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Accelerated Multi-Agent Optimization Method over Stochastic Networks

Wicak Ananduta, Carlos Ocampo-Martinez, and Angelia Nedić

Abstract— We propose a distributed method to solve a
multi-agent optimization problem with strongly convex cost
function and equality coupling constraints. The method is based
on Nesterov’s accelerated gradient approach and works over
stochastically time-varying communication networks. We con-
sider the standard assumptions of Nesterov’s method and show
that the sequence of the expected dual values converge toward
the optimal value with the rate of O(1/k2). Furthermore, we
provide a simulation study of solving an optimal power flow
problem with a well-known benchmark case.

Index Terms— multi-agent optimization, distributed method,
accelerated gradient method, distributed optimal power flow
problem

I. INTRODUCTION

The advancement on information, computation and com-

munication technologies promotes the deployment of dis-

tributed approaches to solve complex large-scale problems,

e.g., in power networks [1], [2] and water networks [3]. On

one hand, such approaches offer flexibility and scalability.

On the other hand, they require more complex design than

the centralized counterpart as multiple computational units

must cooperate and communicate among each other.

In this paper, we deal with a multi-agent optimization

problem, in which the cost function is a summation of a

strongly convex cost functions. Moreover, the problem has

equality coupling constraints. This formulation is mainly

motivated from optimal power flow (OPF) problems of large-

scale power networks [1] and resource allocation problems

[2], [4]. Furthermore, the problem can also be considered as

a subclass of extended monotropic problems [5].

We solve the problem in a distributed manner through its

dual to deal with the coupling constraints. Particularly, we

develop the method based on Nesterov’s accelerated gradient

method [6], [7], which is an accelerated first-order approach,

with the rate of O(1/k2). This accelerated method has been

used to develop a fast distributed gradient method to solve

network utility maximization problems [8], a fast alternating

direction method of multipliers (ADMM) for a certain class

of problems with strongly convex cost function [9], and

distributed model predictive controllers [10], among others.

However, different from the aforementioned papers, one

feature of the system that we particularly pay attention to

is the time-varying nature of the communication network,

over which the agents exchange information. Specifically
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here, we assume that the network is stochastically time-

varying and this assumption can model communication fail-

ures that might occur in large-scale systems. Similar setup

on communication networks can be found in [11]–[14],

which develop unaccelerated first-order methods, and [15],

[16], which propose a Nesterov-like fast gradient method for

distributed optimization problem with a common decision

variable. Nevertheless, whereas the former four papers do

not consider an accelerated method, the latter ones deal with

a different problem and work directly in the primal space.

Note that different models of time-varying communication

networks have also been considered, as in [17]–[19].

To summarize, the main contribution of this paper is

an accelerated first-order distributed method for a multi-

agent optimization problem, which works over stochastic

communication networks. As a fully distributed algorithm,

the parameter design and iterations only need local infor-

mation, i.e., neighbor-to-neighbor communication. Further-

more, since the method is based on Nesterov’s accelerated

approach, it enjoys the convergence rate of O(1/k2) on the

expected dual value, as shown in the convergence analysis.

The paper is structured as follows. Section II provides

the problem setup and the cosidered model of time-varying

communication networks. Afterward, Section III presents

the proposed distributed method along with its convergence

statement. Then, in Section IV, we show the convergence

analysis of the proposed method. Furthermore, we also

showcase the performance of the proposed method to solve

an intra-day OPF problem for a well-known benchmark case

in Section V. Finally, Section VI concludes the paper by

providing some remarks and discussions about future work.

Notation and properties

The set of real numbers is denoted by R. For any a ∈ R,

R≥a denotes {b ∈ R : b ≥ a}. The inner product of vectors

x, y ∈ R
n is denoted by 〈x, y〉, whereas the Euclidean

vector norm and the induced matrix norm are denoted by

‖ · ‖. The operator col{·} stacks the arguments column-wise.

We use 0n to denote zero vector with dimension n. When

the dimension is clear from the context, we may omit the

subscript. Furthermore, the following properties will be used

in the convergence analysis.

Property 1 (Strong convexity): A differentiable function

f(x) : Rn → R is strongly convex, if for any x, y ∈ R
n

it holds that

〈∇f(y)−∇f(x), y − x〉 ≥ σ‖y − x‖2,

where σ is the strong convexity constant. 2
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Property 2 (Lipschitz smoothness): A function f(x) :
R

n → R is continuously differentiable with Lipschitz con-

tinuous gradient, if for any x, y ∈ R
n it holds that

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖,
where L denotes the Lipschitz constant. 2

II. PROBLEM SETUP

A. Multi-agent optimization problem

We consider a multi-agent system, where the set of agents

is denoted by N := {1, 2, . . . , N}. The agents want to

cooperatively solve an optimization problem in the following

form:

minimize
ui∈Ui,∀i∈N

N
∑

i=1

fi(ui) (1a)

s.t. Gi
iui +

∑

j∈Ni

Gj
iuj = gi, ∀i ∈ N , (1b)

where ui ∈ R
ni and Ui ∈ R

ni denote the decision vector and

the local set constraint of agent i, respectively. In (1a), each

cost function fi(ui) is associated to agent i. Moreover, each

equality in (1b), with the non-zero matrix Gj
i ∈ R

mi×nj , for

each j ∈ Ni ∪ {i} and i ∈ N , and gi ∈ R
mi , is assigned

to agent i and couples agent i with some other agents, i.e.,

j ∈ Ni ⊆ N . Based on the formulation of the coupling

constraints in (1b), we can represent the system as a directed

graph, denoted by S = (N ,V), where V denotes the set of

links that represents how each agent influences the coupling

constraint (1b) of other agents. Specifically, the link (j, i) ∈
V implies that uj appears on the coupling constraint of agent

i, i.e., j ∈ Ni. Therefore, we can say that Ni is the set of

in-neighbors of agent i. On the other hand, we also introduce

the set of out-neighbors, denoted by Mi, i.e., Mi = {j ∈
N : (i, j) ∈ V}. Furthermore, we define i ∈ Mi and, in

general, Mi may not be equal to Ni ∪ {i} (see Figure 1).

Problem (1) is a subclass of the extended monotropic

problem [5]. Resource allocation problems [2], [4] can also

be formulated as in (1). A particular practical problem of

interest, which can be represented by (1), is the direct current

(DC) OPF problem [1], where the decision vectors ui might

consist of the real powers and phase angle, whereas (1b) rep-

resents the DC approximation of the power flow equations.

Note that, in the DC-OPF problem, Mi = Ni ∪ {i}.

Now, we consider the following assumptions hold.

Assumption 1: The function fi : R
ni → R, for each

i ∈ N , is differentiable and strongly convex with strong

convexity parameter denoted by σi. 2

Assumption 2: The local set Ui, for each i ∈ N , is

compact and convex. 2

Assumption 3: The feasible set of Problem (1) is non-

empty. 2

Assumptions 1 and 2 are rather restrictive, however, com-

monly used in the applications considered, i.e., OPF and

resource allocation problems. Moreover, these assumptions

allow us to apply Nesterov’s accelerated gradient method to

solve the dual problem of (1), as these assumptions result

G1

1
u1 +G2

1
u2 = g1

G2

2
u2 +G3

2
u3 = g2

G3

3
u3 +G1

3
u1 = g3

1

2 3

(1,3)

(3,2)

(2,1)

(1,1)

(3,3)(2,2)

Set of coupling constraints Graph representation

Fig. 1. A small network of three agents. Notice that N1 = {2} and
M1 = {1, 3}.

in a dual function with Lipschitz continuous gradient. This

statement is elaborated further in Section IV. Furthermore,

Assumption 3 is considered to ensure that the proposed

algorithm can find a solution to Problem (1).

B. Stochastic communication networks

The aim of this work is to design a distributed optimization

algorithm that solves Problem (1). As a distributed method,

the algorithm requires each agent to communicate with other

agents over a communication network, which we suppose

to be time-varying. Precisely, the communication network

is represented by the undirected graph G(k) = (N ,L(k)),
where L(k) ⊆ N × N denotes the set of communication

links that may vary over iteration k, i.e., {i, j} ∈ L(k)
implies that agents i and j can communicate at iteration

k. Thus, we denote by Ei(k) the set of agents that can

exchange information with agent i, i.e., Ei(k) = {j ∈ N :
{i, j} ∈ L(k)}. Furthermore, we consider the activation of

communication links as a random process and the following

assumption holds.

Assumption 4: The set L(k) is a random variable that

is independent and identically distributed across iterations.

Furthermore, any communication link of neighboring agents

is active with a positive probability denoted by β{i,j}, i.e.,

P({i, j} ∈ L(k)) = β{i,j} > 0, for {i, j} ∈ {{i′, j′} ∈
N ×N : j′ ∈ Ni′ , i

′ ∈ N}. Additionally, β{i,i} = 1, for all

i ∈ N . 2

Assumption 4 implies that the probability that agent i can

receive information from all its in-neighbors j ∈ Ni at the

same iteration k is positive. Let αi denote this probability,

thus we have that αi =
∏

j∈Ni
β{i,j}.

III. PROPOSED METHOD

In this section, we propose a distributed method to solve

Problem (1) over stochastic communication networks. The

proposed method actually solves the dual problem associ-

ated to (1) and is based on Nesterov’s accerelated gradient

approach [6], [7].

To that end, let λi ∈ R
mi denote the Lagrange multiplier

associated to (1b), for each i ∈ N , and λ = col{λi, i ∈
N}. Thus, we define the dual function, associated to (1) and

denoted by q(λ), as follows:

q(λ) =
∑

i∈N

qi(λ
i), (2)



Algorithm 1 Distributed accelerated method

Initialization (for each i ∈ N )

Set θ(1) = 1 and λ̂i(1) = λi(0) = 0
Iteration (for each i ∈ N , k ≥ 1)

1) Compute ui(k):

ui(k) = arg min
ui∈Ui

fi(ui) +
∑

j∈Mi

〈Gi⊤
j λ̂j(k), ui〉 (5)

2) Send Gi
jui(k) to out-neighbors j ∈ Mi and receive

Gj
iuj(k) from the in-neighbors j ∈ Ni

3) Compute λi(k):

λi(k) = λ̂i(k) + ηi



Gi
iui(k) +

∑

j∈Ni

Gj
iuj(k)− gi





(6)

4) Compute θ(k + 1) =
1+

√
1+4θ2(k)

2

5) Compute λ̂i(k + 1):

λ̂i(k+1) = λi(k)+
θ(k)− 1

θ(k + 1)
(λi(k)− λi(k − 1)) (7)

6) Send λ̂i(k + 1) to in-neighbors j ∈ Ni and receive

λ̂j(k + 1) from the out-neighbors j ∈ Mi

where

qi(λ
i) = min

ui∈Ui







fi(ui)− 〈λi, gi〉+
∑

j∈Mi

〈Gi⊤
j λj , ui〉







.

(3)

Note that λi denotes all Lagrange multipliers associated

to the coupling constraints that involve agent i, i.e., λi =
col{λj , j ∈ Mi}. We will then solve the dual problem:

maximize q(λ), (4)

by adapting Nesterov’s accelerated gradient method such

that it works over stochastically time-varying communication

networks (c.f. Section II-B). Note that, due to Assumptions

1-3, the strong duality holds [20, Proposition 5.2.1].

Hence, first we state the distributed method based on

Nesterov’s accelerated gradient approach without consider-

ing stochastic communication networks, i.e., the information

required to perform the updates is always available. The

method is shown in Algorithm 1. For a detailed design

procedure of Nesterov’s accelerated method, the reader might

check [7], [8]. The main steps in the iteration of Nesterov’s

accelerated approach can be seen in Steps 4 and 5 where an

interpolated point of each Lagrange multiplier λi (denoted

by λ̂i) is computed. As a distributed method, these steps

are carried out by each agent. Furthermore, the step-size

of the gradient ascent in (6), denoted by ηi, is a local

variable that must be chosen appropriately (c.f. Theorem 1).

Finally, note that, in (5), ui is updated by solving a local

minimization derived from (3) and based on the interpolated

points of the Lagrange multipliers from the out-neighbors,

Algorithm 2 Distributed accelerated method over stochastic

networks

Initialization (for each i ∈ N )

Set θ(1) = 1, λi(0) = 0, and ξ̂ij(1) = ξij(0) = 0, for all

j ∈ Mi

Iteration (for each i ∈ N , k ≥ 1): with random realization

of L(k)
1) Compute ui(k):

ui(k) = arg min
ui∈Ui

fi(ui) +
∑

j∈Mi

〈Gi⊤
j ξ̂ij(k), ui〉 (8)

2) Send Gi
jui(k) to out-neighbors j ∈ Ei(k) ∩ Mi and

receive Gj
iuj(k) from in-neighbors j ∈ Ei(k) ∩Ni

3) Compute λi(k):

λi(k) =















ξ̂ii(k) + ηi

(

Gi
iui(k) +

∑

j∈Ni
Gj

iuj(k)−gi
)

,

if Ni ⊆ Ei(k)
ξ̂ii(k), otherwise

(9)

4) Send λi(k) to in-neighbors j ∈ Ei(k) ∩Ni and receive

λj(k) from out-neighbors j ∈ Ei(k) ∩Mi

5) Update ξij(k), for all j ∈ Mi:

ξij(k) =

{

λj(k), for j ∈ Mi ∩ Ei(k),
ξ̂ij(k), otherwise

(10)

6) Compute θ(k + 1) =
1+

√
1+4θ2(k)

2

7) Compute ξ̂ij(k + 1), for all j ∈ Mi:

ξ̂ij(k + 1) = ξij(k) +
θ(k) − 1

θ(k + 1)

(

ξij(k)− ξij(k − 1)
)

(11)

i.e., λ̂i = col{λ̂j , j ∈ Mi}. Due to Assumptions 1 and 2,

the local minimization in Step 1 admits a unique solution.

Now, we are ready to state the proposed method, which

works over stochastic communication networks. The method

is shown in Algorithm 2. We adjust the gradient step update

(Step 3) in order to take into account the time-varying nature

of the communication network. As can be seen in Step 3, λi
is only updated with the gradient step when agent i receives

new information from all in-neighbors in Ni. Furthermore,

the required Lagrange multipliers from the other agents

j ∈ Mi are tracked by agent i using the auxiliary vector

ξi = col{ξij , j ∈ Mi}, where each ξij is updated in (10).

Additionally, each agent i must compute the interpolated

point of ξij , denoted by ξ̂ij in (11). This step is different than

the steps in Algorithm 1, where the exchanged information

is actually the interpolated point λ̂i.
The outcome of Algorithm 2, which is the main result of

this work, is stated as the following theorem.

Theorem 1: Let Assumptions 1-4 hold and the sequence

λ(k) be generated by Algorithm 2 with ηi ∈ (0, 1/Li], where

Li is defined as follows:

Li =
∑

j∈Ni∪{i}

‖Gj‖2
σj

, (12)



in which Gj = col{Gj
i , i ∈ Mj} and σj is the strong con-

vexity constant of fj(uj). Furthermore, let q(λ) be defined

by (2) and λ⋆ be an optimal solution of the dual problem

(4). Then,

1) It holds that

E (q(λ⋆)− q(λ(k))) ≤ C

(k + 1)2
, (13)

where C is a non-negative constant.

2) Hence, it also holds that

lim
k→∞

E (q(λ⋆)− q(λ(k))) = 0, (14)

almost surely. 2

Theorem 1 shows that the expected dual values converge

to the optimal dual value with the rate of O(1/k2). Further-

more, the choice of parameter ηi, for each agent i ∈ N ,

which is sufficient to achieve convergence, can be obtained

locally, i.e., agent i only requires some information from its

in-neighbors in Ni (see (12)).

IV. CONVERGENCE ANALYSIS

First, Section IV-A provides some preliminary results,

which become the building blocks to prove Theorem 1. Then,

the proof of Theorem 1 is given in Section IV-B.

A. Preliminary results

First, we show that the local dual function, qi(λ
i), for any

i ∈ N , is a Lipschitz smooth function.

Lemma 1: Let Assumptions 1-3 hold. The local dual func-

tion qi(λ
i) defined in (3) is Lipschitz smooth with Lipschitz

constant
‖Gi‖2

σi
. 2

Proof: Recall the definition of qi(λ
i) in (3) and

let ui(λ
i) = argminui∈Ui

{

fi(ui) +
∑

j∈Mi
〈Gi⊤

j λj , ui〉
}

and vi(µ
i)= argminui∈Ui

{

fi(ui) +
∑

j∈Mi
〈Gi⊤

j µj , ui〉
}

.

Since ui(λ
i), vi(µ

i) ∈ Ui, the optimality conditions [21] of

the preceding minimizations yield the following inequalities:

0 ≤ 〈∇fi(ui(λi)) +Gi⊤λi, vi(µ
i)− ui(λ

i)〉, (15)

0 ≤ 〈∇fi(vi(µi)) +Gi⊤µi, ui(λ
i)− vi(µ

i)〉. (16)

Combining (15) and (16) gives

0 ≤ 〈∇fi(ui(λi)) −∇fi(vi(µi)), vi(µ
i)− ui(λ

i)〉
+ 〈Gi⊤(λi − µi), vi(µ

i)− ui(λ
i)〉

≤ −σi‖vi(µi)− ui(λ
i)‖2

+ 〈λi − µi, Gi(vi(µ
i)− ui(λ

i))〉, (17)

where the second inequality is obtained since fi(·) is strongly

convex (c.f. Property 1). Furthermore, the strong convexity

of fi(·) also implies that ui(λ
i) is unique and qi(λ

i) is

differentiable, with ∇qi(λi) = Giui(λ
i) − g̃i, where g̃i =

col{g̃ij , j ∈ Mi} and g̃ij = 0mj
if j 6= i and g̃ij = gi

otherwise. Thus,∇qi(µi) −∇qi(λi) = Gi(vi(µ
i) − ui(λ

i)).
Using [8, Lemma 1.1] we obtain that

1

‖Gi‖2 ‖∇qi(µ
i)−∇qi(λi)‖2 ≤ ‖vi(µi)− ui(λ

i)‖2. (18)

By adding 〈λi−µi, g̃i−g̃i〉 = 0 to the right-hand side of (17),

and then rearranging (17) as well as using (18) and the fact

that Givi(µ
i)− g̃i = ∇qi(µi) and Giui(λ

i)− g̃i = ∇qi(λi),
we obtain that

σi
‖Gi‖2 ‖∇qi(µ

i)−∇qi(λi)‖2

≤ 〈λi − µi,∇qi(µi)−∇qi(λi)〉
≤ ‖µi − λi‖‖∇qi(µi)−∇qi(λi)‖,

where the second inequality is obtained using the Cauchy-

Schwarz inequality. Thus, we have that

‖∇qi(µi)−∇qi(λi)‖ ≤ ‖Gi‖2
σi

‖µi − λi‖,

showing that qi(·) is Lipschitz smooth with Lipschitz con-

stant
‖Gi‖2

σi
(c.f. Property 2).

Remark 1: The Lipschitz constant of qi(·) can be com-

puted locally by each agent i ∈ N since Gi and parameter

σi are local information. 2

Lemma 2: Let Assumptions 1-3 hold. For any µ, λ ∈
R

∑
i∈N mi , it holds that

q(λ) ≥ q(µ) + 〈λ− µ,∇q(µ)〉 −
∑

i∈N

Li

2
‖λi − µi‖2, (19)

where Li, for each i ∈ N , is defined in (12).

Proof: Since qi(λi) is concave and has a Lipschitz

smooth gradient (Lemma 1), it follows from [22] that

qi(λ
i) ≥ qi(µ

i) + 〈λi − µi,∇qi(µi)〉 − ‖Gi‖2
2σi

‖λi − µi‖2.
(20)

The desired inequality follows by summing (20) over i ∈ N .

The Lipschitz smoothness property of the dual function

(Lemma 2) is sufficient to show the inequality (22) stated

in Lemma 3, which will become the key to prove Theorem

1. Note that Lemma 3 is similar to [7, Lemma 4.1] and [9,

Lemma 5], although, differently from these references, the

step-size ηi in (6) does not need to be the Lipschitz constant

of the (dual) function.

Lemma 3: Let Assumptions 1-3 hold and the sequence

{θ(k), ui(k), λi(k), λ̂i(k), ∀i ∈ N} be generated by Algo-

rithm 1, with ηi ∈ (0, 1/Li], where Li is defined by (12).

Furthermore, let λ⋆ = col{λ⋆i , i ∈ N} be an optimal solution

of the dual problem (4) and define ωi(k) by

ωi(k) = θ(k)λi(k)− (θ(k)− 1)λi(k − 1)− λ⋆i , (21)

for each i ∈ N . Then, it holds that

∑

i∈N

1

2ηi

(

‖ωi(k + 1)‖2 − ‖ωi(k)‖2
)

≤

(θ(k))2(q(λ⋆)− q(λ(k)))

− (θ(k + 1))2(q(λ⋆)− q(λ(k + 1))).

(22)

Proof: see Appendix A.



B. Proof of Theorem 1

Recall that αi is the probability that the communication

links between agent i and all its in-neighbors j ∈ Ni are

active, i.e., αi =
∏

j∈Ni
β{i,j} and introduce the following

function V (k):

V (k) =
∑

i∈N

1

2αiηi
‖ωi(k)‖2, (23)

where ωi(k) is defined in (21).

To show the convergence, first we evaluate the sequence

{E(V (k))}. To this end, define F(k) as the filtration up to

and including iteration k, i.e., F(k) = {L(ℓ), λ(ℓ), ξ(ℓ), ℓ =
0, 1, 2, . . . , k}, where ξ(k) = col{ξi(k), i ∈ N}. Based on

(9), λi(k), for each i ∈ N , is updated with the gradient

ascent rule only when all the in-neighbors of agent i in Ni

send new information to agent i. Otherwise, λi(k) = ξ̂ii(k).
Therefore, if Ni ⊆ Ei(k + 1), ωi(k + 1) is computed using

λi(k + 1) updated with the gradient ascent step. Otherwise,

since λi(k + 1) = ξ̂ii(k + 1) (c.f. (9)), we have that

ωi(k + 1) = θ(k + 1)ξ̂ii(k + 1)− (θ(k + 1)− 1)λi(k)− λ⋆i

= θ(k + 1)λi(k) + (θ(k)− 1)(λi(k)− λi(k − 1))

− (θ(k + 1)− 1)λi(k)− λ⋆i

= ωi(k),

where the second equality is obtained by using (11) and since

λi(k) = ξii(k), for any k ≥ 0, due to (10) and a proper

initialization in Algorithm 2.

Thus, we can see that ω(k+1) is updated with probability

αi and remains the same, i.e., ωi(k + 1) = ωi(k) with

probability 1 − αi. Based on this fact, we obtain, with

probability 1, that

E (V (k + 1)− V (k)|F(k))

= E

(

∑

i∈N

1

2αiηi

(

‖ωi(k + 1)‖2 − ‖ωi(k)‖2
)

∣

∣

∣

∣

∣

F(k)

)

=
∑

i∈N

1

2ηi

(

αi

αi

‖ωi(k + 1)‖2 + 1− αi

αi

‖ωi(k)‖2

− 1

αi

‖ωi(k)‖2
)

=
∑

i∈N

1

2ηi

(

‖ωi(k + 1)‖2 − ‖ωi(k)‖2
)

≤ (θ(k))2(q(λ⋆)− q(λ(k)))

− (θ(k + 1))2(q(λ⋆)− q(λ(k + 1))), (24)

where the inequality is obtained based on (22) in Lemma 3.

Iterating (24), for ℓ = 1, 2, . . . , k − 1, and taking the total
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Fig. 2. The IEEE 14-bus network.

expectation, we have that

E

(

k−1
∑

ℓ=1

(V (ℓ+ 1)− V (ℓ))

)

≤ E

(

k−1
∑

ℓ=1

(θ(ℓ))2(q(λ⋆)− q(λ(ℓ)))

− (θ(ℓ + 1))2(q(λ⋆)− q(λ(ℓ + 1)))

)

⇐⇒ E(V (k)− V (1)) ≤ θ(1)2E (q(λ⋆)− q(λ(1)))

− E(θ(k))2(q(λ⋆)− q(λ(k)))). (25)

Rearranging the inequality in (25) yields

E
(

θ(k)2(q(λ⋆)− q(λ(k)))
)

≤ E(V (1)− V (k)) + θ(1)2E (q(λ⋆)− q(λ(1)))

≤ E(V (1) + q(λ⋆)− q(λ(1))), (26)

where the second inequality is obtained since θ(1) = 1
and by dropping −E(V (k)) since it is non-positive for

any k ≥ 1. Finally, note that θ(k) is not random and

it holds that θ(k) ≥ k+1
2 since θ(1) = 1 and it is

updated using the equation in step 6 of Algorithm 2

[7]. Using this fact and (26), the desired inequality (13)

follows, where C = 4E (V (1) + q(λ⋆)− q(λ(1))) ≥ 0,
since E(V (k)) ≥ 0, for any k ≥ 1, and q(λ⋆) =
maxλ q(λ), thus E(q(λ⋆) − q(λ(1)) ≥ 0. Upon obtain-

ing (13), we can show the equality (14). Since C in

(13) is non-negative, the term E (q(λ⋆)− q(λ(k))) con-

verges to 0. Furthermore, using the Markov inequality,

for any δ ∈ R>0, we have that lim supk→∞ P(q(λ⋆) −
q(λ(k) ≥ δ) ≤ lim supk→∞

1
δ
E(q(λ⋆) − q(λ(k)) = 0, thus,

limk→∞ E (q(λ⋆)− q(λ(k))) = 0, almost surely. 2

V. NUMERICAL STUDY

We use the IEEE 14-bus benchmark case, which is shown

in Figure 2, as the test case in this simulation study, where



Fig. 3. Convergence of ∇q(λ(k)) (top) and q(λ(k)) − q⋆ (bottom).

we solve an intra-day DC-OPF problem, with time horizon

(h) of 6 hourly steps. We suppose that each bus is an agent

in the network, though there are only five active agents,

which have the capability of generating power, bounded by

the capacity of the generators. Furthermore, we consider the

DC-approximation of the power flow equations, as follows:

P g
i,t −P l

i,t =
∑

j∈Ni

B{i,j}(ψi,t −ψj,t), ∀i ∈ N , t = 1, . . . , h,

(27)

where P g
i,t ∈ R≥0 denotes the power generated at bus i

at time step t, P l
i,t ∈ R≥0 denotes the power demand

assumed to be known for the whole time horizon, B{i,j}

denotes the susceptance of line {i, j}, whereas ψi denotes

the phase angle of bus i. The equalities in (27) become

the coupling constraints of the network. In this problem, we

compute the hourly set points of each generator for the whole

time horizon. Additionally, we consider a strongly convex

quadratic local cost.

We suppose that the communication links among the

agents may fail with certain probability, denoted by γ > 0.

This implies that the activation probability of each commu-

nication link is equal, i.e., β{i,j} = 1−γ, for each i, j ∈ N ,

where i 6= j, and we perform 10 Monte-Carlo simulations for

different values of γ. Moreover, we also compare Algorithm

2 with the unaccelerated version, where θ(k) = 1 and

γ = 0, for all k ≥ 1. Figure 3 shows the convergence of

the coupling constraint ∇q(λ(k)) toward 0 and the dual

value q(λ(k)) toward the optimal value q⋆. Additionally,

Figure 4 shows the number of iterations required to meet the

stopping criteria, which is the error of the equality constraint,

i.e., ‖Gi
iui(k) +

∑

j∈Ni
Gj

iuj(k) − gi‖ < ǫ, for a small

ǫ ≥ 0. As expected, Algorithm 2 significantly outperforms

the unaccelerated version, and the smaller γ, the faster the

convergence.

VI. CONCLUSION

In this paper, we propose a distributed algorithm for multi-

agent optimization problem over stochastic networks. The
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Fig. 4. The number of iterations performed for different values of γ.
The blue boxes indicate the 25th-75th percentiles, the red lines indicate the
median, and the + symbols indicate the outliers.

algorithm is based on Nesterov’s accelerated gradient method

and we analytically show that the convergence rate of the

expected dual value is O(1/k2). We also show the perfor-

mance of the algorithm in an intra-day optimal power flow

simulation. As ongoing work, we are performing an analysis

on the convergence of the primal variables. Moreover, we

investigate methods to relax the assumptions considered to

generalize the approach.

APPENDIX

A. Proof of Lemma 3

To show Lemma 3, we can follow the approach used on

the proof of [7, Lemma 2.3]. Therefore, first we need the

following intermediate result.

Lemma 4: Let ψ(µ, ξ) be a quadratic approximation

model of q(µ), i.e.,

ψ(µ, ξ) = q(ξ)+ 〈µ− ξ,∇q(ξ)〉−
∑

i∈N

1

2ηi
‖µi− ξi‖2, (28)

and λ(ξ) be defined by λ(ξ) = argmaxµ ψ(µ, ξ). Further-

more, let Assumptions 1-3 hold and ηi ∈ (0, 1/Li], where

Li is defined by (12). Then, for any µ ∈ R

∑
i∈N

mi ,

q(λ(ξ)) − q(µ) ≥
∑

i∈N

1

ηi
〈ξi − µi, λi(ξ) − ξi〉

+
∑

i∈N

1

2ηi
‖λi(ξ)− ξi‖2.

(29)

Proof: Since ηi ∈ (0, 1/Li], it follows from Lemma 2

that q(λ(ξ)) ≥ ψ(λ(ξ), ξ). Thus,

q(λ(ξ)) − q(µ) ≥ ψ(λ(ξ), ξ) − q(µ).

Since q(·) is concave, we also have that

q(µ) ≤ q(ξ) + 〈µ− ξ,∇q(ξ)〉.
The desired inequality (29) is obtained by combining the two

preceding relations with the definition of ψ(λ(ξ), λ) in (28)

and λ(ξ).



Remark 2: The update λ(k) in (6) follows λ(k) =
argmaxµ ψ(µ, λ̂(k)), which admits a unique solution. 2

Next, [9, Lemma 4] shows that ωi(k + 1) = ωi(k) +

θ(k + 1)
(

λi(k + 1)− λ̂i(k + 1)
)

. Based on this relation,

we obtain that

‖ωi(k + 1)‖2 − ‖ωi(k)‖2

= ‖ωi(k) + θ(k + 1)(λi(k + 1)− λ̂i(k + 1))‖2 − ‖ωi(k)‖2
= 2θ(k + 1)(θ(k + 1)− 1)·
· 〈λi(k + 1)− λ̂i(k + 1), λ̂i(k + 1)− λi(k)〉+
+ (θ(k + 1)2 − θ(k + 1))‖λi(k + 1)− λ̂i(k + 1)‖2+
+ θ(k + 1)‖λi(k + 1)− λ̂i(k + 1)‖2+
+ 2θ(k + 1)〈λi(k + 1)− λ̂i(k + 1), λ̂i(k + 1)− λ⋆i 〉,

where the second equality is obtained by performing some

algebraic manipulations using (21) and (7). Multiplying by
1

2ηi
and summing over i ∈ N the above equality, we obtain

that
∑

i∈N

1

2ηi

(

‖ωi(k + 1)‖2 − ‖ωi(k)‖2
)

= (θ(k + 1)2 − θ(k + 1))·
∑

i∈N

(

1

ηi
〈λi(k + 1)− λ̂i(k + 1), λ̂i(k + 1)− λi(k)〉

+
1

2ηi
‖λi(k + 1)− λ̂i(k + 1)‖2

)

+ θ(k + 1)
∑

i∈N

(

1

2ηi
‖λi(k + 1)− λ̂i(k + 1)‖2

+
1

ηi
〈λi(k + 1)− λ̂i(k + 1), λ̂i(k + 1)− λ⋆i 〉

)

.

By applying the inequality (29) twice to substitute each term

inside the two summations, we obtain the desired inequality,

as follows:
∑

i∈N

1

2ηi

(

‖ωi(k + 1)‖2 − ‖ωi(k)‖2
)

≤ (θ(k + 1)2 − θ(k + 1))(q(λ(k + 1))− q(λ(k))

+ θ(k + 1)(q(λ(k + 1))− q(λ⋆))

= θ(k + 1)2q(λ(k + 1))− (θ(k + 1)2 − θ(k + 1))q(λ(k))

− θ(k + 1)q(λ⋆)

= θ(k + 1)2q(λ(k + 1))− θ(k)2q(λ(k))

+ (θ(k)2 − θ(k + 1)2)q(λ⋆)

= θ(k)2(q(λ⋆)− q(λ(k)))

− θ(k + 1)2(q(λ⋆)− q(λ(k + 1))),

where the second equality is obtained based on step 4 of

Algorithm 1, where θ(k + 1)2 − θ(k + 1)− θ(k)2 = 0. 2
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