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Robust Instability Analysis

with Application to Neuronal Dynamics

Shinji Hara, Tetsuya Iwasaki*, Yutaka Hori

Abstract— This paper is concerned with robust instabil-
ity analysis of linear feedback systems subject to a dynamic
uncertainty. The work is motivated by, and provides a basic
foundation for, a more challenging problem of analyzing
persistence of oscillations in nonlinear dynamical systems.
We first formalize the problem for SISO LTI systems by
introducing a notion of the robust instability radius (RIR).
We provide a method for calculating the RIR exactly for a
certain class of systems and show that it works well for a
class of second order systems. This result is applied to the
FitzHugh-Nagumo model for neuronal dynamics, and the
effectiveness is confirmed by numerical simulations, where
we properly care for the change of the equilibrium point.

I. INTRODUCTION

There are a number of oscillatory phenomena that
play functional roles in biology. For scientific under-
standing as well as for engineering applications, it is
desired to characterize robustness of such oscillations
against perturbations. In general, however, existence
and stability of limit cycle oscillations are difficult to
analyze exactly, even for the nominal (unperturbed)
case. A practical approach to this challenging problem
is to focus on the robust instability property of an
equilibrium point, which would not rigorously guar-
antee, but yield in many cases, oscillations around the
equilibrium sustained under perturbations.

The classical bifurcation analysis is in line with this
approach and examines how stability properties of an
equilibrium point changes under a parametric pertur-
bation (see e.g. [6], [7] for numerical methods from
the view point of robust instability). However, realistic
perturbations often possess dynamics, and hence an
extension to the so-called robust bifurcation analysis
[4] is desired. Apart from the major issue associated
with the fact that the equilibrium point can move due
to perturbations [5], the problem essentially reduces to
a robust instability analysis of linear systems through
the Hartman-Grobman theorem.

In contrast with robust stability analysis, robust in-
stability analysis is not easy because instability may be
sustained even when some of the nominally unstable
poles become stable due to a certain perturbation. In
other words, we need to keep track of the behavior
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of all nominally unstable modes. Consequently, the
traditional small-gain type argument based on the ∞-
norm may not work in general, meaning that the L∞-
norm condition provides only sufficient conditions for
the robust instability as seen in e.g., [4], [5]. Moreover,
such conditions could be very conservative.

There is another interesting point on the issue. The
robust instability problem is equivalent to strong sta-
bilization by a minimum-norm, stable controller. The
condition for strong stabilizability has been known, but
the order of a strongly stabilizing controller is unknown
[8]. Minimization of a norm on some closed-loop trans-
fer functions has been considered in the literature, but
only partial solutions have been obtained due to the
difficulty in enforcing the stability constraint on the
controller, e.g. [9]. Therefore, it is required to develop a
new fundamental theory for robust instability analysis.

In this paper, we make a first step toward de-
velopment of a general theory for robust nonlinear
oscillations. Specifically, we focus on linear systems,
examine the origins of the difficulties associated with
the robust instability analysis, and propose an idea for
exact characterization of the robust instability property.
To this end, we consider a class of uncertain feedback
systems consisting of unstable nominal part g(s) and
stable perturbation δ(s), both of which are single-
input-single-output (SISO) linear time-invariant (LTI)
systems. We first formalize the problem by defining
a notion of the robust instability radius (RIR) as the
maximum allowable ∞-norm of δ(s) that maintains
instability of the feedback system. After showing lower
and upper bounds of RIR, we present numerical ex-
amples of second order systems to illustrate when
the bounds can be conservative/tight, helping us un-
derstand the reason why computing the exact RIR is
hard in general. We then provide an idea for showing
tightness of the lower bound and thus finding the exact
RIR, using a first order all-pass function as a stabilizing
perturbation. It is proven that the idea works well
for a class of second order systems. This theoretical
result is applied to the FitzHugh-Nagumo model [1] for
neuronal dynamics, and its effectiveness is confirmed
by numerical simulations, where we properly care for
the change of the equilibrium point.

Notation: ℜ(s) denotes the real part of a complex
number s. The open left (resp. right) half complex plane
is abbreviated as OLHP (resp. ORHP). The set of proper
stable real rational functions is denoted by RH∞. For
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a transfer function g(s), the H∞ norm and L∞ norm
are defined by ‖g‖H∞

:= sups∈ORHP
|g(s)| and ‖g‖L∞

:=
supω∈R |g(jω)|, respectively.

II. ROBUST INSTABILITY RADIUS (RIR)

Given an unstable unity feedback system with open-
loop transfer function h(s), we analyze the robust insta-
bility property against a general class of perturbations.
To explain, let us take a typical case of multiplicative
uncertainties, i.e., the perturbed loop transfer function
is given by h̃(s) = (1 + δ(s))h(s), where δ(s) is an un-
certain RH∞ function. Similarly to the robust stability
analysis, the corresponding characteristic equation is
given by

1− δ(s)g(s) = 0, (1)

where we assume positive feedback, and g(s) :=
h(s)/(1− h(s)) is called the complementary sensitivity
function. In this paper, we consider (1) as the basic
characteristic equation with an arbitrary unstable g(s),
not restricted to the complementary sensitivity func-
tion. For technical reasons, we assume that g(s) has no
pole on the imaginary axis.

We are interested in determining how much per-
turbation is allowed before the closed-loop system
becomes stable. That is, the objective is to find the
smallest norm stable perturbation δ(s) such that (1) has
all roots in the OLHP, where no unstable pole/zero
cancellations are allowed between g(s) and δ(s).

The robust instability radius (RIR), denoted by ρ∗ ∈
R, with respect to real rational dynamic perturbation
δ ∈ RH∞, is defined as the smallest magnitude of the
perturbation that internally stabilizes the system:

ρ∗ := inf
δ∈S(g)

‖δ‖H∞
, (2)

where S(g) is the set of real-rational, proper, stable
transfer functions internally stabilizing g(s), i.e.,

S(g) := {δ ∈ RH∞ : δ(s)g(s) = 1 ⇒ ℜ(s) < 0,
δ(s) = 0, ℜ(s) > 0 ⇒ |g(s)| <∞ }

(3)

When the perturbation is parametric, the real and
complex RIRs are defined by

ρr := inf
δ∈Sr(g)

|δ|, ρc := inf
δ∈Sc(g)

|δ|, (4)

where Sr(g) ⊂ R and Sc(g) ⊂ C are defined as in (3)
by replacing RH∞ with R and C, respectively. It is
clear by definition that ρ∗ ≤ ρr and ρc ≤ ρr. However,
it turns out that the relationship between ρ∗ and ρc
depends on g(s) as we will see later by numerical
examples. This is in stark contrast with the robust
stability analysis in which the robust stability radius
with respect to the dynamic uncertainty coincides with
that for the complex parametric uncertainty. The fact
that ρ∗ 6= ρc makes the robust instability analysis for
dynamic uncertainty extremely difficult.

The RIRs for the parametric uncertainty case can
readily be calculated. For example, the stability region
Sc(g) can be fully characterized within the framework
of the generalized frequency variable [3], and it is easy
to compute ρr and ρc by gridding the frequency at least.

In contrast, the RIR for the dynamic uncertainty case
is not easy to compute. It is noticed that our problem
of robust instability has a clear correspondence with
the so called strong stabilization, i.e., g(s) and δ(s)
respectively correspond to the unstable plant and the
stabilizing controller, which is required to be stable.
Let us recall a classical result on strong stabilization
by Youla et al. [8]: The robust instability radius ρ∗ for
an unstable transfer function g(s) is finite if and only if
the Parity Interlacing Property (PIP) is satisfied, i.e., the
number of unstable real poles of g(s) between any pair of
real zeros in the closed right half complex plane (including
zero at ∞) is even.

III. PRELIMINARIES

A. Lower and Upper Bounds of RIR

We here provide several results on lower and upper
bounds of RIR as a preliminary. First note by the
definition of ρ∗ that there exists δ(s) such that ‖δ‖H∞

=
ρ∗ and all the roots of 1− δ(s)g(s) = 0 satisfy ℜ(s) ≤ 0
with at least one s on the imaginary axis, say s =
jωc, because otherwise it is impossible to stabilize g(s)
by stable δ(s) of norm arbitrarily close to ρ∗ due to
continuity of the characteristic roots. Thus the critical
perturbation δ(s) has to satisfy

δ(jωc) = 1/g(jωc), |δ(jωc)| ≤ ρ∗. (5)

Noting that |g(jωc)| ≤ ‖g‖L∞
, a lower bound on ρ∗ can

be obtained in terms of the L∞ norm of g(s), which
was noted in [4], as follows.

Proposition 1:

̺p ≤ ρ∗ ≤ ρr, ̺p := 1/‖g‖L∞
. (6)

We can readily see that ̺p is also a lower bound on
ρc, i.e., ρc ≥ ̺p , since ρc = 1/|g(jω)| for some ω as
explained above. Graphically, we see that ̺p = ρc holds
when the projection of the origin onto the Nyquist plot
of 1/g(s) is on the boundary of Sc(g).

We now provide special cases where we may possi-
bly get a better lower bound on ρ∗ than (6) or the exact
value of ρ∗, where we evaluate the static gain of g(s).

Proposition 2: Given a real-rational, strictly proper trans-
fer function g(s), we consider the following two conditions:
(i) g(s) has no pole at the origin and an odd number of
unstable poles (including multiplicities), and (ii) g(s) is
stabilizable by a static gain and g(jω) is real only at ω = 0.
If g(s) satisfies condition (i), then ̺o is a lower bound of
RIR ρ∗, i.e.,

ρ∗ ≥ ̺o := 1/|g(0)| ≥ ̺p (7)

holds. Suppose further that g(s) satisfies condition (ii), then
the lower bound is tight, i.e., ρ∗ = ̺o.



Proof: The key idea for the proof of the first part is to
evaluate the sign of Ψ(s)/d(s) at s = 0, where Ψ(s) :=
d(s)−n(s) is the characteristic polynomial correspond-
ing to (1) with a polynomial coprime factorization of
ℓ(s) := δ(s)g(s) = n(s)/d(s). We have Ψ(0)/d(0) =
1 − n(0)/d(0) = 1 − ℓ(0) < 0, since the Hurwitz
stability of Ψ(s) implies Ψ(0) = d(0)−n(0) > 0. Hence,
|δ(0)g(0)| > 1 which leads to ‖δ‖H∞

≥ |δ(0)| > 1/|g(0)|.
This proves (7).

Now suppose condition (ii) holds in addition to
condition (i) to prove the second part. Let δr ∈ R be
the perturbation of the smallest magnitude such that
(a) the closed-loop system has all its poles in the closed
left half plane and (b) δr + ε with an arbitrarily small
|ε| can stabilize the closed-loop system:

δr := arg inf
δ∈R

{ |δ| : 1 = δg(s) ⇒ ℜ(s) < 0 }.

Note that ρr := |δr| is the real RIR and is an upper
bound on the (dynamic) RIR; ρ∗ ≤ ρr. Now, the
characteristic equation 1 = δrg(s) has a root on the
imaginary axis. If s = jω is a root, then g(jω) =
−1/δr is a real number. Hence, ω must be zero by
condition (ii). It then follows that ρ∗ ≤ ρr = |δr| =
|1/g(0)| = ̺o, proving tightness of the lower bound ̺o.

�

B. Illustrative Numerical Examples

Consider a class of second order feedback systems of
which the loop transfer function is given by

h(s) = 2(s− z)/(s2 + s− 2) (8)

with multiplicative uncertainty, i.e.,

g(s) :=
h(s)

1− h(s)
=

1

φ(s)− 1
, φ(s) :=

1

h(s)
. (9)

Here, z ∈ R is a parameter, the unique real zero of
h(s), and h(s) is minimum phase (resp. non-minimum
phase) if z is negative (resp. non-negative). The char-
acteristic equation for the nominal closed-loop system
is given by 1 − h(s) = 0, or s2 − s + 2(z − 1) = 0.
Hence, it is nominally unstable for any z. This quite
simple example turns out to capture various situations
by changing just one real parameter z.

The robust instability radius and its lower/upper
bounds can be calculated analytically as follows. 1

Facts on the RIR: Consider h(s) in (8) with a parameter
z ∈ R. Define the robust instability radius ρ∗ by (2), its
lower bounds ̺p and ̺o by (6) and (7), respectively, and its
upper bound ρr by (4). When 0 ≤ z < 1, we have ρ∗ = ∞
due to violation of the PIP condition. Otherwise, the result
for various cases can be summarized as in Table I, where
“?” indicates unknown but finite numbers, “-” indicates

1In the context of the multiplicative uncertainty, it is reasonable
to consider the case where the magnitude of δ(s) is less than one.
However, here we consider an arbitrarily large perturbation for
illustrative purposes to understand the difficulty of the RIR analysis.

that there is no δ ∈ R to stabilize g(s) in the column
of ρr, or g(s) has an even number of unstable pole(s) in
the column of ̺o. The lower bounds are determined by
minimizing 1/|g(jω)|2 over ω. If the optimizer is ωp = 0,
then ̺p = σ0 := 1/|g(0)| = |(z − 1)/z|. Otherwise, the
minimum σ1 is achieved at ωp = ω1 where

ω1 :=
√

√

η(z)− z2,

σ1 :=
1

|g(jω1)|
= 1

2

√

2
√

η(z) + 5− 4c− 2z2,

η(z) := (z − 1)(z + 2)(z2 + 3z − 2).

The real zeros of µ(z) := 4z3−z2−8z+4 determine whether
the optimizer is zero or non-zero, where b1 = −1.51, b2 =
0.54, and b3 = 1.22 are the roots of µ(bi) = 0.

TABLE I

ANALYTICAL UPPER/LOWER BOUNDS ON RIR

Case z ρ∗ ρr ̺o ̺p ωp

(a) z ≤ b1 σ0 σ0 σ0 σ0 0
(b) b1 < z < 0 σ0 σ0 σ0 σ1 ω1

(c) 1 ≤ z ≤ b3 ? - - σ0 0
(d) b3 < z ≤ 2 ? - - σ1 ω1

(e) 2 < z ? σ0 - σ1 ω1

We now consider the five cases with different values
of z that represent the rows of Table I. The numerical
result is summarized in Table II. Figure 1 shows2

the Nyquist plots of −φ(s), where the number of the
characteristic roots in the ORHP is indicated in each
region divided by the Nyquist plots. In each plot, the
circle is the projection of the critical point (star) onto the
Nyquist plot of −φ(s). The red vector from the circle
to the star is δp := φ(jωp)− 1, and its length is ̺p.

TABLE II

NUMERICAL UPPER/LOWER BOUNDS ON RIR

Case z ρ∗ ρr ̺o ̺p ωp

(a) -3 1.333 1.333 1.333 1.333 0
(b) -0.5 3 3 3 1.725 1.57

(c) 1.1 ?? - - 0.091 0
(d) 1.5 ? (0.258) - - 0.258 0.80
(e) 5 ? (0.244) 0.5 - 0.244 2.76

We see in case (a) that the projection of −1 onto
the Nyquist plot −φ(jω) is on the boundary of the
stability region marked by “0” and that ̺p = ρr = ρo.
This means that a slight extension of the projection
will stabilize the system, i.e., δ(s) = −(1 + ε)̺p with
small ε > 0 stabilizes, confirming tightness of the
lower bound (6) in Proposition 1. By this example, we
may expect that (i) the lower bound is tight when the
projection of −1 is on the boundary of the stability
region and that (ii) the lower bound is not tight when
the projection is not on the stability boundary.

It turns out, however, that neither of these is correct
as shown by other cases due to a subtle difference

2The Nyquist plots for −φ(s) instead of 1/g(s) is shown to
conform to the convention where −1 is the critical point.
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Fig. 1. Nyquist plots of −φ(s) for the five cases in Table II.

between the static complex perturbation and the real
rational dynamic perturbation. Actually, case (b) is
a counter example of statement (i) in the previous
paragraph . The red vector in Fig. 1 (b) clearly starts at
one point on the boundary of the stability region, which
means ̺p = ρc = 1.725, but we see from Proposition 2
that ρ∗ = ̺o = 3. This is also an example of ρ∗ 6= ρc.

Three other cases, (c), (d), and (e), where the as-
sumptions of Proposition 2 are not satisfied, are related
to statement (ii). The next section will show for cases
(d) and (e) that a stabilizing perturbation with slightly
larger norm than ̺p exists, and hence ρ∗ = ̺p, although
we were not able to find such a perturbation for case
(c). This implies that statement (ii) is not always true.
The situations of the two cases (d) and (e) are slightly
different. For case (e), we see that ̺p ≤ ρ∗ ≤ ρr.
However, for case (d), there is no stabilizing static
complex perturbation, i.e., ρc (≤ ρr) is infinite.

IV. EXACT RIR ANALYSIS

A. Idea: All-Pass Stabilization

The exact value of the RIR can be found if upper
and lower bounds turn out to be the same value. The
examples in the previous section have shown that the
lower bounds in Propositions 1 and 2 are tight for
certain classes of g(s). However, the upper bound ρr is
often conservative since the class of systems stabilized
by a static gain is not large. Here we aim to obtain a
better upper bound by a dynamic perturbation, which
will be useful to show tightness of ̺p for a class of g(s).

The lower bound ̺p is tight if there is a stabiliz-
ing δ(s) of norm arbitrarily close to ̺p. This requires
existence of δ(s), of norm exactly equal to ̺p, that
marginally stabilizes g(s). Thus we consider the follow-
ing two-step procedure: (Step 1) marginal stabilization
by δ(s) of norm ‖δ‖H∞

= ̺p, and (Step 2) slight
modification of δ(s) to get a stabilizing perturbation.
A simple calculation shows that the peak gains of δ(s)
and g(s) should occur at the same frequency ωp, and

the closed-loop system in Step 1 must have poles at
±jωp. While ωp is fixed by g(s), the search for δ(s)
in Step 1 is complicated in general by the constraint
‖δ‖H∞

= |δ(jωp)|. To make the analysis tractable, we
consider all-pass functions for δ(s) so that the closed-
loop pole condition 1 = δ(jωp)g(jωp) automatically
implies satisfaction of the peak frequency constraint.

Lemma 1: The positive feedback system consisting of

δ(s) = b ·
a− s

a+ s
, g(s) =

β0 + β1s+ · · ·+ βns
n

α0 + α1s+ · · ·+ αnsn
,

with αn 6= 0, has all the closed-loop poles in the OLHP
except for a pair of poles at s = ±jωc if and only if

Ωψ = bNβ −Dα (10)

holds for some Hurwitz polynomial

p(s) := ψ0 + ψ1s+ · · ·+ ψn−1s
n−1,

where Ω ∈ R(n+2)×n, D,N ∈ R(n+2)×(n+1), ψ ∈ Rn, and
α, β ∈ Rn+1 are defined by

Ω :=

[

ω2
cIn
02,n

]

+

[

02,n
In

]

, ψ := [ψ0, · · · , ψn−1]
T,

D :=

[

aIn+1

01,n+1

]

+

[

01,n+1

In+1

]

, α := [α0, · · · , αn]
T,

N :=

[

aIn+1

01,n+1

]

−

[

01,n+1

In+1

]

, β := [β0, · · · , βn]
T.

Proof: Denote g(s) by g(s) = n(s)/d(s). The closed-
loop system has a pair of poles s = ±jωc and
the rest of the poles are in the OLHP if and
only if b(a − s)n(s) − (a + s)d(s) = (s2 + ω2

c)p(s)
holds for some Hurwitz polynomial p(s). Equating
the coefficients of the si terms, we have the result.

�

Lemma 1 with ωc = ωp provides a computational
method for checking if Step 1 is feasible for a given
g(s). First, ωp and ̺p can be readily obtained by the
L∞-norm computation of g(s). Then, for each of the
two cases b = ±̺p, we solve the linear equation (10) for
a and ψ, and check if a is positive and p(s) is Hurwitz.
If Step 1 is found feasible, one may check to see if a
slight increase of the gain, (1+ ε)δ(s) with small ε > 0,
can strictly stabilize g(s) in Step 2.

This method may not work in general, but Lemma 1
turns out to provide an analytical characterization of a
class of g(s) for which the method works, as shown in
the next subsection. The class consists of second order
systems but contains the linearized FitzHugh-Nagumo
model, relevant for the neuronal spike dynamics.

B. Class of Second Order Systems with Exact RIR

The following result provides two classes of second
order systems for which the exact RIR is computable.

Theorem 1: For the second order system represented by

g(s) =
rs− 1

s2 + ps+ q
, (11)



(i) ρ∗ = ̺o := 1/|g(0)| = |q| holds if

q < 0, p+ rq > 0, (12)

(ii) ρ∗ = ̺p := 1/‖g‖L∞
= 1/|g(jωp)| holds if

q > 0, p < 0, r2q2 + 2q − p2 > 0, (13)

where ω2
p = q − p2/2 for r = 0 and otherwise

ω2
p = [

√

(r2q2 + 2q − p2)r2 + 1)− 1]/r2. (14)
See Appendix A for a proof, where the results are

proven using Proposition 2 for case (i) and Proposi-
tion 1 with Lemma 1 for case (ii).

Let us now confirm the effectiveness of the theorem
by using the example in the previous section, where

g(s) = 2z ·
(

s/z − 1
)

/
(

s2 − s+ 2(z − 1)
)

,

i.e., r = 1/z, p = −1, and q = 2(z − 1). When q < 0,
statement (i) applies to cases (a) and (b) because p+rq =
−1+2(z−1)/z = 1−2/z > 0. Hence, we have ρ∗ = ̺p =
ρr = 1/|g(0)| = 1− 1/z. When q > 0, statement (ii) may
or may not apply. There are two different situations
based on ωp, the frequency which gives the maximum
gain of |g(jω)|: ωp = 0 for case (c), and ωp > 0 for cases
(d) and (e). Since condition (13) holds for cases (d) and
(e), the first order all-pass function works to stabilize
the system, and ̺p gives the exact RIR ρ∗. However,
we cannot confirm tightness of ρp for case (c).

V. APPLICATIONS TO NEURONAL DYNAMICS

This section is devoted to an application to an
analysis of neuronal dynamics of excitable membranes
for robustly generating action potentials. We use the
FitzHugh-Nagumo (FHN) model [1], which is a second
order nonlinear system represented by

cv̇ = ψ(v) − w
τẇ = v + α− βw,

(15)

where c, τ , α, and β are positive scalars, and

ψ(v) = v − v3/3 + i.

The variable v(t) represents the membrane potential
of the neuronal cell, w(t) is the recovery variable that
captures the net effect of the channel conductances, and
i(t) is the current injection input to the cell, which is
assumed constant in the following development.

We consider the case where β < 1, which guarantees
that the system has a unique equilibrium point. Based
on the shape of the function ψ(v), it can be shown that
all the trajectories are ultimately bounded. Hence, an
oscillation occurs when the equilibrium is hyperboli-
cally unstable. Typically, the system has a stable limit
cycle which is seen as a spike train. An example is
shown in Fig. 2, where the parameter values are

c = 1, τ = 10, α = 0.7, β = 0.8, i = 0.4. (16)

Assuming these values, we will examine robustness of
the oscillation against unmodeled dynamics.

The FHN model captures the essential dynamics of
action potential (spike) generation in the simplest way,
ignoring the details of various channel conductances.
Here we model the neglected dynamics by the multi-
plicative uncertainty δ(s)w, where δ(s) is an uncertain
stable transfer function. The uncertain FHN model is
then given by 3

cv̇ = ψ(v) − (1 + δ(s))w,
τẇ = v + α− βw.

(17)

Let (v̄, w̄) be an equilibrium point, characterized by

ψ(v̄) = (1 + e)w̄, v̄ = βw̄ − α, (18)

where e := δ(0). It can be verified that the equilibrium
is unique if 1 + e > β. Linearizing the system around
(v̄, w̄), the characteristic equation is given by

1 = δ(s)ge(s), ge(s) :=
−1

cτs2 + (βc− τγ)s+ 1− βγ
,

where γ := ψ′(v̄) = 1 − v̄2. Note that ge(s) depends
on e through v̄, and this dependence is indicated by
the subscript. For the nominal parameters in (16), the
linearization go(s) (i.e., ge(s) with e = 0) is unstable
since βc < τγ holds. Thus we have nominal instability.
The question is: What is the smallest norm of δ(s) such
that 1 = δ(s)ge(s) has all its roots in the left half plane?

From Theorem 1, the RIR for go(s) can be found as
ρ∗ = 1/‖go‖L∞

= 0.283. This means that the equilib-
rium remains unstable under perturbations satisfying
‖δ‖H∞

< ρ∗, provided the equilibrium does not move
by the perturbation, i.e., δ(0) = 0. However, there may
be perturbation δ(s) with a nonzero static gain such
that the equilibrium is moved by δ(0) = e and becomes
stable. Indeed, for a stable perturbation δ(s) of norm
‖δ‖H∞

= 0.2, the new equilibrium (v̄, w̄) in (18) with
e = δ(0) = −0.2 is stable, and the simulated response
converges to (v̄, w̄) as shown in Fig. 3, where x is the
state of δ(s).

A stabilizing perturbation δ(s) of a smaller norm
can be found as follows. First, solve |e| = 1/‖ge‖L∞

for e by a line search. The solution is found to be
eo = −0.118 and the peak gain of geo(jω) is attained
at ωp = 0.299. Then by Theorem 1, the RIR for geo(s)
is equal to |eo|, and a stabilizing perturbation is given
by δε(s) = (1 + ε)δo(s) with a sufficiently small ε > 0,
where δo(s) = 0.118·(s−0.320)/(s+0.320) is a stable first
order all-pass transfer function uniquely determined
by δo(jωp) = 1/g(jωp). For example, with ε = 0.1,
the perturbation δε(s) has norm ‖δε‖H∞

= 0.130, and
the new equilibrium (v̄, w̄) in (18) with e = δeps(0) =
−0.130 is stable. Consequently, the simulated response
converges to (v̄, w̄) as shown in Fig. 4.

It turns out that |eo| is the smallest norm of stabiliz-
ing perturbations. The smallest norm of any stabilizing

3With a slight abuse of notation, δ(s)w means the time-domain
signal obtained by the inverse Laplace transform of the product of
δ(s) and the Laplace transform of w(t).
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Fig. 2. FHN model response
(nominal, δ(s) = 0)
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Fig. 3. FHN model response
under a stabilizing δ(s)
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Fig. 4. FHN response under a
stabilizing δ(s) with ε = 0.1
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Fig. 5. FHN response under a
destabilizing δ(s) with ε = −0.1

perturbation δ(s) with static gain δ(0) = e is bounded
below by the larger of |e| and ̺e := 1/‖ge‖L∞

because
‖δ‖H∞

≥ |δ(0)| by definition and ̺e is a lower bound
on the RIR of ge(s). For this particular example, the
smallest value of max(|e|, ̺e) over e is achieved at
e = eo where |e| and ̺e become coincident. Thus,
any perturbation δ(s) that stabilizes the equilibrium
point must have a norm larger than or equal to |eo|.
Indeed, when ε for δε(s) is negative with a small |ε|,
the perturbation magnitude ‖δε‖H∞

is less than |eo| and
the equilibrium point remains unstable, resulting in a
stable limit cycle as shown in Fig. 5.

VI. CONCLUSION

We have formalized the robust instability problem
by introducing a notion of robust instability radius.
We provided a method for finding the exact RIR for
a class of second order systems, and the effectiveness
has been confirmed by an application to the FitzHugh-
Nagumo model. Although not reported here, we have
also numerically confirmed that Theorem 1 should
extend to third order systems represented by g(s) =
k/((s + α)(s2 − βs + γ2)) with 0 < β < γ < α. The
basic idea in this paper may be applicable for an even
broader class of g(s) that captures a variety of systems
appearing in biology [2].
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APPENDIX

A. Proof of Theorem 1

The proof of (i) for the case of q < 0 and Ωp = 0
is easy. The characteristic equation for the closed-loop
system with δ is given by s2 + (p − δr)s + q + δ = 0.
With δ > 1/g(0) = −q, the two roots are both negative,
and one can verify that g(jω) is real only at ω = 0.
Proposition 2 then completes the proof of (i).

To prove (ii), let us consider the case of r = 0 only.
The proof for the case of r 6= 0 is similar albeit with
complicated formulas, and hence is omitted due to the
page limitation. To find the critical frequency ωp, let
us define H(Ω) := 1/|g(jω)|2 = Ω2 + (p2 − 2q)Ω + q2,
where Ω := ω2 ≥ 0. Since dH/dΩ = 2Ω− (2q − p2), the
square of the critical frequency Ωp := ω2

p is given by
Ωp = q − p2/2 if 2q > p2. Then, a simple calculation
yields H(Ωp) = p2(4q − p2)/4 > 0.

We now apply Lemma 1 by setting ω2
c = ω2

p and b =

−
√

H(Ωp) = p
√

4q − p2/2 < 0. Equation (10) implies

x = a+ p > 0, ω2
p = ap− b+ q > 0,

xω2
p = (a+ p)(ap− b+ q) = a(q + b) > 0.

These three relations lead to

a = (−p+
√

4q − p2)/2 > 0, x = (
√

4q − p2+p)/2 > 0,

which guarantee the marginal stabilization.
Next, we show the existence of a stabilizing pertur-

bation by choosing a slightly larger perturbation

δε(s) = (1 + ε)b ·
a− s

a+ s
, ε > 0.

It is readily seen that the corresponding characteristic
polynomial is given by s3 + d2s

2 + d1s+ d0 = 0 with

d2 := a+ p = (q̂ + p)/2 > 0,

d1 := ap− (1 + ε)b+ q = q − p2/2− bε,

d0 := a{q + (1 + ε)b}

= q̂2(q̂ + p)/4 + (q̂ − p)bε/2,

where q̂ :=
√

4q − p2. We can see that d0 and d1 are
both positive for sufficiently small ε > 0, and a simple
calculation shows that d1d2 − d0 = −εb

√

4q − p2 >
0, which guarantees the stability of the perturbed
feedback system. This means that ρ∗ = ̺p = |b| =

|p|
√

4q − p2/2, and hence the proof is completed.
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