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The turnpike property in the maximum hands-off control

Noboru Sakamoto1,∗ and Masaaki Nagahara2,§

Abstract— This paper presents analyses for the maxi-
mum hands-off control using the geometric methods de-
veloped for the theory of turnpike in optimal control.
First, a sufficient condition is proved for the existence of
the maximum hands-off control for linear time-invariant
systems with arbitrarily fixed initial and terminal points
using the relation with L

1 optimal control. Next, a sufficient
condition is derived for the maximum hands-off control
to have the turnpike property, which may be useful for
approximate design of the control.

I. INTRODUCTION

Optimal control theory plays a significant role in
modern control technologies and their applications to
science and engineering. It provides an optimal strat-
egy of inputs to alter dynamical systems so as for
the inputs and system states to behave in an opti-
mal way. The optimality often requires to minimize
an integral of the inputs and states over the time of
control process (Lagrange type). A typical form of the
integral penalty (cost functional) is quadratic functions
of inputs and states and design methods for this type
is well-developed (see, e.g., [1]).

From the viewpoint of better performance of con-
trolled systems, non-quadratic cost functionals attract
attention of theorists and practitioners in the control
community. For instance, L1 norm of control input is
used to minimize the net amount of control effort and
sometimes called the minimum fuel control problem
(see, e.g., [2]). Recently, a control problem that max-
imizes the time interval over which control input is
exactly zero has been proposed in [3]. This problem is
called maximum hands-off control and is potentially
beneficial from the viewpoints of designing environ-
mentally friendly systems [4], [5], [6]. For instance, this
concept is useful and already used in electric/hybrid
vehicles [7], railway trains [8] and networked control
systems [9]. It is closely related to sparsity of signals,
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which is an active research area in system control and
signal processing [10], [11].

In this paper, we explore further properties of the
maximum hands-off control from the viewpoint of
turnpike phenomenon. The turnpike phenomenon in
optimal control was first observed in econometrics [12]
and later, independently in control theory [13]. The
turnpike theory says that the optimal control, when
time-horizon is large enough, does not depend on the
length of the horizon but depend only on the system
and the cost functional except for thin boundary layers
at the beginning and the end of the control horizon
[14], [15]. One often encounters similar situation when
traveling a long distance by a car; when the destina-
tion is far enough, "it will always pay to get on the
turnpike to cover distance at the best rate of travel ..."
[12, Chapter 12]. The turnpike theory is recognized as
useful tools to simplify the design process of optimal
control [16], [17] and optimal shape design [18], [19].
The tool we employ in the present paper is based on
invariant manifold theory in dynamical system theory
such as (un)stable manifold and λ-lemma. In [20],
they are applied to Hamiltonian systems derived from
necessary condition of optimality in order to better
understand the geometric nature of the turnpike and to
give occurrence conditions for turnpike in terms of the
locations of (un)stable manifolds. In the present paper,
we consider optimal control problems where initial and
terminal states are arbitrarily fixed and show that the
turnpike phenomenon is observed in the maximum
hands-off control under certain conditions, which can
be used to simplify the construction of the control.

The organization of the paper is as follows. In § II,
a sufficient condition for the existence of L1 optimal
control is provided using the direct method of calculus
of variations (see, e.g., [21]), which is a generalization of
the result in [22]. § III shows that under the strong form
of controllability condition and the conditions on initial
and terminal states, the maximum hands-off control ex-
ists. In § IV, it is shown that the turnpike phenomenon
can be seen in the process of the maximum hands-off
control. A simulation result is illustrated in § V.

II. EXISTENCE OF L1 OPTIMAL CONTROL

Let us consider an n-dimensional linear time-
invariant system with m inputs u = (u1, . . . , um)⊤

ẋ = Ax+Bu, x(0) = x0. (1)
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Let T be a given positive constant. For the optimal
control problem defined below, the control set for (1)
is taken as the Banach space L1((0, T );Rm), or L1 in
short, the set of Rm-valued measurable functions over
[0, T ] ⊂ R with

∫ T

0 |u(t)| dt < ∞. Also we introduce
Banach spaces L2((0, T );Rm) and L∞((0, T );Rm) or, L2

and L∞, by the sets of Rm-valued measurable functions
with

∫ T

0

|u(t)|2 dt and max
16i6m

ess sup
[0,T ]

|ui(t)|

being finite, respectively. The norms for L1, L2 and L∞

will be denoted by ‖·‖L1, ‖·‖L2 and ‖·‖L∞ , respectively.
Finally, let us denote the closed unit ball in L∞ by B∞.

The cost functional to be considered in this section
is

J [u] =

∫ T

0

x(t)⊤Qx(t) + |u(t)| dt, (2)

where Q is a real nonnegative definite matrix.
Problem 1: Given T > 0 and x0, xf ∈ Rn for system

(1), find a control u that minimizes J [u] over all control
inputs in L1 ∩B∞ that take the initial state x0 to xf at
t = T .

Note that for finite T , we have

L∞((0, T );Rm) ⊂ L2((0, T );Rm) ⊂ L1((0, T );Rm) (3)

and therefore, for Problem 1, it suffices to look for
controls in B∞.

Now, the main result of this section is stated as
follows.

Theorem 2.1: Suppose that there is a control u ∈ B∞

for (1) taking its initial state x0 at t = 0 to xf at t = T .
Then, there exists an optimal control for Problem 1.

Proof: Let ϕ : Rn → R ∪ {+∞} be the indicator
function for {xf}, namely, ϕ(xf ) = 0 and ϕ(x) = +∞
for x 6= xf . Note that ϕ is lower semi-continuous since
{xf} is a closed set. Define a modified cost functional

J̄ [u] = ϕ(x(T )) +

∫ T

0

x(t)⊤Qx(t) + |u(t)| dt.

Considering J [u] for controls that take the initial state
to x = 0 is equivalent to minimizing J̄ [u] without the
constraint of x(T ) = xf . We shall show that there exists
a ū ∈ B∞ such that

J̄ [ū] = inf
u∈B∞

J̄ [u]. (4)

From the hypothesis there exists a sequence of controls
{uk} ⊂ B∞ such that J̄ [uk] < ∞ and limk→∞ J̄ [uk] =
infB∞

J̄ .
(Step 1) We prove that up to subsequence, {uk} weakly
converges to a ū ∈ B∞. From (3), {uk} is a bounded
sequence in L2 and therefore, up to subsequence, {uk}
weakly converges to a ū ∈ L2. From the weak conver-
gence, for any Borel set D ⊂ [0, T ] ⊂ R,

∫ T

0

χD(t)ui
k(t) dt →

∫ T

0

χD(t)ūi(t) dt, i = 1, . . . ,m

as k → ∞, where χD is the characteristic func-
tion for D. However, since uk ∈ B∞, one obtains
∣

∣

∫

D
ui
k(t) dt

∣

∣ 6 µ(D) for all k ∈ N, i = 1, . . . ,m, where
µ is the Lebesgue measure. Taking limit k → ∞ yields
∣

∣

∫

D
ūi(t) dt

∣

∣ 6 µ(D), which shows that

|ūi(t)| 6 1 a.e. t ∈ [0, T ], i = 1, . . . ,m

since D ⊂ [0, T ] is arbitrary.
(Step 2) Let xk be the solution of (1) corresponding
to uk. Then, it can be shown that {xk} is uniformly
bounded and equicontinuous. Let x̄ be the solution
of (1) for ū. Up to subsequence, using Ascoli-Arzelá
Theorem, {xk} uniformly converges to x̄. The detail of
this step is omitted.
(Step 3) We show that, up to subsequence,

‖ū‖L1 6 lim inf
k→∞

‖uk‖L1 (5)

and (4) holds. Note that ‖uk‖L1 is bounded since uk ∈
B∞. From Hahn-Banach Theorem, there is a bounded
linear functional l : L1 → R such that 〈l, ū〉 = ‖ū‖L1

and 〈l, u〉 6 ‖u‖L1 for u ∈ L1. It then holds that

‖ū‖L1 = 〈l, ū− uk〉+ 〈l, uk〉

6 〈l, ū− uk〉+ ‖uk‖L1,

which yields (5) from the weak convergence of {uk} to
ū. So far, we have shown that

ϕ(x̄(T )) 6 lim inf
k→∞

ϕ(xk(T ))

∫ T

0

xk(t)
⊤Qxk(t) dt →

∫ T

0

x̄(t)⊤Qx̄(t) dt, k → ∞.

It hence follows that

J̄ [ū] = ϕ(x̄(T )) +

∫ T

0

x̄(t)⊤Qx̄(t) + |u(t)| dt

6 lim inf
k→∞

J̄ [uk] = inf
u∈B∞

J̄ [u],

which completes the proof.

III. A SUFFICIENT CONDITION FOR THE EXISTENCE OF

MAXIMUM HANDS-OFF CONTROL

Based on the result in the previous section on L1

optimal control, this section considers the maximum
hands-off control or optimal sparse control, which is
defined as follows.

Problem 2 (Maximum hands-off control): Let us con-
sider system (1). For given T > 0, x0 and xf ∈ Rn, find
a control u that minimizes µ(supp(u)) over all control
inputs in B∞ that take the initial state x0 at t = 0 to xf

at t = T .
In [3, Theorem 8], it is shown that L1 optimization

can be used for maximum hands-off solution under
normality condition, a sufficient condition for which
is explicitly obtained for (1) in [2]. Roughly speaking,
system (1) is called normal if its L1 optimal control
takes values ±1or 0 for almost all t ∈ [0, T ].



Assumption 1 (A sufficient condition for normality):
For (1), all the pairs (A, bj), j = 1, . . . ,m, are
controllable and A is nonsingular.

Additionally, let us introduce notations to specify
spectral condition of system (1). For a matrix A ∈ Rn×n,
let L +(A) (L −(A)) denote the generalized eigenspace
for the eigenvalues of A in the open left-half (right-
half) plain in C and let L

0+(A) = L
+(A) ⊕ L

0(A),
L 0−(A) = L −(A)⊕L 0(A), where L 0(A) is the gener-
alized eigenspace for the eigenvalues on the imaginary
axis.

Theorem 3.1: Suppose that Assumption 1 holds. If
x0 ∈ L 0−(A) and xf ∈ L 0+(A), then for sufficiently
large T , a solution for Problem 2 exists.

Proof: We show that an L1 optimal control exists
for Problem 1 with Q = 0. From the controllability
of (A,B), there exist r > 0 and t0 > 0 such that for
all points in |x| < r there exist controls u(t) that take
them to the origin within [0, t0] and satisfy |u(t)| 6 1
for t ∈ [0, t0]. Also from x0 ∈ L

0−(A), there exists an
input with |u(t)| 6 1 such that the corresponding state
starting at x0 at t = 0 enters |x| 6 r within a finite
time, say, t1 > 0. By considering ẋ = −Ax and using
the condition xf ∈ L 0+(A), it is shown that for x0, xf ,
there exists a control u(t) with |u(t)| 6 1 that takes x0 to
xf at t = T if T > 2(t0+ t1). Then, Theorem 2.1 applies
to show that there exists a solution to Problem 1. Now
we use the results in [2, Chapter 6] with the normality
condition in Assumption 1 to conclude that this L1

optimal control is bang-off-bang, namely, it takes only
three values of ±1 and 0 almost everywhere. Therefore,
from Theorem 8 in [3], this L1 optimal control is
actually a maximum hands-off control.

IV. TURNPIKE PHENOMENON IN MAXIMUM

HANDS-OFF CONTROL

As we have seen in the previous section, using L1

optimal control theory, it is possible to provide a con-
dition for the existence of maximum hands-off control.
Theorem 3.1, however, provides little information on
how to construct it. The present section shows that un-
der certain conditions, the optimal control exhibits the
turnpike phenomenon, from which one often deduces
approximate designs.

Here we provide only a basic definition and facts on
turnpike property. For more detail, we refer to [14], [15].
The pair of the optimal control uT and corresponding
states xT for (1)-(2) is said to have the turnpike property
if for any ε > 0, there exists an ηε > 0 such that

µ({t > 0 | |uT (t)|+ |xT (t, x0)| > ε}) < ηε

for all T > 0, where ηε depends only on ε, A, B, x0, and
Q. In [23], the turnpike inequality condition is proposed
which requires for any T > 0, uT and xT to satisfy

|uT (t)|+ |xT (t, x0)| 6 K
[

e−at + e−a(T−t)
]

for all t ∈ [0, T ] and some constants K > 0, a > 0
which are independent of T . The turnpike inequality
condition is known to be sufficient for the turnpike
property.

A. Review of geometric turnpike analysis via invariant
manifold theory

This subsection summarizes the geometric frame-
work in [20] which will be useful for L1 optimal control
analysis and subsequently for maximum hands-off con-
trol. Let us consider a nonlinear dynamical system of
the form

ż = f(z), (6)

where f : RN → RN is a class of functions satisfying
the following assumptions.

Assumption 2: (i) f(0) = 0.
(ii) f is locally C1 class around z = 0.

(iii) f is hyperbolic at z = 0, namely, (∂f/∂z)(0) ∈
RN×N has k eigenvalues with strictly negative real
parts and N − k eigenvalues with strictly positive
real parts.

(iv) (6) admits unique Carathéodory solutions for all
initial conditions (see, e.g., [24, Section I.5]).

It is known, as the stable manifold theorem, that there exist
continuous manifolds S and U , called stable manifold
and unstable manifold of (6) at 0, respectively, defined
by

S := {z ∈ R
N |ϕ(t, z) → 0 as t → ∞},

U := {z ∈ R
N |ϕ(t, z) → 0 as t → −∞},

where ϕ(t, z) is the solution of (6) starting z at t = 0. It
is known that S, U are invariant under the flow of f .
It holds that

|ϕ(t, z0)| 6 Ke−at for t > 0 (7a)

|ϕ(t, z1)| 6 Keat for t 6 0, (7b)

where K > 0 is a constant dependent on z0 and z1
and a > 0 is a constant independent of z0 and z1.
See, e.g., [24], [25] for more detail on the theory of
stable manifold. Next Proposition, which is taken from
[20, Proposition 2.2] and proved using the λ-lemma
(see, e.g., [25]), describes more detailed behaviors of
solutions near the stable and unstable manifolds.

Proposition 4.1: Suppose that f satisfies Assump-
tion 2 and take K , a in (7). Then the following hold.

(i) There exists a T0 > 0 such that for every T > T0

there exists a ρ > 0 such that

|ϕ(t, y)| 6 Ke−at for t ∈ [0, T ], y ∈ B(z0, ρ),

where B(x0, ρ) is the N -dimensional ball centered
at z0 with radius ρ. Moreover, ρ → 0 when T →
∞.

(ii) There exist a T0 < 0 such that for every T < T0

there exists a ρ > 0 such that

|ϕ(t, y)| 6 Keat for t ∈ [T, 0], y ∈ B(z1, ρ),



Moreover, ρ → 0 when T → −∞.
(iii) For any (N−k)-dimensional disc D̄ transversal to

S at z0 and any k-dimensional disc Ē transversal
to U at z1, there exists a T0 > 0 such that for any
T > T0 there exist an (n − k)-dimensional disc
D ⊂ D̄ transversal to S at z0 and a k-dimensional
disc E ⊂ Ē transversal to U at z1 such that ϕ(T,D)
intersects ϕ(−T,E) at a single point.

The above Proposition is used to prove the following
result which shows that turnpike-like behaviors can be
observed in a general hyperbolic dynamical systems.

Theorem 4.2: Suppose that f satisfies Assumption 2.
Then, for any z0 ∈ S, any z1 ∈ U , any (N − k)-
dimensional disc D̄ transversal to S at z0 and any k-
dimensional disc Ē transversal to U at z1, there exists
a T0 > 0 such that for every T > T0 there exist ρ > 0,
y0 ∈ B(z0, ρ) ∩ D̄ and y1 ∈ B(z1, ρ) ∩ Ē such that
ϕ(T, y0) = y1 and

|ϕ(t, y0)| 6 K
[

e−at + e−a(T−t)
]

for t ∈ [0, T ].

Moreover, ρ → 0 when T → ∞.
We refer to [20, Figure 1] for the geometric interpreta-
tion and proof of Theorem 4.2.

B. Turnpike analysis for maximum hands-off control

Theorem 4.3: Assume that A has no eigenvalues on
the imaginary axis. Suppose also that Assumption 1
holds and that x0 ∈ L −(A), xf ∈ L +(A). Then,
for sufficiently large T > 0, the maximum hands-off
control uT (t) exists for (1) and satisfies

|uT (t)|+ |xT (t, x0)| 6 K
[

e−at + e−a(T−t)
]

for t ∈ [0, T ]

(8)
where K > 0 and a > 0 are constants independent
of T and xT (t, x0) is the corresponding solution to
(1). Moreover, when T → ∞, the maximum hands-off
control tends to two maximum hands-off controls, one
of which takes the states from x0 to the origin and the
other takes them from the origin to xf .

Proof: (Step 1) It has been shown, in the proof of
Theorem 3.1, that the maximum hands-off control exists
which is also L1 optimal for Problem 1 with Q = 0.
From the necessary condition, there exist x(t), p(t) on
[0, T ] satisfying

ẋ = Ax +Bdz(B⊤p) (9a)

ṗ = −A⊤p (9b)

with x(0) = x0 and x(T ) = xf , where

dz(x) =
[

dz(x1), . . . , dz(xn)
]⊤

,

dz(w) =











−1 (if w < −1)

0 (if − 1 < w < 1)

1 (if 1 < w)

dz(w) ∈ [−1, 0] (if w = −1)

dz(w) ∈ [0, 1] (if w = 1)

is the dead-zone function which is a set-valued func-
tion. The optimal control u∗ is written with x(t), p(t)
in (9) as

u∗(t) = dz(B⊤p(t)). (10)

This step is a simple restatement of the results in [2,
Chapter 6].
(Step 2) We show that (9) satisfies Assumption 2. For
sufficiently small x, p, (9) is C1 and from the spectral
conditions on A, it is hyperbolic. We now consider
initial value problems for (9) and prove that it admits
unique Carathéodory solutions. Take an arbitrary point
(ξ0, η0) ∈ R2n as an initial condition for (9). The
normality condition (Assumption 1) means that the set
of times on which B⊤p(t) = ±1 holds has Lebesgue
measure 0 ([2, Chapter 6]). Therefore, one sees that

ẋ = Ax+Bdz(B⊤ exp(−A⊤t)η0)

satisfies the Carathéodory condition for existence and
uniqueness for any initial conditions. It is also seen that
the existence domain is R.
(Step 3) Let S and U be stable and unstable manifolds
of (9) at (x, p) = (0, 0), respectively. One sees that for
initial point (ξ0, 0) with ξ0 ∈ L −(A), the corresponding
solution satisfies (x(t), p(t)) → 0 as t → ∞ since p(t) ≡
0 and therefore, (ξ0, 0) ∈ S for ξ0 ∈ L −(A). Similarly,
we have (ξf , 0) ∈ U for ξf ∈ L +(A). Now, to apply
Theorem 4.2, let z0 = (x0, 0), z1 = (xf , 0) and consider

D̄ ∩B(z0, ρ) = {(x0, p) | |p| < ρ}

Ē ∩B(z1, ρ) = {(xf , p) | |p| < ρ}.

Let ϕ(t, (x, p)) be the solution of (9) starting from (x, p)
at t = 0. The theorem says that for sufficiently large T ,
there exist p0, pf and ρ > 0 with (x0, p0) ∈ D̄∩B(z0, ρ)
and (xf , pf) ∈ Ē ∩ B(z0, ρ) such that ϕ(T, (x0, p0)) =
(xf , pf), namely, a solution of a 2-point boundary value
problem, and

|xT (t)|+ |pT (t)| 6 K
[

e−at + e−a(T−t)
]

for t ∈ [0, T ],

where we have written (xT (t), pT (t)) = ϕ(t, (x0, p0))
and K , a are independent of T . From (10), we obtain (8)
by properly changing K if necessary. The last statement
is shown from the last one in Theorem 4.2 noting that
ρ → 0 implies y0 → z0 and y1 → z1.

Remark 4.1: 1) The occurrence of turnpike in The-
orem 4.3 depends on the locations of x0 and xf

(subspaces they belong to). This is due to the con-
straint |u| 6 1 imposed on the maximum hands-off
control problem.

2) The spectral condition on A is necessary to apply
Theorem 4.2 which essentially relies on the hyper-
bolic nature of dynamical systems.

V. SIMULATION

In this section, we show simulation to illustrate the
properties of maximum hands-off control that have
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Fig. 1. Maximum hands-off control u(t) with T = 2.

been proved in the previous sections. We consider the
linear system given in (1) with

A =

[

1 1
0 −1

]

, B =

[

1
1

]

. (11)

We here assume a single input (i.e., m = 1) for simplic-
ity. It is easily checked that (A,B) is controllable. For
this system, we have

L
−(A) =

{[

x1

x2

]

∈ R
2
∣

∣ 2x1 + x2 = 0

}

,

L
+(A) =

{[

x1

x2

]

∈ R
2
∣

∣x2 = 0

}

.

(12)

We set the initial and terminal states as follows:

x0 =

[

1
−2

]

∈ S, xf =

[

1
0

]

∈ U. (13)

For this system, we first compute the maximum
hands-off control, the solution to Problem 2, with T =
2. Figure 1 shows the optimal control. Note that this is
obtained by L1 optimization, which is equivalent to the
L0 optimal solution since A is non-singular [3]. We can
see the control is sufficiently sparse, namely, u(t) = 0
for t ∈ (0.046, 1.69). In fact, we have ‖u‖0 ≈ 0.356 ≪ 2.

Next, we show the turnpike property of the maxi-
mum hands-off control for this system. We compute
the optimal controls for T = 2, 4, 8, 16, 32 by solving
the associated L1 optimal control problems. Note again
that since A is non-singular, the L1 optimal solutions
are also L0 optimal. Figure 2 shows the state trajectories
with the optimal controls. We can see that as T becomes
larger, the trajectory from x0 to xf approaches closer
to the origin in the middle of the path. Also, Figure
3 shows the magnitude ‖x(t)‖2 =

√

x1(t)2 + x2(t)2 of
the controls. In this figure, we normalize the time axis
as t/T for the comparison of time duration on which
‖x(t)‖2 ≈ 0. For larger horizon length T , the control
stays around the origin for a longer time duration.

0 0.2 0.4 0.6 0.8 1
x1

-2

-1.8

-1.6
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-0.6
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-0.2

0

x 2

state-space trajectory

T = 2
T = 4
T = 8
T = 16
T = 32

x
0

Fig. 2. State-space trajectories by the maximum hands-off control
with T = 2, 4, 8, 16, 32.
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Fig. 3. Magnitude ‖x(t)‖2 of the states with T = 2, 4, 8, 16, 32.

These results well illustrate the turnpike property dis-
cussed in Section IV.

VI. CONCLUSIONS

In this paper, we considered the maximum hands-off
control problem, which attracts much attention from
the viewpoints of solving environmental problems [3],
using the geometric analysis method developed for the
theory of turnpike in optimal control. Using the equiv-
alence of maximum hands-off control and L1 optimal
control under certain hypotheses, the existence of the
maximum hands-off control for linear time-invariant
systems is proved. Using the invariant manifold the-
ory, it has been shown that the turnpike phenomenon
appears in the maximum hands-off control under the
conditions of normality and spectral conditions. The
result may be useful from the fact that the occurrence of
turnpike often leads to simplification of optimal control
design.
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