θ)σ(x)+b(θ))+

σ
T (ξ )A(θ)σ(ξ )−ξ

′ = 0,

where the first equivalence stems from the fact that σ(x+
ξ ) is linear with respect to its arguments, and the second
one after some algebraic rearrangement. Note that each of
the terms above is scalar, which means that it is equal to
its transpose ∀ x ∈ X and θ ∈ Θ, while by Assumption 1,
AT (θ)=A(θ) for any uncertainty realization θ ∈Θ. As such,

σ
T (ξ )(2A(θ)σ(x)+b(θ))+σ

T (ξ )A(θ)σ(ξ )−ξ
′ = 0.

(7)

Using the equalities σT (ξ )(2A(θ)σ(x) + b(θ)) = (11×N ⊗
(2A(θ)σ(x)+b(θ))T )ξ and σT (ξ )A(θ)σ(ξ ) = ξ T (1N×N⊗
A(θ))ξ , where 11×N denotes a row vector with all elements

being equal to one and ⊗ denotes the Kronecker product,
(7) can be written in the following form:

(11×N⊗ (2σ
T (x)A(θ)+bT (θ)))ξ+

ξ
T (1N×N⊗A(θ))ξ −ξ

′ = 0, (8)

Let C̃ : X ×Θ→ RnN , Ã : Θ→ RnN×nN C̃(x,θ) = 11×N ⊗
(2σT (x)A(θ) + bT (θ)) and Ã(θ) = 1N×N ⊗ A(θ), respec-
tively. Then, equation (8) can be written as:

C̃(x,θ)ξ +ξ
T Ã(θ)ξ −ξ

′ = 0,

⇐⇒
(
C̃(x,θ) −1

)(ξ

ξ ′

)
+
(
ξ ξ ′

)( Ã(θ) 0nN×1
01×nN 0

)(
ξ

ξ ′

)
= 0,

⇐⇒V (x,θ)w+wT P(θ)w = 0,

where, V (x,θ) =
(
C̃(x,θ) −1

)
, P(θ) =

(
Ã(θ) 0nN×1
01×nN 0

)
and w =

(
ξ

ξ ′

)
. We need to find an unconstrained linear

subspace that is a subset of F(x,γ,θ). As such, we define

L(x,γ,θ) = {w ∈ RnN+1 :
(

P(θ)
V (x,θ)

)
w = 0}.

We can easily see that L(x,γ,θ) ⊂ F(x,γ,θ). As such, the
random constraint h(x,γ,θ) ≤ 0 cannot constrain any of
the dimensions of L(x,γ,θ), which for simplicity we also

denote as L. Let Q(x,γ,θ) =
(

P(θ)
V (x,θ)

)
. Then L(x,γ,θ) =

nullspace(Q(x,γ,θ)) and from nullity-rank theorem we
have that dim(L(x,γ,θ)) = nN + 1− rank(Q(x,γ,θ)). Since
rank(P(θ)) = n and rank(V (x,θ)) = 1, this means that
rank(Q(x,γ,θ))= n+1, which implies that dim(L(x,γ,θ))=
nN + 1− (n + 1). Notice that the unconstrained subspace
that we chose may not be the maximal one, i.e., the linear
subspace Lmax ∈U for which L⊆ Lmax for any L ∈U (see
Definition 2 for a formal definition of Lmax). This means
that the support dimension is ρ = nN + 1− dim(Lmax) ≤
nN +1−dim(L) = n+1.

An immediate consequence of Proposition 1 when combined
with Theorem 4.1 of [16] is the following theorem.

Theorem 1: Let (x∗,γ∗) denote the optimal solution of the
scenario program P

′
SC. Under Assumptions 1 and 2 we have

that

PM{{θm}m∈M ∈Θ
M :

P(θ ∈Θ : h(x∗,γ∗,θ)> 0)> ε} ≤ β , (9)

where β =
n

∑
j=0

ε
j(1− ε)M− j. (10)

The bound obtained from Theorem 1 constitutes a major
improvement for this class of problems, since, irrespective
of the number of agents N, the same number of samples M
is required to provide identical robustness certificates for a
given decision vector size of n. The proof of this theorem,
is a direct application of the scenario approach theory (see



Theorem 2.4 in [19], and Theorem 4.1 in [16], where the
number of support support constraints is replaced by the
obtained bound for the support rank, namely, n+ 1). Note
that in the absence of Proposition 1, direct application of
the scenario approach theory [19] to the problem under
consideration would result in (9), however, (10) would be
replaced by

β =
nN

∑
j=0

ε
j(1− ε)M− j. (11)

The following corollary connects our results with the initial
problem under study P. It shows that the guarantees that
the optimal solution of problem P

′
will satisfy a new yet

unseen constraint of the form (2), corresponding to θ ∈Θ. In
other words, we can quantify the probability that the optimal
value of the cost function of the program P will deteriorate
when a new sample is encountered. With a small abuse
of notation let J(x) = J(x,{{θm}m∈M ) be the cost function
of the corresponding scenario program of program P and
J+(x) = J(x,{{θm}m∈M ∪{θ}) be the cost function defined
over M+1 scenarios by taking into account the new sample
θ .

Corollary 1: Let x∗ denote the optimal solution of pro-
gram P. Under Assumptions 1 and 2 we have that

PM{{θm}m∈M ∈Θ
M :

P(θ ∈Θ : J+(x∗)> J(x∗))> ε} ≤ β , (12)

where β =
n

∑
j=0

ε
j(1− ε)M− j. (13)

Proof: Let (x∗,γ∗) be the optimal solution of program
P
′
, which implies that γ∗ = max

m∈M
g(x∗,θm). As such,

P(θ ∈Θ : h(x∗,γ∗,θ)> 0) = P(θ ∈Θ : g(x∗,θ)> γ
∗) =

P(θ ∈Θ : g(x∗,θ)> max
m∈M

g(x∗,θm)) =

P(θ ∈Θ : max{g(x∗,θ), max
m∈M

g(x∗,θm)}> max
m∈M

g(x∗,θm)) =

P(θ ∈Θ : J+(x∗)> J(x∗)), (14)

where the second equality follows from the fact that γ∗ =
max
m∈M

g(x∗,θm), and the last one from the definitions of J and

J+. Direct substitution of (14) in (9) of Theorem 1, concludes
then the proof.

IV. NUMERICAL RESULTS

We apply our results to the electric vehicle charging prob-
lem, introduced in Subsection II-B. Approximating problem
P
′
EV by sampling, gives rise to its corresponding scenario

program

Psc
EV : min

(x,γ)∈RnN+1
f (x)+ γ

subject to xi ∈ [xi,xi],
n

∑
t=1

x(n)i ≥ Ei, for all i ∈N ,

g(x,θm)≤ γ, for all m ∈M . (15)

Each A(θm) ∈ Rn×n, is considered to be a diagonal matrix,
whose elements {a(θm)},m ∈M are extracted according

to a lognormal distribution, normalised with respect to the
number of agents. The elements of b(θm) ∈ Rn follow a
uniform distribution, as in [21]. For each agent i ∈ N ,
the upper bound xi takes a random integer value in the
set [15,25], the lower bound xi is set to zero and the final
energy to be achieved by the end of the charging cycle is
chosen as reported in [21]. The diagonal entries of A0 =
diag({at}n

t=1) ∈Rn×n and b0 are derived by rescaling a win-
ter weekday demand profile in the UK. The scenario program
Psc

EV is solved in a centralised manner. It is important to stress
that our results are not restricted only to centralised versions
of optimization algorithms and can in fact be used alongside
any optimization algorithm irrespective of its nature, i.e.,
centralised, decentralised or distributed. We fix the number
of time-steps to n = 12, and solve the scenario program for
different values of the number of agents N ∈ {2,4, . . . ,20}.
The number of samples we use for each problem is M = 500.
By fixing β = 10−6 and using the bound

ε =
2
M
[ln

1
β
+nln2], (16)

which is a sufficient condition (see [23]) for satisfaction of
(10), we obtain the theoretical violation level ε = 0.0885.
Note that the dimension we use to provide probabilistic
guarantees for the optimal solution is set, in accordance to
Theorem 1 to n+1 instead of nN+1, which circumvents the
computational issues related to the rapid surge in dimension
due to the multiplication of the number of agents with the
number of time slots.

By drawing a different multi-sample for each choice of
the number of agents N = {2,4, . . . ,20}, we solve the corre-
sponding scenario program for a fixed number of time slots
n = 12. We then repeat this process 25 times (note that the
multi-sample used for each repetition is also different) and
compute the empirical probability of violation of the obtained
optimal solutions, using Mtest = 100000 test samples each
time. The mean empirical probability of violation is depicted
in Figure 1 in comparison with the theoretical violation level
ε . The empirical values are always below the theoretical
level of violation, which is constant with the number of
agents due to the agent independent nature of our Theorem
1. In addition, the trend in Figure 1 shows, as expected
by Theorem 1, that number of agents does not affect the
empirical probability of violation.

This result highlights the fact that, given a specified
charging duration, the number of samples M required to
provide identical probabilistic guarantees, as the size of the
fleet of electric vehicles increases, remains constant. This is
illustrated in Figure 2, where we show the number of samples
required using the results of Theorem 1 versus the number of
samples needed to provide the same robustness certificates
using the classic results in scenario approach for a different
number of agents N = 2, . . . ,20. Solid lines correspond to
Theorem 1, while dashed-dotted lines correspond to (11). We
consider two different cases for the duration of the charging
cycle, namely, n = 12 and n = 24 hours.
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Fig. 1. Mean empirical probability of violation of the optimal solution
with respect to the number of agents versus the theoretical violation level
ε = 0.0885. The number of samples used is M = 500 and the confidence
level is β = 10−6. By drawing a different multi-sample for each choice
of the number of agents N = {2,4, . . . ,20}, we solve the corresponding
scenario program for a fixed number of time slots n = 12. We then repeat
this process 25 times (note that the multi-sample used for each repetition
is also different) and compute the empirical probability of violation of the
obtained optimal solutions, using Mtest = 100000 test samples.
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Fig. 2. The number of samples required with respect to the number of
agents N = 2, . . . ,20 using the results of Theorem 1 versus the one that
would have been obtained if (11) is used instead. Solid lines correspond to
Theorem 1, while dashed-dotted lines correspond to (11). We consider to
different cases for the duration of the charging cycle, namely, n = 12 and
n = 24 hours.

V. CONCLUDING REMARKS

Focusing on a specific class of optimization programs, we
provided agent independent probabilistic guarantees for the
optimal solution in an a priori fashion. The importance of
this result is better shown in the context of the EV-charging
control problem, where significantly improved robustness
certificates are obtained for the optimal solution returned by
any convex optimization algorithm. The numerical study sup-
ports our results as it shows that, irrespective of the number
of agents, the same number of samples are required to offer
probabilistic feasibility guarantees of the same quality.

Effort is being made towards extending our results to
provide agent independent probabilistic guarantees for Nash
equilibria of a certain class of games affected by uncertainty,
as well as on investigating a more general case, where each

agent participating in the game has a different uncertain
function in her cost.
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