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Abstract— A multi-agent coverage problem is considered with
energy-constrained agents. The objective of this paper is to
compare the coverage performance between centralized and de-
centralized approaches. To this end, a near-optimal centralized
coverage control method is developed under energy depletion
and repletion constraints. The optimal coverage formation
corresponds to the locations of agents where the coverage
performance is maximized. The optimal charging formation
corresponds to the locations of agents with one agent fixed
at the charging station and the remaining agents maximizing
the coverage performance. We control the behavior of this
cooperative multi-agent system by switching between the opti-
mal coverage formation and the optimal charging formation.
Finally, the optimal dwell times at coverage locations, charging
time, and agent trajectories are determined so as to maximize
coverage over a given time interval. In particular, our controller
guarantees that at any time there is at most one agent leaving
the team for energy repletion.

I. INTRODUCTION
Systems consisting of cooperating mobile agents are often

used to perform tasks such as coverage [1], [2], [3], [4],
surveillance [5], monitoring and sweeping [6]. A coverage
task is one where agents are deployed so as to cooperatively
maximize the coverage of a given mission space [7], where
“coverage” is usually measured through the joint detection
probability of random events [8]. Widely used methods to
solve the coverage problem include distributed gradient-
based [1] and Voronoi-partition-based algorithms [9]. These
approaches typically result in locally optimal solutions,
hence possibly poor performance. To escape such local
optima, a boosting function approach is proposed in [10]
where the performance is ensured to be improved. Recently,
the coverage problem was also approached by exploring the
submodularity property [11] of the objective function, and
a greedy-gradient algorithm is used to guarantee a provable
bound relative to the optimal performance [12].
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In most existing coverage problem settings, agents are
assumed to have unlimited on-board energy to perform the
coverage task. However, in practice, battery-powered agents
can only work for a limited time in the field [13]. For ex-
ample, most commercial drones powered by a single battery
can fly for only about 15 minutes. Developing distributed
algorithms for multi-agent systems with energy constraints
is considered in [14], [15], [16], [17]. A consensus algorithm
is proposed in [17] to make multiple robots with energy
constraints quickly reach a rendezvous point. Unlike other
multi-agent energy-aware algorithms in the aforementioned
references whose purpose is to reduce energy cost, we
assume that a charging station is available for agents to
replenish their energy according to some policy. We take into
account such energy constraints and add another dimension
to the traditional coverage problem. The basic setup is similar
to that in [1]. Agents interact with the mission space through
their sensing capabilities which are normally dependent upon
their physical distance from an event location. Outside its
sensing range, an agent has no ability to detect events. The
objective is to maximize an overall environment coverage
measure by controlling the movement of all agents in a
centralized manner while guaranteeing that no agent runs
out of energy while in the mission space.

A decentralized feasible solution to this problem is pro-
posed in [18] via a hybrid system approach. Due to the
decentralized nature of the algorithm in [18], agents have
limited local information. Therefore, the performance is also
degraded by the information inaccessibility. This raises the
question of what would be the “best” performance when
all information is available, which motivates us to study
the coverage problem via a centralized approach. Therefore,
we revisit the same problem formulation as in [18]. The
objectives are to find the optimal centralized solution for
multi-agent coverage problems and to characterize the “price
of decentralization”. To this end, we assume that the envi-
ronment to be monitored is completely known. Then, the
optimal coverage (OCV) locations of the agents while none
of them needs recharging can be found through distributed
gradient-based algorithms [1], or improved versions such as
the greedy-gradient based algorithm in [12], especially when
obstacles are present. When an agent needs recharging, it will
head to the charging station. If the agent still performs the
coverage task at the charging station, the OCV locations for
the remaining agents can be found using the aforementioned
approaches. The optimal locations for all agents in this
case are referred to as “optimal charging (OCH) formation”.
Therefore, every agent’s behavior is to switch between the
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OCV formation and the OCH formation. The missing piece
for the overall optimality is to determine the optimal way
to manage the transient behavior between these two modes.
However, this turns out to be a challenging task. To find
a near-optimal solution for the transient between switches,
a Traveling Salesman Problem (TSP) is solved to find the
shortest total distances if an agent traverses all locations
in both the OCV and OCH formations. The solution from
the TSP dictates the order of locations being visited by
any agent. Next, when the switching times of all agents
are synchronized, the objective becomes minimizing the
transient time and the energy cost during that time. By
“synchronization”, we mean that all agents leave the OCV
formation at the same time, and arrive at the OCH formation
at the same time. Therefore, the transient time is determined
by the agent which travels the longest distance. The speeds
of other agents can be determined by the transient time and
the travel distance.

The main contributions of this paper are as follows: (i).
Model the collective behavior of agents by formations (OCV
formations and OCH formations) and transitions between
them. (ii). Find the optimal orders of agents visiting different
optimal locations including the charging station through
solving a TSP. (iii) Derive optimal speed profiles for all
agents during the transient time to minimize the transition
cost. (iv). Quantify the price of decentralization through
simulation experiments.

II. PROBLEM FORMULATION

Consider a bounded mission space S ∈ R2. The value
of a point (x, y) ∈ S in the mission space is charac-
terized by a reward function R(x, y), where R(x, y) ≥
0 and

∫ ∫
S R(x, y)dxdy < ∞. The value of R(x, y) is

monotonically increasing in the importance associated with
point (x, y). If all points in S are treated indistinguishably,
R (x, y) = σ for any (x, y) ∈ S, where σ > 0 is a constant.
A team of mobile agents labeled by V = {1, 2, . . . , N} is
deployed in the mission space to detect possible events that
occur in it. Each agent has an isotropic sensing system with
range δi, that is, an agent located at (xi, yi) is able to cover
the area

Ωi (xi, yi) =
{

(x, y) | (x− xi)2 + (y − yi)2 ≤ δ2i
}

.

The sensing probability of an agent for a point (x, y) within
its sensing range Ωi (xi, yi) is characterized by the sensing
function pi (x, y, xi, yi) ∈ [0, 1], and it depends on the
distance between the agent location (xi, yi) and the point
(x, y). In particular, it is monotonically decreasing in the
distance between (xi, yi) and (x, y) and if a point (x, y)
is out of the sensing range of agent i, that is, (x, y) /∈
Ωi (xi, yi), then pi (x, y, xi, yi) = 0. For any given point
(x, y) in the sensing range of multiple agents, assuming
independence among agent sensing capabilities, the joint
event detection probability is given by [1]

P (x, y, s) = 1−
∏N

i=1
[1− pi (x, y, xi, yi)] . (1)

Figure 1 depicts the event detection probability of a single
agent (Fig. 1a) and two agents with overlapping sensing
range (Fig. 1b), where p(x, y, xi, yi) = 1− (x−xi)

2+(y−yi)2
δ2i

[4].

(a) A single agent at (0,0)

(b) Two agents at (0.5,0) and (-0.5, 0)

Fig. 1: Sensing probability of an area with one and two
agents performing coverage.

Finally, the coverage performance of the mobile agent
team to the area S is defined as

H (s) =

∫ ∫
S
R (x, y)P (x, y, s) dxdy, (2)

where s = [sT1 , . . . , s
T
N ]T with si = [xi, yi]

T is a column
vector that contains all agent positions. Note that H (s) is a
function mapping a vector s ∈ R2N into R.

To find the optimal locations of all agents is a static
optimization problem, which has been extensively studied
[9], [1], [12]. Here we are interested in a dynamic coverage
control problem with energy constraints, where each agent
is associated with two state variables: location variable si(t)
and state-of-charge (SOC) variable 0 ≤ qi(t) ≤ 1, which is a



percentage of the battery level. The agents’ sensing, motion,
and communication activities are all powered by batteries,
and there is a charging station available at (0, 0) for all agents
to replenish their energy. We assume that there is only one
outlet in the charging station. In other words, only one agent
can be charged at any time. The agent’s motion is described
by the following kinematic equations:

ẋi(t) = vi(t) cos[θi(t)], ẏi(t) = vi(t) sin[θi(t)] (3)

where vi(t) and θi(t) denote the instantaneous speed and
heading of agent i at time t, respectively. We assume that
vi (t) ∈ [0, v̄], where v̄ is the maximum speed of an agent.
For simplicity, assume that the speed and angular state can
be controlled directly.

The state-of-charge (SOC) state satisfies the following
dynamic equation:

q̇i(t) = Ii(t)f(qi(t), bi(t)) + (1− Ii(t))g(qi(t), vi(t), bi(t))
(4)

where Ii(t) = 1 means the agent is in charging mode
and f(qi(t), bi(t)) ≥ 0, and Ii(t) = 0 means the agent
is in energy depletion mode and g(qi(t), vi(t), bi(t)) ≤ 0.
Moreover, g(qi(t), vi(t), bi(t)) = 0 when vi(t) = 0 and
bi(t) = 0. The control bi(t) ∈ {0, 1} is a binary variable
to indicate “on” (bi(t) = 1) or “off” bi(t) = 0 of the
sensing functionality of an agent. In other words, an agent is
in energy conservation mode if there is neither motion nor
sensing.

Our objective is to maximize the coverage of the mission
space S ∈ R2 over a time interval [0, T ], and at the same time
to keep all agents alive, that is, qi (t) > 0 for all t ∈ [0, T ].
The case qi (t) = 0 can occur only at the charging station
(0, 0). Therefore, we consider the following optimization
problem for each agent i:

max
v(t), θ(t), b(t)

1

T

∫ T

0

H (s (t)) dt (5)

s.t. (3) and (4) (6)
Ii(t) = 1 when si(t) = 0, (7)
qi (t) > 0 when si (t) 6= 0, (8)
0 ≤ vi(t) ≤ v̄, 0 ≤ θi(t) < 2π, 0 ≤ qi(t) ≤ 1 (9)
bi(t) ∈ {0, 1}, Ii(t) ∈ {0, 1}, i = 1, . . . , N, (10)

0 ≤
∑N

i=1
Ii(t) ≤ 1, (11)

where T is a given time horizon, v(t) = [v1(t), . . . , vN (t)]T ,
θ(t) = [θ1(t), . . . , θN (t)]T , b(t) = [b1(t), . . . , bN (t)]T , and
the coverage metric H (s (t)) is defined in (2). In this paper,
we consider bi(t) = 1 for any t ≥ 0, that is, an agent
always senses the environment to perform the coverage task.
The constraints (7) indicate that an agent is in charging
mode whenever it arrives at the charging station; (8) prevents
agents from dying, i.e., running out of energy, in the mission
space; (11) ensures that only one agent can be served at the
charging station at any time.

Remark 1: The same problem was solved in [18] by a
decentralized approach. Here we try to revisit the problem

by using a centralized approach. In the centralized approach,
all information is available, and every agent can be controlled
in a centralized way. In the decentralized approach, all agents
cooperatively find the OCV and OCH locations using only
local information. When multiple agents compete for the
charging station, the charging station works as a controller to
schedule the charging of all competing agents. The purpose
of this paper is to compare the performance of the two
different approaches.

III. MAIN RESULTS

Previous work in [18] solves this problem from an indi-
vidual agent point of view, where the behavior of an agent
is modeled through three different modes: coverage mode,
to-charge mode and in-charge mode. In this paper, however,
we aim to solve this problem from the team point of view.
We would ultimately like to maximize the coverage level
in (5) and minimize transient times that occur between the
OCV and OCH formations. This comes down to solving the
following problems:

1) In Section III-A, find the OCV and OCH locations for
all agents.

2) In Section III-B, solve a TSP to get an optimal path
connecting all OCV and OCH locations found in
Section III-A.

3) In Section III-C, establish problem feasibility.
4) In Section III-D, solve for the optimal speed problem

over transient intervals assumed in Section III-C.
5) In Section III-E, maximize the coverage performance

by optimizing dwell and charge times based on the
feasibility condition found in Section III-C and the
optimal speed profile found in Section III-D.

A. Optimal Locations

Let us assume that the environment is known, that is,
R(x, y) is known. If all agents are in the “coverage mode”,
they should be in the OCV locations as determined by
standard gradient algorithms as in [1].

Let us denote the OCV locations for N agents as s1 =
{s11, . . . , s1N} for the mission space S. By assuming that
the agent also performs the coverage task while resting at
the charging station, we can calculate the OCH locations
of the remaining N − 1 agents by constraining one agent
to be at (0, 0). Therefore, the OCH locations can be found
using the gradient method proposed in [1]. Let s2 =
{s21, . . . , s2N−1, s2N} be the OCH locations with s2N = (0, 0).
Therefore, when all agents have enough energy, the optimal
choice is to occupy all locations at s1. When an agent is
at the charging station, the optimal choice for all agents is
at the locations specified by s2. Whenever an agent leaves
or re-joins the team, the agents switch between s1 and s2.
Assume that all agents are of the same type and have the
same initial SOC. The optimal scheduling is to let agents
take turns to visit the charging station. Therefore, we are
essentially transforming the original problem into a Multi-
Agent TSP (MATSP) in the next section.



B. Shortest Path

Before proceeding further, let us give the following stan-
dard definitions which can be found in [19] to model the
relationship between locations in s1, and s2.

Definition 1: A graph G is called bipartite if its vertex set
can be partitioned into two parts V1 and V2 such that every
edge has one end in V1 and one in V2.

Definition 2: A bipartite graph in which every two ver-
tices from different partition parts are adjacent is called
complete.

If |V1| = |V2| = r, we abbreviate the complete bipartite
graph to K2

r , in which every part contains exactly r vertices.
When agent 1 (without loss of generality) switches to “to-

charge” mode, the locations {s12, . . . , s1N} are not optimal
for the remaining N − 1 agents. Therefore, the remaining
agents which are in the “coverage mode” need to switch
to the OCH locations. When this process repeats, it turns
out that an agent will visit all optimal locations in s1 and
s2. Therefore, this process boils down to finding the shortest
path for an agent to visit all optimal locations and return to its
location. This is exactly the MATSP with certain constraints,
i.e., when an agent is in one of the OCV locations, it has
to switch to one of the OCH locations. Thus, we can use
the bipartite graph to model such constraints. As the agents
switch between the formations, we need to minimize the total
traveled distance during transient times. Let K2

N = (V, E)
denote the underlying topology, where the vertex set V can
be partitioned into two sets: V1 = s1 and V2 = s2 such that
V1 ∪ V2 = V , V1 ∩ V2 = ∅ and |V1| = |V2| = N . Every
edge in V has one end in V1 and the other end in V2 and
vertices in the same set are not adjacent. In addition, K2

N is
complete, that is, every two vertices from different sets are
adjacent. The weight of every edge is the distance between
the two vertices.

Finding the shortest transient distance is equivalent to
finding the shortest path in the graph K2

N . This is a MATSP,
which can be solved by integer linear programming.

The underlying assumption is that when an agent switches
to “to-charge” mode, no other agents will switch to the
same mode until the agent returns and the OCV formation
is attained. We will find a condition to guarantee that this
assumption holds at all times.

C. Feasibility

Feasibility in this case means that the number of agents in
both “to-charge” and “in-charge” modes are less than two.
For simplicity, let us assume that the behavior of all agents
is synchronized, that is, they start and finish the process of
switching from V1 to V2 at the same time, and vice versa
(i.e., from V2 to V1). The intuition behind this assumption is
that the coverage performance depends on the agents’ relative
distances.

Then, the problem reduces to finding four critical times:
(1) the charging time τ c at the charging station, (2) the dwell
time τd of agents on the OCV locations, (3) the transient
time τN−1t from the OCH locations to the OCV locations,
and (4) the transient time τNt from the OCH locations to the

OCV locations. Note that the dwell time of agents on the
OCH locations is exactly equal to the charging time at the
charging station.

Without loss of generality, we can assume that the optimal
path to visit the locations for any agent follows the order:
1 → 2 → 3 → · · · 2N − 1 → 2N , where the nodes with
odd numbers belong to the OCV locations, the nodes with
even numbers belong to the OCH locations, and 2N is the
charging station. Let us define q−i and q+i as the energy when
agents arrive at node i and leave node i, respectively, and
d2i2i−1 as the distance between node 2i − 1 and 2i. Let us
proceed backwards starting at node 2N . Clearly, we must
have q−2N ≥ 0 to make the problem feasible. Therefore,

q−2N = q+2N−1 + h(q+2N−1, τ
N
t , d

2N
2N−1) ≥ 0

where h(·) is an energy cost function determined by (4)
when Ii(t) = 0 under the assumption of the optimal speed
(which will be determined in Section III-D). If the process
is repeated recursively, the minimum energy at node 2N −1
will be

q+2N−1 = q−2N−1 + h(q−2N−1, τd, 0)

q−2N−1 = q+2N−2 + h(q+2N−2, τ
N−1
t , d2N−12N−2)

In general, the minimum energy requirements for the loca-
tions 2i and 2i− 1 are

q+2i = q−2i + h(q−2i, τ c, 0)

q−2i−1 = q+2i−1 + h(q+2i−1, τ
N
t , d

2i
2i−1) (12)

and

q+2i−1 = q−2i−1 + h(q−2i−1, τd, 0)

q−2i−2 = q+2i−2 + h(q+2i−2, τ
N−1
t , d2i−12i−2), (13)

respectively. Eventually, the minimum energy for node 1 will
be

q+1 = q−1 + h(q−1 , τd, 0).

Also note that

q−1 = q+2N + h(q+2N , τ
N−1
t , d12N ) (14)

q+2N = q−2N + κ(q−2N , τ c) (15)

where κ(·) is the solution of the differential equation (4) with
the initial condition q−2N and Ii(t) = 1.

We now include an iteration index k = 1, 2, . . . , and write

q−2N (k) ≥ q−2N (k − 1) ≥ 0

We then need to solve the following optimization problem

Feasibility Problem min
τc,τd=0,τN

t ,τ
N−1
t

q−2N (k − 1) (16)

subject to (12) and (13) for i = 1, . . . , N (17)

q−2N (k) ≥ q−2N (k − 1) ≥ 0 (18)

for any k ≥ 1, where we set τd = 0 to capture the extreme
case that the dwell time at the OCV locations is zero for all
agents. Note that q−2N (k) can be expressed as a function of
q−2N (k − 1), τ c, τd, τNt and τN−1t .



Only if a solution to (16)-(18) exists we can further
maximize the dwell time τd. Therefore, it is clear that (16)-
(18) defines the feasibility problem. We want to find the
control variables τ c, τNt and τN−1t so that the SOC does
not decrease during a cycle. This condition determines the
feasibility of the problem. Once the minimum q−2N (k − 1)
is obtained, we can calculate q+2N (k − 1) using (15), and
then q−11 (k) using (14) to start a new iteration. Repeating
the calculation forward, we are able to compute q−i (k), and
q+i (k) using (13) and (12) for i = 1, . . . , 2N .

D. Optimal Speed

In the previous section, we assume that the energy cost
is calculated under the optimal speed of an agent during a
transient period in which a switch between OCV and OCH
formations takes place. Here we will derive this optimal
speed when the travel time and distance of a transient
segment of an agent trajectory are given. During the transient
period τ , the optimal speed can be determined so as to min-
imize the energy cost. Therefore, the following optimization
problem is formulated:

min
vi(t), θi(t)

∫ t0+τ

t0

q̇i(t)dt (19)

subject to (3) and (4) (20)
0 ≤ vi(t) ≤ v̄ (21)
si (t0) = s (22)
si (t0 + τ) = s̄ (23)
qi (t0) = q, (24)

where s and s̄ are initial and final positions of agent i,
respectively, and q is the initial SOC of agent i.

Theorem 1: Assume that the energy model in (4) when
Ii(t) = 0 has the following linear form

g(qi(t), vi(t), 1) = −αvi(t)− β

where α > 0 and β > 0 are two constants. Then, the optimal
solutions to the above optimization problem are

v∗(t) =
‖s̄− s‖

τ

and
θ∗(t) = s̄− s

for t ∈ [t0, t0 + τ), where s̄− s is the heading from s to s̄.
The minimum energy cost is

α‖s̄− s‖+ βτ.
Proof: The Hamiltonian function is defined as

H(si, vi, θi, qi, t) = q̇i + λxvi cos(θi) + λyvi sin(θi)

+ λqg(qi, vi, 1).

We have the co-state equations:

−λ̇x =
∂H
∂xi

= 0, −λ̇y =
∂H
∂yi

= 0.

Therefore, we know that λx and λy are two constants. From
the stationarity condition, we have

∂H
∂θi

= −λxvi sin(θi) + λyvi cos(θi) = 0.

Then, we know that θi is also a constant determined by the
initial and final positions. Let λx = λθ cos(θi) and λy =
λθ sin(θi) with a constant λθ. Thus, the Hamiltonian function
becomes

H(si, vi, θi, qi, t) = q̇i + λθvi cos2(θi) + λθvi sin2(θi)

+ λqg(qi, vi, 1)

= (1 + λq)g(qi, vi, 1) + λθvi.

Then, we have

−λ̇q =
∂H
∂qi

= (1 + λq)
∂g(qi, vi)

∂qi
.

Based on the linear form of g(qi, vi, 1), we have

∂g(qi, vi, 1)

∂qi
= 0.

We know that λq is a constant and

H(si, vi, θi, qi, t) = [−(1 + λq)α+ λθ]vi(t)− (1 + λq)β.

Since H is not an explicit function of time t, we have
Ḣ = 0. Thus, we obtain v̇i(t) = 0. Therefore, vi is a
constant determined by the distance between the initial and
final positions and the travel time τ .

The energy cost is determined by both the distance and
the travel time τ . Therefore, to reduce the transient time, it
is always optimal for agents who travel the longest distance
during the transient times to use the maximum speed when
the energy consumption model is a linear function of the
speed.

E. Optimal Dwell Time and Charging Time

Once the solution of the TSP is available, the remaining
task is to maximize the coverage time and minimize the
transient time during a cycle. Then, we define a duty cycle-
like objective function below as the fraction of the total cycle
τ c + τd + τNt + τN−1t used by the dwell time τd (which
provides maximum coverage):

max
τc,τd

τd

τ c + τd + τNt + τN−1t

(25)

subject to τ c ≤ τ̄ c (26)
{τ c, τd} ∈ F (27)

where F is the set of all pairs of (τ c, τd) which can satisfy
the inequality (18) in Section III-C, and τ̄ c is the time when
the battery is fully charged starting with an initial SOC q−2N .
In addition:

τNt =
d̄N

v̄
, τN−1t =

d̄N−1

v̄
, (28)

where d̄N = maxi=1,...,N d
2i
2i−1, and d̄N−1 =

maxi=1,...,N d
2i−1
2i .



The first constraint requires an agent to leave the charging
station once its battery is fully charged. This is motivated by
the fact shown in our previous work in [4] that it is optimal to
fully charge an agent. The second constraint ensures that the
charging time and the dwell time must satisfy the feasibility
constraint.

IV. SIMULATION EXAMPLES
Let us consider a small network with 3 agents to cover a

600× 500 rectangular mission space. By using the gradient
approach [1], the OCV locations of all three agents with
a sensing range 220 are found to be s11 = (186.7, 119.3),
s12 = (160.3, 371.1), and s13 = (451.4, 290.4) shown in
blue in Fig. 2, and the OCV locations are s21 = (0, 0),
s22 = (169.3, 320.2) and s23 = (430.6, 185.0) shown in
red in Fig. 2. The charging station is located at s21. Let
us assume that the charging dynamics in (4) have the form
f(qi(t), 1) = c − β, and the energy depletion dynamics in
(4) have the form g(qi(t), vi(t), 1) = −αvi(t)−β, where α,
β and c are three constants. For a properly defined problem,
the following constraint should be satisfied

c ≥ 3(av̄ + β), (29)

where v̄ is the maximum allowed speed of all agents. By
treating the charging station as a server, the charging rate is
c if it is occupied at all times, and the worst case energy
depletion rate over three agents is 3(av̄ + β). Thus, the
condition (29) ensures the feasibility to prevent any agent
from running out of energy in the mission space. By solving
the TSP, the shortest path is s12 → s22 → s13 → s23 → s11 →
s21 → s12. The total traveling distance is 2388.
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Solution to Travelling Salesman Problem with Bipartite Graph Constraints

Fig. 2: The shortest path for the TSP

Let us solve the feasibility problem (16)-(18) first. Note
that node 6 is defined as the charging station in Section III-
C. Assume that q−6 = q0, that is, the SOC when an
agent arrives at the charging station. The distances are
d
s21
s11

= 221.5612, d
s12
s21

= 252.5939, d
s22
s12

= 107.4328, d
s13
s22

=

283.9381, d
s23
s13

= 51.6432, d
s11
s23

= 404.2416. When the energy

depletion model is linear in vi, it is optimal to choose the
shortest transient time. The lower bound of transient times
τ2t and τ3t are determined by the distances and maximum
speed. Therefore, we can choose

τ3t =
max{ds

1
2

s21
, d
s13
s22
, d
s11
s23
}

v̄
=

404.2416

v̄
and

τ2t =
max{ds

2
1

s11
, d
s22
s12
, d
s23
s13
}

v̄
=

221.5612

v̄

After charging for τ c, the SOC increases to q0+τ c(c−β).
Then, the agent heads to s12, and its SOC decreases to
q0 + τ c(c − β) − αd24 − βτ3t , where the third term and
the last term correspond to the energy cost of motion and
sensing, respectively. To solve the feasibility problem (16),
we set the dwell time at the OCV locations as zero. After
one cycle, when an agent returns to the charging station, its
SOC becomes

q0 + τ cc− 2388α− 3βτ3t − 3βτ2t − 3βτ c.

and we require:

q0 + τ cc− 2388α− 3βτ3t − 3βτ2t − 3βτ c ≥ q0.

Therefore, in this case it is possible q0 = 0, and the
minimum charging time is

τ c =
2388α+ 3β(τ3t + τ2t )

c− 3β

Based on q0 = 0, τ c, τ2t , and τ3t , we are able to calculate
the minimum SOC for all 3 optimal locations as shown at
the end of Section III-C.

If an agent stays at the charging station more than the
minimum τ c, then the dwell time τd will not be zero.
Therefore, we need to solve the optimization problem (25)-
(27) to maximize τd and its percentage during a cycle:

max
τc,τd

τd
τ c + τd + τ3t + τ2t

subject to

τ c ≤
1

c− β

τ c ≥
2388α+ 3β(τ3t + τ2t + τd)

c− 3β

The first condition is to make sure that agents will not
stay at the charging station when it is fully charged which
corresponds to (26). The second condition is to guarantee
that an agent will not run out of energy in the mission space,
which corresponds to (27).

To solve the above optimization problem, the optimal
solution occurs when the first inequality become equality.
Then, we can write the relationship between τ c and τd as
τ c = a + bτd. If we substitute τ c by a + bτd, we know
that the larger τd leads to better performance. Therefore, the
optimal solution for the above problem is to let the agent be
fully charged, that is,

τ c =
1

c− β
,



and
τd =

1− 2388α

3β
− 1

c− β
− τ3t − τ2t

Let us choose α = 0.0005, β = 0.0005, c = 0.01, and
v̄ = 50. The coverage performance of the above centralized
algorithm is depicted in Fig. 3. The cycles are clearly
visualized in the figure, where the top horizontal lines and
the bottom horizontal lines correspond to the time when
agents are in the OCV formation, and in the OCH formation,
respectively.
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Fig. 3: Performance with Centralized Approach

The coverage performance of the decentralized approach
is computed using the approach proposed in [18]. In the
decentralized approach, agents may compete for the charging
station. When this case occurs, the agent with lower priority
has to turn off its sensing capability, therefore, performance
may be significantly compromised. The coverage perfor-
mance over time for the decentralized approach is shown
in Fig. 4.
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Fig. 4: Performance with Decentralized Approach

The average coverage performance over a time period of
1000 seconds of the centralized and decentralized approaches
is 177815 and 166917, respectively. The performance im-
provement is about 6.53%. Also note from both figures,
the performance lower bound of the centralized approach
is determined by the OCH formation. The bottom horizontal
line in Fig. 4 indicates that low priority agents turn off their
sensing when competing for the charging station. The results
show that both the average and the worst performance is
significantly improved by the centralized approach.

Another set of simulation is done with 6 agents. In this
case, the parameters are chosen as α = 0.0005, β = 0.0005,
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Fig. 5: Performance with Centralized Approach

c = 0.025, and v̄ = 100. The coverage performance
over time for the centralized approach and decentralized
approach is depicted in Fig. 5 and Fig. 6, respectively.
The average coverage performance over time is 262946 for
the centralized approach and 253278 for the decentralized
approach. In this case, the average coverage performance
improvement is 3.28% by the centralized approach. When the
number of agents increases, the centralized approach keeps
a minimum coverage performance above 25000. However,
the performance is critically compromised for the decentral-
ized approach when more agents compete for the charging
stations, as shown in Fig. 6.
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Fig. 6: Performance with Decentralized Approach

V. CONCLUSIONS

In this paper, we propose a centralized near-optimal
solution to the multi-agent coverage problem with energy
constrained agents. The performance between the central-
ized approach and decentralized approach is compared. It
shows that the centralized approach in general produces
better average coverage performance than the decentralized
approach. In addition, the performance gap between the
OCV formations and the OCH formations of the centralized
approach is much smaller than that of the decentralized
approach.

REFERENCES

[1] M. Zhong and C. G. Cassandras, “Distributed coverage control and
data collection with mobile sensor networks,” IEEE Trans. Autom.
Control, vol. 56, no. 10, pp. 2445–2455, 2011.

[2] N. E. Leonard and A. Olshevsky, “Nonuniform coverage control on
the line,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2743–2755,
2013.



[3] Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control
for concave areas by a heterogeneous robot swarm with visibility
sensing constraints,” Automatica, vol. 53, pp. 195 – 207, 2015.

[4] X. Meng, A. Houshmand, and C. G. Cassandras, “Hybrid system
modeling of multi-agent coverage problems with energy depletion and
repletion,” IFAC-PapersOnLine, vol. 51, no. 16, pp. 223 – 228, 2018,
6th IFAC Conference on Analysis and Design of Hybrid Systems.

[5] Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance
with mobile sensor agents,” IEEE Transactions on Robotics, vol. 21,
no. 5, pp. 898–908, 2005.

[6] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Mon-
itoring and sweeping in changing environments,” IEEE Transactions
on Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[7] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” in Proceed-
ings IEEE INFOCOM, vol. 3, 2001, pp. 1380–1387.

[8] A. Hossain, S. Chakrabarti, and P. K. Biswas, “Impact of sensing
model on wireless sensor network coverage,” IET Wireless Sensor
Systems, vol. 2, no. 3, pp. 272–281, 2012.

[9] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[10] X. Sun, C. G. Cassandras, and K. Gokbayrak, “Escaping local optima
in a class of multi-agent distributed optimization problems: A boosting
function approach,” in Proc. IEEE Conf. Decision Control, 2014, pp.
3701–3706.

[11] Z. Zhang, E. K. P. Chong, A. Pezeshki, and W. Moran, “String
submodular functions with curvature constraints,” IEEE Trans. Autom.
Control, vol. 61, no. 3, pp. 601–616, 2016.

[12] X. Sun, C. G. Cassandras, and X. Meng, “Exploiting submodularity
to quantify near-optimality in multi-agent coverage problems,” Auto-
matica, vol. 100, pp. 349–359, 2019.

[13] K. Leahy, D. Zhou, C. Vasile, K. Oikonomopoulos, M. Schwager, and
C. Belta, “Persistent surveillance for unmanned aerial vehicles subject
to charging and temporal logic constraints,” Autonomous Robots,
vol. 40, no. 8, pp. 1363–1378, 2016.

[14] P. Tokekar, N. Karnad, and V. Isler, “Energy-optimal velocity pro-
files for car-like robots,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 1457–1462.

[15] H. Jaleel, A. Rahmani, and M. Egerstedt, “Probabilistic lifetime max-
imization of sensor networks,” IEEE Trans. Autom. Control, vol. 58,
no. 2, pp. 534–539, 2013.

[16] D. Aksaray, C. Vasile, and C. Belta, “Dynamic routing of energy-aware
vehicles with temporal logic constraints,” in Proc. IEEE International
Conf. Robotics and Automation. IEEE, 2016, pp. 3141–3146.

[17] T. Setter and M. Egerstedt, “Energy-constrained coordination of multi-
robot teams,” IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp.
1257–1263, 2017.

[18] X. Meng, A. Houshmand, and C. G. Cassandras, “Multi-agent cov-
erage problems with energy depletion and repletion,” in Proc. 57th
IEEE Conf. Decision Control, 2018, pp. 2101–2106.

[19] R. Diestel, Graph Theory, 4th ed. Springer, 2010.


	I INTRODUCTION
	II Problem Formulation
	III Main Results
	III-A Optimal Locations
	III-B Shortest Path
	III-C Feasibility
	III-D Optimal Speed
	III-E Optimal Dwell Time and Charging Time

	IV SIMULATION EXAMPLES
	V Conclusions
	References

