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Data-driven filtering for linear systems using

Set Membership multistep predictors

Marco Lauricella and Lorenzo Fagiano

Abstract

This paper presents a novel data-driven, direct filtering approach for unknown linear time-invariant systems affected
by unknown-but-bounded measurement noise. The proposed technique combines independent multistep prediction models,
identified resorting to the Set Membership framework, to refine a set that is guaranteed to contain the true system output. The
filtered output is then computed as the central value in such a set. By doing so, the method achieves an accurate output filtering
and provides tight and minimal error bounds with respect to the true system output. To attain these results, the online solution
of linear programs is required. A modified filtering approach with lower online computational cost is also presented, obtained
by moving the solution of the optimization problems to an offline preliminary phase, at the cost of larger accuracy bounds. The
performance of the proposed approaches are evaluated and compared with those of standard model-based filtering techniques
in a numerical example.

I. INTRODUCTION

In this paper, we address the problem of output filtering for the case of linear time-invariant systems subject to unknown-

but-bounded measurement disturbances. Our goal is to obtain an accurate filtering of the output from the noise, and, at the

same time, to provide tight bounds on the error between the filtered output and the true one. The problem of process variables

filtering has been widely studied over the years, and the related literature includes a large number of contributions, see, e.g.,

[1], [2], [3] and the references therein. Among them, the most famous filtering approaches stem from the seminal works of

Kolmogorov-Wiener [4], [5], and of Kalman-Bucy [6]. These works, as a vast majority of the filtering methods proposed

during the years, mainly focus on the case of perfectly known system model, and stochastic disturbances with known

probabilistic properties, for which they achieve optimal filtering properties. Other approaches assume that the accuracy is

measured by suitable noise to error norm gains, where optimal performance are achieved by H2, ℓ1, H∞ filters, see e.g. [7],

[8], [9], [10], [11], [12], [13]. A different filtering methodology is also given by Moving Horizon Estimators, see e.g. [14],

[15]. Most of these filtering approaches are mainly based on the assumption of exact model knowledge as well. Since this

is rarely the case in real world applications, where the system model is often unknown, a two step procedure is commonly

adopted, where a model of the system at hand is identified from a noise-affected set of data collected from an experiment

performed on the system, which is then used to define the filter. In this way, no optimality properties can be guaranteed

anymore.

Here, we resort to Set Membership (SM) identification methods to design a data-based, direct (i.e., without estimating

a model of the plant) output filtering approach, able to obtain a ‘small’ estimation error, measured by suitable guaranteed

accuracy bounds. SM identification methods usually operate under the unknown-but-bounded disturbance and uncertainty

framework, see e.g., [16], [17], [18], and can provide strong results in terms of optimality of the accuracy bounds in a

worst-case sense, while requiring rather mild assumptions on the system and the disturbances [19].

In the SM literature, there are several contributions addressing the problem of data-driven filter design, e.g., [20], [21],

[22], where a filtered version of the variables of interest is provided, along with guaranteed bounds on their accuracy. Inspired

by the results of a previous work ([23]), where the theoretical properties of the error bounds of multistep and onestep iterated

models are investigated, here, we propose a novel filtering algorithm, based on the combined use of independent multistep

prediction models, that is able to achieve tight accuracy bounds. The main idea is to derive a set containing the true system

output at a given time, as the intersection of the accuracy regions provided by several SM multistep predictors, each one

with a different prediction horizon. Then, the wanted filtered output is computed as the center of such a set. This quantity

is locally optimal, in a worst-case error sense, i.e. it attains the minimal achievable error bounds under the considered

assumptions. This is possible thanks to the use of independent multistep predictors, allowing one to achieve good prediction

accuracy for different steps ahead, see e.g., [24], [25], [26], [27], and to derive less conservative bounds on the prediction

accuracy, when compared to a single prediction model iterated in simulation [28], [29]. Moreover, independent p-steps ahead

models also allow one to achieve the theoretical minimum p-steps ahead prediction error bound, as defined under the SM

framework, see [30]. By combining the output of different multistep predictors, all attaining their theoretical minimum error,

we can further refine the set containing the system output, thus obtaining even tighter accuracy bounds.

The approach requires the online solution of linear programs (LPs), which can be afforded in many real world applications of

interest, thanks to the computational power available nowadays. For cases where the available computational power is limited,
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and/or the sampling time is too short for the online solution of optimization problems, we also present a second filtering

approach based on the same principle, which uses global accuracy bounds computed in a preliminary offline identification

phase, at the cost of higher conservativeness.

The filtering approaches proposed in this paper are finally showcased on a numerical example, where their performance

are compared to those of a standard robust Kalman filter based on the Riccati equation approach.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A. Problem statement

Consider a discrete time, linear time invariant system, with input u(k) ∈ R
m, and output z(k) ∈ R, where k ∈ Z denotes

the discrete time variable, modeled using an input-output auto-regressive with exogenous input (ARX) representation of

order o (see [23] for details regarding the order choice)

z(k + 1) = ψ(k)T θ0, (1)

where θ0 is the vector of the real system parameters, and the regressor ψ(k) is defined as

ψ(k) =
[

ZT
o (k) U

T
o (k)

]T
∈ R

o+mo,

Zo(k) = [z(k) z(k − 1) . . . z(k − o+ 1)]
T ∈ R

o,

Uo(k) =
[

u(k)T u(k − 1)T . . . u(k − o+ 1)T
]T

∈ R
mo.

The output measurement y(k) ∈ R is affected by an additive noise d(k) ∈ R:

y(k) = z(k) + d(k).

For the sake of notational simplicity, and without loss of generality, here we consider a multiple input, single output system.

The proposed approach can be easily generalized to the multiple output case, by applying it to one output at the time.

Let us make the following assumption on the system at hand:

Assumption 1: The measurement noise and the system input are bounded. In particular:

• |d(k)|≤ d̄0, ∀k ∈ Z, d̄0 ∈ R, d̄0 > 0.
• u(k) ∈ U ⊂ R

m, ∀k ∈ Z, U compact.

Assumption 1 is common for system identification problems based on the framework of unknown-but-bounded disturbance,

and it is valid for many practical applications as well. Here, we consider independent p-steps ahead prediction models in

the ARX form

ẑ(k|k − p) = ϕp(k − p)T θp, (2)

where θp is the vector of the predictor parameters to be identified, and the noise-affected regressor ϕp(k − p) is defined as

ϕp(k − p) =
[

Y T
o (k − p) UT

p,o(k − p)
]T

∈ R
o+m(o+p−1),

Yo(k − p) = [y(k − p) y(k − p− 1) . . . y(k − p− o+ 1)]
T ∈ R

o,

Up,o(k − p) =
[

u(k − 1)T . . . u(k − p)T . . . u(k − p− o+ 1)T
]T

∈ R
m(o+p−1).

(3)

Notice that a p-steps ahead model of the system can be readily obtained by recursion of (1), leading to

z(k|k − p) = ψp(k − p)T θ0p,

where ψp(k−p) is the noise-free counterpart of ϕp(k−p), obtained substituting Yo(k) with Zo(k) in (3), and the parameter

values in θ0p are polynomial functions of the entries of θ0.

Let us assume that an experiment is performed on the system at hand to collect a finite number of sampled data (ỹ(k), ũ(k))
to be used for the identification task. Here, ·̃ is used to denote a sampled and stored data point of a variable. For each

prediction step p, these data form the following set, composed of N sampled regressors and N corresponding p-steps ahead

output measurements:

Ṽ
N
p

.
=

{

ṽp(k) =

[

ϕ̃p(k − p)
ỹ(k)

]

, k = 1, . . . , N

}

, (4)

where Ṽ N
p ⊂ R

1+o+m(o+p−1). For simplicity and without loss of generality, we consider that the number N of data points

is the same for any considered value of p. Moreover, as customary for identification problems based on sampled data, we

consider the following assumption on the available dataset:

Assumption 2: As N → ∞, the sampled dataset Ṽ N
p is such that the set of all the system trajectories of interest is densely

covered, i.e., the input u is persistently exciting and the disturbance d is bound-exploring.



Prediction models (2) are also known as multistep predictors, as they are designed to directly provide the output prediction

p-steps ahead, and do not require the integration of an underlying simulation model. Note that, here, we consider prediction

models having the same autoregressive order of (1). In case the order o is not known, it can be estimated resorting to the

procedure proposed in [23]. Moreover, in the remainder of this paper, we assume that either the disturbance bound d̄ is

known, or that its estimate, obtained as described in [23], is available.

The problem addressed in this paper is the following: given the data set (4), derive a filtering algorithm that returns an

estimate ẑ(k) ≈ z(k) of the system output, together with guaranteed bounds on the error |ẑ(k)− z(k)|.

B. Preliminary results

The error between the true system output z(k) of (1) and the p-steps ahead prediction ẑ(k|k−p), given by (2), originates

from two sources: the difference between the real parameter values θ0 and the predictor ones, and the noise affecting the

measurements used in the regressor ϕ̃p(k − p). Under Assumption 1, this p-steps ahead error can be upper bounded by a

worst-case error bound λp, which can be estimated resorting to the SM framework, see [23], as

λp = α · min
θp,λ∈R+

λ

subject to
∣

∣ỹ − ϕ̃T
p θp
∣

∣ ≤ λ+ d̄, ∀ (ϕ̃p, ỹ) :

[

ϕ̃p

ỹ

]

∈ Ṽ N
p ,

(5)

with α > 1. For a fixed value of p, λp represents the global error bound related to all possible p-steps ahead predictors of

the form of (2), and it is used to define the Feasible Parameter Set (FPS):

Θp
.
=

{

θp :
∣

∣ỹ − ϕ̃T
p θp
∣

∣ ≤ λp + d̄, ∀ (ϕ̃p, ỹ) :

[

ϕ̃p

ỹ

]

∈ Ṽ
N
p

}

. (6)

The FPS Θp is the set of all possible p-steps ahead predictor parameters that are consistent with the sampled data and the

disturbance bound d̄. Under Assumption 2, Θp is a polytope having at most 2N facets, represented in (6) with an inequality

description. If Θp happens to be unbounded, it is and indication that the data collected from the system are not informative

enough and/or that N is not big enough, invalidating Assumption 2, thus new data should be acquired. Moreover, the bound

λp includes a factor α > 1 (see (5)) to account for the uncertainty due to the usage of a finite dataset. More details regarding

the error bounds, the FPS, their theoretical properties, and the usage of scaling parameters can be found in [23].

III. MULTISTEP FILTERING WITH LOCAL BOUNDS

Under the SM framework, it is possible to associate guaranteed accuracy bounds to multistep prediction models in the

form of (2), resorting to the bounds λp, and the FPSs Θp defined in Section II, see e.g., [23].

The guaranteed accuracy bound τ̂p(ϕ̃p(k − p), θp) is defined, for a p-steps ahead predictor with parameters θp and for a

given regressor ϕ̃p(k − p), as

τ̂p(ϕ̃p(k − p), θp) = γ

(

max
θ∈Θp

∣

∣ϕ̃p(k − p)T (θ − θp)
∣

∣

)

+ λp, (7)

with γ > 1. Here, γ has the same role of the scaling parameter α in (5), thus accounting for the uncertainty due to the

usage of a finite dataset. The bound (7) is named “local”, since it pertains to a specific regressor value ϕ̃p(k − p). Under

Assumptions 1 and 2, it holds that, by construction

|z(k)− ϕ̃p(k − p)T θp|≤ τ̂p(ϕ̃p(k − p), θp), (8)

i.e., the system output is guaranteed to lie inside a set defined by an interval centered at the p-steps ahead prediction

ẑ(k|k − p) = ϕ̃p(k − p)T θp, with amplitude equal to the corresponding accuracy bound.

Resorting to this property, the novel data-driven filtering approach we propose is able to refine the true system output

uncertainty range. This result is obtained by intersecting the uncertainty intervals of the outputs given by a group of p̄

multistep models (2), all providing a prediction of the output z(k), ranging from ẑ(k|k − 1) to ẑ(k|k − p̄). Thus, the set

Zp̄(k) containing the true output at time k is derived as:

z(k) ∈ Zp̄(k) =
{

z̄ : ϕ̃p(k − p)T θp − τ̂p(ϕ̃p(k − p), θp) ≤ z̄ ≤ ϕ̃p(k − p)T θp + τ̂p(ϕ̃p(k − p), θp),

∀θp ∈ Θp, ∀p = 1, . . . , p̄
}

.
(9)

The boundaries of Zp̄(k) are:
zmax(k) = max

z∈Zp̄(k)
z = min

p=1,...,p̄
ζmax
p ,

zmin(k) = min
z∈Zp̄(k)

z = max
p=1,...,p̄

ζmin
p ,

(10)



where

ζmax
p = min

θp∈Θp

(

ϕ̃p(k − p)T θp + τ̂p(ϕ̃p(k − p), θp)
)

, (11a)

ζmin
p = max

θp∈Θp

(

ϕ̃p(k − p)T θp − τ̂p(ϕ̃p(k − p), θp)
)

. (11b)

Note that problems (11a) and (11b) can be recast as 2 Linear Programs (LP), which requires the previous solution of 2 LPs.

Take for example the original optimization problem:

ζmax
p = min

θp∈Θp

(

ϕ̃p(k − p)T θp + γ max
θ∈Θp

∣

∣ϕ̃p(k − p)T (θ − θp)
∣

∣+ λp

)

.

This can be formulated as a minimization problem, where the absolute value is removed:

ζmax
p = min

τ,θp∈Θp

ϕ̃p(k − p)T θp + γτ + λp

subject to

max
θ∈Θp

(

ϕ̃p(k − p)T (θ − θp)
)

≤ τ

max
θ∈Θp

(

− ϕ̃p(k − p)T (θ − θp)
)

≤ τ

(12)

Then, the maximization problems in (12) can be solved as independent LPs, since

max
θ∈Θp

ϕ̃p(k − p)T (θ − θp) = max
θ∈Θp

(ϕ̃p(k − p)T θ)− ϕ̃p(k − p)T θp,

leading to:

ζmax
p = min

τ,θp∈Θp

(

ϕ̃p(k − p)T θp + γτ
)

+ λp

subject to

c1pk − ϕ̃p(k − p)T θp ≤ τ

c2pk + ϕ̃p(k − p)T θp ≤ τ

(13)

where c1pk = max
θ∈Θp

ϕ̃p(k − p)T θ, and c2pk = max
θ∈Θp

−ϕ̃p(k − p)T θ. Similarly, problem (11b) becomes

ζmin
p = − min

τ,θp∈Θp

(

− ϕ̃p(k − p)T θp + γτ
)

− λp

subject to

c1pk − ϕ̃p(k − p)T θp ≤ τ

c2pk + ϕ̃p(k − p)T θp ≤ τ

(14)

The filtered value of z(k) is then obtained using a central algorithm on the set Zp̄(k), since the center of the local uncertainty

interval attains the minimal achievable local accuracy bound, in a worst-case error sense, see [31]:

ẑfp̄(k)
.
=

1

2

(

zmax(k) + zmin(k)
)

. (15)

In summary, the computation of (15) implies the solution of 4p̄ LPs having 2N constraints at each sampling time, and

requires the offline computation of the error bounds λp, for p ∈ [1, . . . , p̄], obtained solving p̄ LPs. Since the FPSs are

defined using only data pertaining to the identification dataset, and they are not updated online, it is possible to reduce the

computational effort needed to solve (13) and (14) by performing an offline redundant constraints removal procedure on the

FPSs, as proposed also in [23]. This produces a significant decrease in the number of constraints, reducing the computational

effort needed for the online solution of the LPs. Examples of the complexity of Θp in terms of number of inequalities, and

of computational times for the local approach, are provided in Section V.

Procedure 1 summarizes the described local filtering algorithm.

Procedure 1 Multistep filtering with local bounds

1) Carry out the offline estimation of λp, and use it to define the FPSs for the considered steps p ∈ [1, p̄].
2) For every time sample k, compute the online solution of the LPs (13) and (14), for p ∈ [1, p̄].
3) Use the central algorithm (15) to obtain the filtered system output, and compute its guaranteed accuracy bound for

the given time sample.



The following result pertaining to the guaranteed accuracy of the local approach holds.

Lemma 1: Considering the output filtering algorithm (15), the following properties hold:

1) The guaranteed local accuracy bound τfp̄(k) is

|ẑfp̄(k)− z(k)|≤ τfp̄(k) =
1

2

∣

∣zmax(k)− zmin(k)
∣

∣ . (16)

2) The accuracy bound (16) is the smallest worst-case error bound that can be achieved by any predicted output value.

3) The accuracy bound (16) is smaller than any single bound τ̂p(ϕ̃p(k − p), θp), ∀p ≤ p̄.

Proof: Straightforward consequence of (7)-(11), (15).

Remark 1: The variable p̄, which represents the maximum prediction horizon length used in the filtering algorithm, is a

tunable variable, whose choice corresponds to a trade-off between the tightness of the accuracy bound, and the resulting

computational effort (which increases with p̄).

IV. MULTISTEP FILTERING WITH GLOBAL BOUNDS

The multistep filtering approach proposed in Section III is able to achieve tight accuracy bounds, since it is based on the

guaranteed local error bound (7). To do so, the filter requires the online solution of 4p̄ LPs for each time sample. Even

though this can be easily done in numerous real world applications, thanks to the computational power available nowadays,

there are still a number of applications where the sampling time is too short, or the available computational power is limited,

and the filtering approach based on local bounds would be inapplicable online. In all these cases, it is possible to define

an output filtering algorithm similar to (15), but based on a global version of the guaranteed accuracy bound. The main

advantage is that fixed prediction models and their bounds are computed offline during the identification phase, together

with λp and the FPSs, and no optimization problem needs to be solved online. On the other side, the global version of

bound τp(θp) is designed to hold for any possible regressor value, corresponding to any possible system trajectory, thus

it is more conservative than its local counterpart, which is designed specifically for a given regressor instance. Moreover,

the multistep predictors are identified only once, so their performance could clearly not be better than that of the locally

optimal prediction models described in Section III. To select such fixed predictors, a suitable optimality criterion needs to

be defined.

Multistep prediction models can be identified resorting to several criteria, among which least-squares estimation is probably

the most famous [32]. Since our goal here is to obtain tight uncertainty intervals for the unknown system output, even in the

global case, it seems reasonable to seek for the multistep predictors that minimize the corresponding p-steps ahead global

error bound, thus obtaining the theoretical minimum global uncertainty interval for the corresponding horizon length p. For

given predictor parameters θp, the corresponding guaranteed global accuracy bound is estimated as:

¯̂τp(θp) = γ̄

(

max
ϕ̃p∈Ṽ N

p

max
θ∈Θp

∣

∣ϕ̃T
p (θ − θp)

∣

∣

)

+ λp, γ̄ > 1.

Under assumption 2, it can be shown that the global bound ¯̂τp(θp) is such that [30], [23]:

|z(k)− ϕ̃p(k − p)T θp|≤ ¯̂τp(θp),

i.e. it holds for any regressor belonging to the set of system trajectories covered by data (compare with (8)). Then, we search

inside the FPS Θp for the parameter vector θ̂p that minimizes the global bound ¯̂τp(θ̂p), i.e.

θ̂p = arg min
θp∈Θp

¯̂τp(θp).

This corresponds to

θ̂p = arg min
θp∈Θp

max
k=p+1,...,N

max
θ∈Θp

∣

∣ϕ̃p(k − p)T (θ − θp)
∣

∣ (17)

Problem (17) can be reformulated as an LP, which requires the previous solution of 2(N − p) LPs, see [23], as

θ̂p = arg min
ζ,θp∈Θp

ζ

subject to

ckp
− ϕ̌p(k)

T θp ≤ ζ, k ∈ [p+ 1, N ] ∪ [N + p+ 1, 2N ],

(18)

where ckp

.
= max

θ∈Θp

ϕ̌p(k)
T θ, and

ϕ̌p(k) =

{

ϕ̃p(k − p) if k ≤ N

−ϕ̃p(k − p−N) if k > N.



The multistep model identified using (18) is tailored for a specific horizon length p, for which it achieves optimal prediction

properties, in terms of guaranteed global error bound amplitude. Then, we can intersect again the uncertainty intervals defined

by the global accuracy bounds, obtaining the set Z
g
p̄ (k) such that:

z(k) ∈ Z
g
p̄ (k) =

{

z̄ : ϕ̃p(k − p)T θ̂p − ¯̂τp(θ̂p) ≤ z̄ ≤ ϕ̃p(k − p)T θ̂p + ¯̂τp(θ̂p), ∀p = 1, . . . , p̄
}

.

The filtered output value at time k is then given by the center of the set Z
g
p̄ :

ẑ
g
fp̄
(k)

.
=

1

2

(

zmax
g (k) + zmin

g (k)
)

, (19)

where
zmax
g (k) = max

z∈Z
g
p̄ (k)

z = min
p=1,...,p̄

ζmax
gp

,

zmin
g (k) = min

z∈Z
g
p̄ (k)

z = max
p=1,...,p̄

ζmin
gp

,
(20)

and
ζmax
gp

= ϕ̃p(k − p)T θ̂p + ¯̂τp(θ̂p),

ζmin
gp

= ϕ̃p(k − p)T θ̂p − ¯̂τp(θ̂p).

The guaranteed accuracy bound of ẑ
g
fp̄
(k) is

τ
g
fp̄
(k) =

1

2

∣

∣zmax
g (k)− zmin

g (k)
∣

∣ . (21)

The global filtering algorithm is sketched in Procedure 2.

Procedure 2 Multistep filtering with global bounds

1) Perform the offline estimation of λp, and define the FPSs, for p ∈ [1, p̄]. Then, perform the offline identification of p̄

independent p-steps ahead prediction models of the type of (2) by solving (18) for each p = 1, . . . , p̄.

2) At each time k, compute online the boundaries of the uncertainty interval Z
g
p̄ (k) using (20).

3) Use the central algorithm (19) to obtain the filtered system output, and compute its guaranteed accuracy bound for

the given time sample with (21).

V. SIMULATION RESULTS

The performance of the proposed filtering approaches have been tested on a numerical example, and compared to those

of the well known Kalman filter, see e.g., [6], [33], [32] for details. We consider a sampled, single input single output linear

time-invariant system in continuous time, whose transfer function is

G(s) =
160

(s+ 10)(s2 + 0.8s+ 16)
,

where s is the Laplace variable. The input provided in the experiments is a three levels signal taking values in the set

{−1, 0, 1} randomly every 4 time instants. We collected 12000 input-output samples with a sampling time Ts = 0.1.

We performed the numerical simulations considering three different disturbance scenarios: a) measurement disturbance

signal given by a uniformly distributed random noise belonging to the interval [−0.2, 0.2]; b) measurement disturbance

signal given by a Gaussian noise d(t) ∼ N (0, σ2
d), with σ2

d = 0.01; c) process and measurement disturbances given by

the Gaussian noises w(t) ∼ N (0, σ2
w), and d(t) ∼ N (0, σ2

d) respectively, with σ2
w = 0.001, and σ2

d = 0.01. The measured

output corresponds to ỹ(k) = z(k) + d(k), while, for scenario c), the system input is u(k) = ũ(k) + w(k), where ũ(k) is

the measured input. The Kalman filter performance, used as a benchmark for comparison, are assessed under two different

conditions: the first one is given by a Kalman filter based on a perfect knowledge of the system model, tuned to give the

best filtering performance starting from unknown initial conditions, and using the noise affected measurements collected

under scenarios a)-c); the second setup is given by a Kalman filter based on a model of the system identified from the

noise affected measurements resorting to the simulation error method, see e.g. [33], [34], tuned to give the best filtering

performance starting from unknown initial conditions. In both cases, we adopt the robust Kalman filter based on the Riccati

equation approach. The first half of the available dataset is then used to perform the identification of the bound λp, of the

FPSs, of the multistep predictors, and of their guaranteed accuracy bounds ¯̂τp(θ̂p), while the second half is used in validation

to compute the filtered output using the local and the global filtering approaches, given by (15) and (19) respectively, and

to obtain the corresponding uncertainty bounds (16) and (21). By applying the redundant constraints removal procedure, the

number of FPS constraints is reduced from 12000 to an average of 331, for each Θp, with p ∈ [1, 60], with a minimum
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Fig. 1. Multistep predictors guaranteed global error bound ¯̂τp(θ̂p). Solid line: uniform measurement disturbance case; dashed line: Gaussian measurement
disturbance case; dotted line: Gaussian process and measurement disturbances case.
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Fig. 2. Uniform measurement noise: filtered output ẑfp̄ with corresponding accuracy bounds. (a): local filtering with p̄ = 7; (b): global filtering with
p̄ = 7; (c): local filtering with p̄ = 35; (d): global filtering with p̄ = 35. Black solid line: measured output ỹ; red solid line: true system output z; black
dotted line: filtered output ẑfp ; black thin lines: filtered output accuracy bounds.



TABLE I

UNIFORM MEASUREMENT NOISE: ROOT MEAN SQUARE ERROR AND ACCURACY BOUNDS AMPLITUDE.

p̄: 3 5 7 15 20 35 39

local
RMSE 0.098 0.074 0.056 0.039 0.038 0.019 0.015

maxk e(k) 0.615 0.542 0.297 0.245 0.223 0.108 0.079

global
RMSE 0.105 0.082 0.064 0.044 0.045 0.027 0.023

maxk e(k) 0.623 0.621 0.317 0.257 0.228 0.127 0.091

Kalman filter - exact RMSE = 0.001 maxk e(k) = 0.043

Kalman filter - estimated RMSE = 0.044 maxk e(k) = 0.228

local τfp̄
avg 0.344 0.288 0.184 0.117 0.110 0.054 0.040
max 0.658 0.565 0.327 0.252 0.242 0.119 0.087

global τ
g
fp̄

avg 0.633 0.563 0.371 0.252 0.251 0.128 0.095

max 0.687 0.624 0.381 0.262 0.262 0.135 0.101

min
p∈[1,p̄]

¯̂τp(θ̂p) 0.687 0.624 0.381 0.262 0.262 0.135 0.101

of 48, and a maximum of 598 constraints. Fig. 1 depicts the estimated global accuracy bounds ¯̂τp(θ̂p) for the independent

multistep prediction models, obtained with α = 1.2 and γ = 1.1, for the three disturbance scenarios considered here.

Table I reports the guaranteed accuracy bounds, the Root Mean Squared Error (RMSE), defined as

RMSE =

√

√

√

√

∑N

k=1

(

z(k)− ẑf (k)
)2

N
,

and the maximum filtering error, given by maxk e(k), with e(k) = z(k) − ẑf (k), for the Kalman filter, and for the local

and global output filtering approaches, considering different values of the prediction horizon p̄, for the case of uniformly

distributed measurement noise. The accuracy bounds of the filtering approaches are then compared to that of the p-steps

ahead model achieving the lowest ¯̂τp(θ̂p) for each considered prediction horizon length. Tables III and IV show the same

performance comparison for the case of Gaussian measurement noise, and for the case of Gaussian process and measurement

noises, respectively.

TABLE II

COMPUTATIONAL TIME COMPARISON FOR LOCAL AND GLOBAL FILTERING APPROACHES.

p̄ : 3 8 15

local
min 0.008 s 0.022 s 0.041 s
max 0.033 s 0.087 s 0.137 s
avg 0.009 s 0.033 s 0.046 s

global
min 2.0·10−5 s 5.3·10−5 s 9.9·10−5 s
max 2.2·10−4 s 2.4·10−4 s 6.2·10−4 s
avg 2.8·10−5 s 8.7·10−5 s 1.2·10−4 s

These results show that the local filtering approach achieves the lowest filtering error, both in terms of RMSE and

maximum error, and the lowest accuracy bounds, both on average and in worst-case, with respect to the global filtering

approach, and to the usage of a single p-steps ahead prediction model. At the same time, the local filtering approach achieves

good performances in terms of RMSE also when compared to the Kalman filter. It is worth to point out that, for p̄ ≥ 15,

the local filtering algorithm outperforms the Kalman filter based on an estimated system model, both in terms of RMSE

and of maximum filtering error, for all the disturbance scenarios considered here. Moreover, for the case of process and

measurement Gaussian disturbances, the local filtering approach is able to achieve a RMSE comparable to that of the Kalman

filter based on the exact system model, and much smaller maximum error values. Clearly, in all the cases where a process

disturbance signal is not present, the Kalman filter based on the exact system model achieves almost zero filtering error,

since the input and the system model are perfectly known, and the only source of uncertainty is given by the unknown

initial conditions.

The global filtering approach achieves intermediate results, closer to that obtained using a single multistep prediction

model, with the advantage of a considerable reduction of the necessary online computational effort over the local approach.

Table II shows a brief comparison of the computational time required by the local and global approaches to provide

the filtered version of one output sample. The simulations were performed on a Laptop equipped with Intel i7 dual-core

processor with 2.4 GHz clock speed and 8 GB of RAM, using MatLab R2018b linprog solver, based on the Dual Simplex

algorithm. Fig. 2 depicts the filtered output obtained using the local and global multistep filtering approaches, together with



their accuracy bounds, for different prediction horizon lengths, and compare them to the real system output z, and to its

measurement ỹ. Fig. 3 depicts an example of the true output uncertainty intervals, obtained as intersection of the multistep

predictors accuracy regions, for the case of uniform measurement noise. Finally, Fig. 4 reports the comparison between the

filtered system output obtained using the local filtering approach, and that obtained from the Kalman filter based on the

exact model of the system, and from the Kalman filter based on an identified system model, for the case of Gaussian process

and measurement noise.

Fig. 3. Uniform measurement noise: example of multistep predictors local accuracy intervals [ζmin
p ζmax

p ] and their intersection. Solid line: local filtered

output ẑfp̄ ; dashed line: true system output z; colored bars: multistep predictors local accuracy intervals [ζmin
p , ζmax

p ] for p̄ = 8; thick black bars:

resulting true output uncertainty set Zp̄(k).

TABLE III

GAUSSIAN MEASUREMENT NOISE: ROOT MEAN SQUARE ERROR AND ACCURACY BOUNDS AMPLITUDE.

p̄: 3 5 7 15 20 35 39

local
RMSE 0.096 0.075 0.058 0.045 0.044 0.047 0.045

maxk e(k) 0.773 0.659 0.498 0.423 0.422 0.313 0.313

global
RMSE 0.112 0.094 0.071 0.048 0.045 0.047 0.045

maxk e(k) 0.781 0.774 0.501 0.427 0.426 0.325 0.325

Kalman filter - exact RMSE = 0.002 maxk e(k) = 0.093

Kalman filter - estimated RMSE = 0.053 maxk e(k) = 1.089

local τfp̄
avg 0.355 0.317 0.212 0.164 0.156 0.110 0.107
max 0.744 0.686 0.470 0.432 0.422 0.295 0.295

global τ
g
fp̄

avg 0.732 0.704 0.509 0.433 0.421 0.309 0.307

max 0.783 0.783 0.513 0.455 0.455 0.326 0.326

min
p∈[1,p̄]

¯̂τp(θ̂p) 0.783 0.783 0.513 0.455 0.455 0.326 0.326

VI. CONCLUSIONS

The data-driven direct filtering approach presented in this paper allows one to address the problem of filtering the output

of linear time-invariant systems subject to unknown-but-bounded uncertainties without deriving a model of the system. The

proposed filtering algorithm is able to achieve good filtering accuracy, quantified in terms of average filtering error, and of

guaranteed accuracy bounds, and it allows one to compute tight guaranteed uncertainty intervals for the true system output.

The proposed method relies on the intersection of the uncertainty regions of different SM multistep predictors, which are

used together to provide a filtered version of the system output, while refining the output uncertainty intervals thanks to

the combined use of different prediction horizon lengths. The local filtering algorithm, and its accuracy bounds, are then



TABLE IV

GAUSSIAN PROCESS AND MEASUREMENT NOISE: ROOT MEAN SQUARE ERROR AND ACCURACY BOUNDS AMPLITUDE.

p̄: 3 5 7 15 25 35

local
RMSE 0.095 0.085 0.058 0.043 0.037 0.037

maxk e(k) 0.379 0.337 0.231 0.206 0.203 0.165

global
RMSE 0.108 0.100 0.066 0.042 0.039 0.037

maxk e(k) 0.395 0.463 0.360 0.326 0.308 0.185

Kalman filter - exact RMSE = 0.030 maxk e(k) = 0.884

Kalman filter - estimated RMSE = 0.043 maxk e(k) = 0.933

local τfp̄
avg 0.392 0.253 0.165 0.135 0.111 0.097
max 0.730 0.514 0.336 0.328 0.298 0.278

global τ
g
fp̄

avg 0.778 0.519 0.397 0.367 0.349 0.320

max 0.795 0.522 0.403 0.403 0.393 0.363

min
p∈[1,p̄]

¯̂τp(θ̂p) 0.795 0.522 0.403 0.403 0.393 0.363
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Fig. 4. Gaussian process and measurement noise: comparison of local filtering algorithm and Kalman filter. (a): local filtering approach and Kalman
filter with exact system model; (b): local filtering approach and Kalman filter with estimated system model. Black solid line: true system output z; dots:
measured output ỹ; red dotted line: local filtered output ẑfp̄ , with p̄ = 35; black thin lines: local filtered output accuracy bounds; blue dashed line: Kalman
filter with exact system model; green dashed line: Kalman filter with estimated system model.

obtained by means of linear programming, which makes them suitable for online implementation in real world applications.

A more conservative global filtering approach was presented to lower the online computational effort, moving the solution

of the optimization problems to an offline phase. Numerical simulations illustrate the performance of the proposed local

filtering approach, which is able to outperform a Kalman filter based on an estimated system model, and to score similar

performance to that of a Kalman filter based on the exact system model, while retaining the ability to provide optimal

guaranteed accuracy bounds for the filtered output.
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