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Compositional Verification of Initial-State Opacity for Switched Systems

Siyuan Liu, Abdalla Swikir, and Majid Zamani

Abstract— In this work, we propose a compositional frame-
work for the verification of approximate initial-state opacity
for networks of discrete-time switched systems. The proposed
approach is based on a notion of approximate initial-state
opacity-preserving simulation functions (InitSOPSFs), which
characterize how close concrete networks and their finite ab-
stractions are in terms of the satisfaction of approximate initial-
state opacity. We show that such InitSOPSFs can be obtained
compositionally by assuming some small-gain type conditions
and composing so-called local InitSOPSFs constructed for
each subsystem separately. Additionally, for switched systems
satisfying certain stability property, we provide an approach to
construct their finite abstractions together with the correspond-
ing local InitSOPSFs. Finally, the effectiveness of our results is
illustrated through an example.

I. INTRODUCTION

In recent decades, CPSs have become ubiquitous in crit-

ical infrastructures and industrial control systems, including

power plants, medical devices and smart communities [1].

While the increased connectivity between cyber and physical

components brings in the benefit of improving systems func-

tionalities, it also exposes CPSs to more vulnerabilities and

security challenges. More recently, the world has witnessed

numerous cyber-attacks which have led to great losses in

people’s livelihoods [2]. Therefore, ensuring the security of

CPSs has become significantly more important.

In this work, we focus on an information-flow security

property, called opacity, which characterizes the ability that

a system forbids leaking its secret information to a malicious

intruder outside the system. Opacity was firstly introduced

in [3] to analyze cryptographic protocols. Later, opacity was

widely studied in the domain of Discrete Event Systems

(DESs), see [4] and the references therein. In this context,

existing works on the analysis of various notions of opacity

mostly apply to systems modeled by finite state automata,

which are more suitable for the cyber-layers of CPSs. How-

ever, for the physical components, system dynamics are in

general hybrid with uncountable number of states.

There have been some recent attempts to extend the no-

tions of opacity to continuous-space dynamical systems [5],

[6], [7], [8]. In [5], a framework for opacity was introduced

for the class of discrete-time linear systems, where the notion
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of opacity was formulated as an output reachability property

rather than an information-flow one. The results in [6]

presented a formulation of opacity-preserving (bi)simulation

relations between transition systems, which allows one to

verify opacity of an infinite-state transition system by lever-

aging its associated finite quotient one. However, the notion

of opacity proposed in this work assumes that the outputs

of systems are symbols and are exactly distinguishable from

each other, thus, is only suitable for systems with purely

logical output sets. In a more recent paper [7], a new

notion of approximate opacity was proposed to accommodate

imperfect measurement precision of physical systems. Based

on this, the authors proposed a notion of so-called approx-

imate opacity-preserving simulation relation to capture the

closeness between continuous-space systems and their finite

abstractions (a.k.a symbolic models) in terms of preservation

of approximate opacity.

The recent results in [8] investigated opacity for discrete-

time stochastic control systems using a notion of so-called

initial-state opacity-preserving stochastic simulation func-

tions between stochastic control systems and their finite ab-

stractions (a.k.a. finite Markov decision processes). Though

promising, the computational complexity of the construction

of finite abstractions grows exponentially with respect to

the dimension of the state set, and, hence, the existing ap-

proaches [6], [7], [8] will become computationally intractable

when dealing with large-scale systems.

Motivated by those abstraction-based techniques in [6],

[7], [8] and their limitations, this work proposes an approach

to analyze approximate initial-state opacity for networks of

switched systems by constructing their opacity-preserving

finite abstractions compositionally. There have been some

recent results proposing compositional techniques for con-

structing finite abstractions for networks of systems (see the

results in [9], [10], [11], [12] for more details). However, the

aforementioned compositional schemes are proposed for the

sake of controller synthesis for temporal logic properties, and

none of them are applicable to deal with security properties.

In this paper, we provide a compositional approach to

analyze approximate initial-state opacity of a network of

switched systems using their finite abstractions. We first

define a notion of so-called local approximate initial-state

opacity-preserving simulation functions (InitSOPSFs) to re-

late each switched system and its finite abstraction. Then,

by leveraging some small-gain type conditions, we con-

struct an InitSOPSF as a relation between the network of

switched systems and that of their finite abstractions using

local InitSOPSFs. This InitSOPSF characterizes the close-

ness between the two networks in terms of the preservation

of approximate initial-state opacity. Moreover, under some
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assumptions ensuring incremental input-to-state stability of

discrete-time switched systems, we provide an approach to

construct their finite abstractions together with their local

InitSOPSFs. Finally, an illustrative example is presented to

show how one can leverage our compositionality results for

the verification of opacity for a network of switched systems.

Due to lack of space, we provide the proofs of all

statements in an arXiv version of the paper [13].

II. NOTATION AND PRELIMINARIES

Notation:We denote by R and N the set of real numbers

and non-negative integers, respectively. These symbols are

annotated with subscripts to restrict them in the obvious way,

e.g. R>0 denotes the positive real numbers. We denote the

closed, open, and half-open intervals in R by [a, b], (a, b),
[a, b), and (a, b], respectively. For a,b∈N and a≤b, we use

[a; b], (a; b), [a; b), and (a; b] to denote the corresponding

intervals in N. Given any a ∈ R, |a| denotes the absolute

value of a. Given N∈N≥1 vectors νi∈ R
ni, ni ∈N≥1, and

i∈[1;N ], we use ν=[ν1;. . .; νN ] to denote the vector in R
n

with n=
∑

ini consisting of the concatenation of vectors νi.
Moreover, ‖ν‖ denotes the infinity norm of ν. The individual

elements in a matrix A∈R
m×n, are denoted by {A}i,j , where

i∈ [1;m] and j∈ [1;n]. We denote the zero matrix in R
n×n

by 0n. We denote by card(·) the cardinality of a given set and

by ∅ the empty set. For any set S ⊆ R
n of the form of finite

union of boxes, e.g., S=
⋃M

j=1 Sj for some M ∈ N, where

Sj =
∏n

i=1[c
j
i , d

j
i ]⊆R

n with cji < dji , we define span(S)=
minj=1,...,M ηSj

and ηSj
= min{|dj1 − cj1|, . . . , |d

j
n − cjn|}.

Moreover, for a set in the form of X=
∏N

i=1 Xi, where Xi⊆
R

ni , ∀i ∈ [1;N ], are of the form of finite union of boxes, and

any positive (component-wise) vector φ=[φ1; . . . ;φN ] with

φi ≤ span(Xi), ∀i ∈ [1;N ], we define [X ]φ=
∏N

i=1[Xi]φi
,

where [Xi]φi
=[Rni ]φi

∩ Xi and [Rni ]φi
= {a ∈ R

ni | aj =
kjφi, kj ∈ Z, j = 1, . . . , ni}. Note that if φ = [η; . . . ; η],
where 0 < η ≤ span(S), we simply use notation [S]η rather

than [S]φ. We use notations K and K∞ to denote different

classes of comparison functions, as follows: K={α :R≥0→
R≥0| α is continuous, strictly increasing, and α(0) = 0};

K∞ = {α ∈ K| lim
r→∞

α(r) =∞}. For α, γ ∈ K∞ we write

α≤γ if α(r)≤γ(r), and, with abuse of the notation, α= c
if α(r) = cr for all c, r ≥ 0. Finally, we denote by Id the

identity function over R≥0, that is Id(r)=r, ∀r∈R≥0. Given

sets X and Y with X⊂Y , the complement of X with respect

to Y is defined as Y\X={x :x∈Y, x /∈X}.

A. Discrete-Time Switched Systems

In this work we study discrete-time switched systems of

the following form.

Definition 1: A discrete-time switched system (dt-SS) Σ
is defined by the tuple Σ = (X, P,W, F,Y, h), where

• X ⊆ R
n,W ⊆ R

m, and Y ⊆ R
q are the state set, internal

input set, and output set, respectively;

• P = {1, . . . ,m} is the finite set of modes;

• F = {f1, . . . , fm} is a collection of set-valued maps fp :
X×W ⇒ X for all p ∈ P ;

• h : X → Y is the output map.

The dt-SS Σ is described by difference inclusions of the form

Σ :

{

x(k + 1) ∈ fp(k)(x(k), ω(k)),
y(k) = h(x(k)),

(1)

where x : N→X, y : N→Y, p : N→P , and ω : N→W

are the state, output, switching, and internal input signal,

respectively. Let ϕk, k∈N≥1, denote the time when the k-th

switching instant occurs. We assume that signal p satisfies a

dwell-time condition [14] (i.e. there exists kd∈N≥1, called

the dwell-time, such that for all consecutive switching time

instants ϕk, ϕk+1, ϕk+1−ϕk≥kd). If for all x∈X, p∈P,w∈
W, card(fp(x,w))≤1 we say the system Σ is deterministic,

and non-deterministic otherwise. System Σ is called finite

if X,W are finite sets and infinite otherwise. Furthermore,

if for all x ∈ X there exist p ∈ P and w ∈ W such that

card(fp(x,w)) 6= 0 we say the system is non-blocking. In

this paper, we assume that all systems are non-blocking.

Note that in this work, we consider switched systems with

some secret states. Hereafter, we slightly modify the formu-

lation in Definition 1 to accommodate for initial and secret

states, as Σ=(X,X0,Xs, P,W, F,Y, h), where X0,Xs ⊆ X

are the sets of initial and secret states, respectively.

B. Transition Systems

In this section, we employ the notion of transition systems,

introduced in [15], to provide an alternative description of

switched systems that can be later directly related to their

finite abstractions.

Definition 2: Given a dt-SS Σ = (X,X0,Xs, P,W, F,Y,
h), we define the associated transition system T (Σ) =
(X,X0, Xs, U,W,F , Y,H) where:

• X=X×P×{0,. . ., kd−1} is the state set; X0=X0×P×{0}
is the initial state set; Xs=Xs×P×{0,. . ., kd − 1} is the

secret state set;

• U = P is the external input set; W = W is the internal

input set; Y =Y is the output set; H :X→Y is the output

map defined as H(x, p, l)=h(x);
• F is the transition function given by (x+, p+, l+) ∈
F((x, p, l), u, w) if and only if x+ ∈ fp(x,w), u= p and

the following scenarios hold:

– l < kd − 1, p+ = p and l+ = l + 1: switching is not

allowed because the time elapsed since the latest switch

is strictly smaller than the dwell time;

– l = kd − 1, p+ = p and l+ = kd − 1: switching is

allowed but no switch occurs;

– l = kd − 1, p+ 6= p and l+ = 0: switching is allowed

and a switch occurs.

The following proposition is borrowed from [12] showing

that the output runs of a dt-SS Σ and its associated transition

system T (Σ) are equivalent so that one can use Σ and T (Σ)
interchangeably.

Proposition 3: Consider a transition system T (Σ) in Def-

inition 2 associated to Σ as defined in (1). Any output tra-

jectory of Σ can be uniquely mapped to an output trajectory

of T (Σ) and vice versa.

Next, let us provide a formal definition of networks of

dt-SS (or equivalently, networks of transition systems).



C. Networks of Systems

Consider N ∈N≥1 dt-SS Σi=(Xi,X0i ,Xsi ,Pi,Wi,Fi,Yi,
hi), i ∈ [1;N ], with partitioned internal inputs and outputs

as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], (2)

hi(xi) = [hi1(xi); . . . ;hiN (xi)], (3)

with Wi=
∏N

j=1,j 6=iWij , Yi=
∏N

j=1Yij , wij ∈ Wij , yij =
hij(xi) ∈ Yij . The outputs yii are considered as external

ones, whereas yij , with i 6= j, are interpreted as internal

ones which are used to construct interconnections between

systems. In particular, we assume that wij equals to yji if

there is connection from system Σj to Σi, otherwise we set

hji ≡ 0. In the sequel, we denote by Ni = {j ∈ [1;N ], j 6=
i|hji 6=0} the collection of neighboring systems Σj , j∈Ni,

that provide internal inputs to system Σi.

Now, we are ready to provide a formal definition of the

network consisting of N ∈N≥1 dt-SS.

Definition 4: Consider N ∈N≥1 dt-SS Σi=(Xi,X0i ,Xsi ,
Pi,Wi,Fi,Yi, hi), i∈ [1;N ], with the input-output structure

given by (2) and (3). The network, representing the intercon-

nection of N dt-SS Σi, is a tuple Σ= (X,X0,Xs,P,F,Y,h),
denoted by IM(Σ1,. . .,ΣN ), where X =

∏N
i=1 Xi, X0 =

∏N
i=1 X0i , Xs =

∏N
i=1 Xsi , P =

∏N
i=1Pi, F =

∏N
i=1Fi,

Y =
∏N

i=1Yii, h =
∏N

i=1hii, and M ∈ R
N×N is a matrix

with elements {M}ii =0, {M}ij = φij , ∀i,j ∈ [1;N ], i 6= j,

0≤φij≤span(Yji), subject to the constraint:

‖yji−wij‖≤φij , [Yji]φij
⊆Wij , ∀i∈ [1;N ], j∈Ni. (4)

Remark 5: In this paper, when we are talking about the

network of concrete switched systems, yji is always equal

to wij , which naturally implies φij = 0 and M = 0N . How-

ever, for the network of finite abstractions, due to possibly

different granularities of the internal input and output sets,

the designed parameters φij are not necessarily zero. Note

that whenever φij 6=0, the sets Yji, ∀i,j ∈ [1;N ], i 6= j, are

assumed to be finite unions of boxes.

Similarly, given transition systems T (Σi), one can also de-

fine a network of transition systems IM(T (Σ1),. . ., T (ΣN)).

III. OPACITY-PRESERVING SIMULATION FUNCTIONS

In this section, we start by defining approximate initial-

state opacity property [7] for networks of transition systems.

This property is, in general, hard to check for a concrete

network as its state set is infinite and so far there is no

systematic way in the literature to verify opacity of such

systems. On the other hand, existing tool DESUMA1 and

algorithms [16],[17],[6, Sec. IV] in DESs literature can be

leveraged to check opacity for systems with finite state sets.

Therefore, it would be feasible to check opacity for finite

networks (i.e, networks consisting of finite abstractions) and

then carry back the reasoning to concrete ones, as long as

there is a formal relation between those networks. To this

purpose, we introduce a new notion of approximate initial-

state opacity preserving simulation functions (InitSOPSF)

1Available at URL http://www.eecs.umich.edu/umdes/toolboxes.html.

which formally relate two networks of transition systems and

their approximate initial-state opacity properties.

Before defining the notion of approximate initial-state

opacity for networks of transition systems, we introduce

some notations as follows. Consider network T (Σ). We use

zk to denote the state of T (Σ) reached at time k ∈N from

the initial state z0 under the input sequence ū with length k,

and denote by {z0,z1,. . .,zk} a finite state run of T (Σ) with

length k∈N.

Definition 6: Consider network T (Σ)=(X,X0, Xs, U,F ,
Y,H) and a constant δ≥ 0. Network T (Σ) is said to be δ-

approximate initial-state opaque if for any z0∈X0∩Xs and

finite state run {z0, z1,. . ., zk}, there exist z̄0∈X0\Xs and a

finite state run {z̄0, z̄1,. . ., z̄k} such that

max
t∈[0;k]

‖H(zt)−H(z̄t)‖ ≤ δ.

Now, we can introduce a notion of approximate InitSOPSF

to quantitatively relates two networks of transition systems

in terms of preservation of approximate opacity as defined

above.

Definition 7: Consider T (Σ) =(X,X0,Xs,U,F ,Y,H) and

T (Σ̂) = (X̂,X̂0,X̂s,Û ,F̂ ,Ŷ ,Ĥ) with Ŷ ⊆ Y . For ε∈R≥0, a

function S :X×X̂→R≥0 is called an ε-approximate initial-

state opacity-preserving simulation function (ε-InitSOPSF)

from T (Σ) to T (Σ̂) if there exists α∈K∞ such that

1 (a) ∀z0 ∈ X0 ∩Xs, ∃ẑ0 ∈ X̂0 ∩ X̂s, s.t. S(z0, ẑ0) ≤ ε;

(b) ∀ẑ0 ∈ X̂0 \ X̂s, ∃z0 ∈ X0 \Xs, s.t. S(z0, ẑ0) ≤ ε;

2 ∀z ∈ X, ∀ẑ ∈ X̂ , α(‖H(z)− Ĥ(ẑ)‖) ≤ S(z, ẑ);
3 ∀z∈X, ∀ẑ∈X̂ s.t. S(z, ẑ)≤ε, one has:

(a) ∀u ∈ U , ∀z+∈ F(z, u), ∃û ∈ Û , ∃ẑ+∈ F̂(ẑ, û), s.t.

S(z+, ẑ+)≤ε;

(b) ∀û ∈ Û , ∀ẑ+∈ F̂(ẑ, û), ∃u ∈ U , ∃z+∈ F(z, u), s.t.

S(z+, ẑ+)≤ε.

Although Definition 7 is general in the sense that networks

T (Σ) and T (Σ̂) can be either infinite or finite, practically,

network T (Σ̂) potentially consists of N∈N≥1 finite abstrac-

tions. Hence, checking approximate initial-state opacity for

this network is decidable in comparison to network T (Σ).
Before showing the next result, let us recall the definition

of approximate initial-state opacity-preserving simulation

relation which was originally proposed in [7].

Definition 8: Consider networks T (Σ) = (X,X0,Xs,U,
F ,Y,H) and T (Σ̂) = (X̂,X̂0,X̂s,Û ,F̂ ,Ŷ ,Ĥ) where Ŷ ⊆ Y .

For ε̂∈R≥0, a relation R ⊆ X×X̂ is called an ε̂-approximate

initial-state opacity-preserving simulation relation (ε̂-InitSOP

simulation relation) from T (Σ) to T (Σ̂) if

1 (a) ∀z0 ∈ X0 ∩Xs, ∃ẑ0 ∈ X̂0 ∩ X̂s, s.t. (z0, ẑ0) ∈ R;

(b) ∀ẑ0 ∈ X̂0 \ X̂s, ∃z0 ∈ X0 \Xs, s.t. (z0, ẑ0) ∈ R;

2 ∀(z, ẑ) ∈ R, ‖H(z)− Ĥ(ẑ)‖ ≤ ε̂;

3 For any (z, ẑ) ∈ R, we have

(a) ∀u ∈ U , ∀z+ ∈ F(z,u), ∃û ∈ Û , ∃ẑ+ ∈ F̂(ẑ,û), s.t.

(z+,ẑ+)∈R;

(b) ∀û ∈ Û , ∀̂z+ ∈ F̂(ẑ,û), ∃u ∈ U , ∃z+ ∈ F(z, u), s.t.

(z+,ẑ+)∈R.

The following corollary borrowed from [7] shows the useful-

ness of Definition 8 in terms of preservation of approximate

opacity across related networks.
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Corollary 9: Consider networks T (Σ) = (X,X0,Xs,U,F,
Y,H) and T (Σ̂)=(X̂, X̂0,X̂s,Û, F̂, Ŷ, Ĥ) where Ŷ ⊆ Y . Let

ε̂, δ ∈R≥0. If there exists an ε̂-InitSOP simulation relation

from T (Σ) to T (Σ̂) as in Definition 8 and ε̂≤ δ
2 , then the

following implication holds

T (Σ̂) is (δ−2ε̂)-approximate initial-state opaque

⇒ T (Σ) is δ-approximate initial-state opaque.
The next result shows that the existence of an ε-InitSOPSF

for networks of transition systems implies the existence of

an ε̂-InitSOP simulation relation between them.

Proposition 10: Consider networks T (Σ)= (X,X0,Xs,U,
F ,Y,H) and T (Σ̂) = (X̂,X̂0,X̂s,Û ,F̂ ,Ŷ ,Ĥ) where Ŷ ⊆ Y .

Assume S is an ε-InitSOPSF from T (Σ) to T (Σ̂) as in

Definition 7. Then, relation R⊆X×X̂ defined by

R=
{

(z,ẑ)∈X×X̂|S(z, ẑ)≤ε
}

, (5)

is an ε̂-InitSOP simulation relation from T (Σ) to T (Σ̂) with

ε̂ = α−1(ε). (6)

Given the results of Corollary 9 and Proposition 10, one

can readily see that if there exists an ε-InitSOPSF from T (Σ)
to T (Σ̂) as in Definition 7 and T (Σ̂) is (δ−2ε̂)-approximate

initial-state opaque, then T (Σ) is δ-approximate initial-state

opaque, where ε̂ = α−1(ε) ≤ δ
2 , δ ∈ R≥0.

IV. COMPOSITIONALITY RESULT

We saw in the previous section that ε-InitSOPSFs are

very useful for checking approximate initial-state opacity

of concrete networks based on checking that of their fi-

nite abstractions. However, constructing such a function for

networks consisting of a large number of systems is not

feasible in general. Hence, in this section, we introduce a

compositional technique based on which one can construct an

ε-InitSOPSF from the concrete network to a network of finite

abstractions by using so-called local εi-InitSOPSFs between

subsystems and their abstarctions.

A. Compositional Construction of ε-InitSOPSF

Suppose that we are given N dt-SS Σi, or equivalently,

T (Σi). Moreover, we assume that systems T (Σi) and T (Σ̂i)
admit a local εi-InitSOPSF as defined next.

Definition 11: Consider T (Σi) = (Xi,X0i ,Xsi ,Ui,Wi,Fi,
Yi,Hi) and T (Σ̂i) = (X̂i,X̂0i ,X̂si ,Ûi,Ŵi,F̂i,Ŷi,Ĥi), ∀i∈
[1;N ], where Ŵi⊆Wi and Ŷi⊆Yi. For εi∈R≥0, a function

Si :Xi×X̂i→R≥0 is called a local εi-InitSOPSF from T (Σi)
to T (Σ̂i) if there exist ϑi∈R≥0 and αi∈K∞ such that

1 (a) ∀z0i ∈X0i∩Xsi , ∃ẑ
0
i ∈X̂0i∩X̂si , s.t. Si(z

0
i , ẑ

0
i )≤εi;

(b) ∀ẑ0i ∈X̂0i \X̂si , ∃z
0
i ∈ X0i \Xsi , s.t. Si(z

0
i , ẑ

0
i )≤εi;

2 ∀zi∈Xi, ∀ẑi∈X̂i, αi(‖Hi(zi)−Ĥi(ẑi)‖) ≤ Si(zi, ẑi);
3 ∀zi∈Xi, ∀ẑi∈ X̂i s.t. Si(zi, ẑi)≤εi, ∀wi∈Wi, ∀ŵi∈Ŵi

s.t. ‖wi−ŵi‖≤ϑi, the following conditions hold:

(a) ∀ui ∈ Ui, ∀z+i ∈ Fi(zi, ui, wi), ∃ûi ∈ Ûi, ∃ẑ+i ∈
F̂i(ẑi,ûi,ŵi), s.t. Si(z

+
i , ẑ

+
i )≤εi;

(b) ∀ûi ∈ Ûi, ∀ẑ+i ∈ F̂i(ẑi,ûi,ŵi), ∃ui ∈ Ui, ∃z+i ∈
Fi(zi, ui, wi), s.t. Si(z

+
i , ẑ

+
i )≤εi.

If there exists a local εi-InitSOPSF from T (Σi) to T (Σ̂i),
and T (Σ̂i) is finite (X̂i and Ŵi are finite sets), T (Σ̂i) is

called a finite abstraction (or symbolic model) of T (Σi),
which is constructed later in Definition 15. Note that local

εi-InitSOPSFs are mainly for constructing an ε-InitSOPSF

for the networks and they are not directly used for deducing

approximate initial-state opacity-preserving simulation rela-

tion.

The next theorem provides a compositional approach to

construct an ε-InitSOPSF from T (Σ) to T (Σ̂) via local εi-
InitSOPSFs from T (Σi) to T (Σ̂i).

Theorem 12: Consider network T (Σ) = I0N (T (Σ1),. . .,
T (ΣN)). Assume that there exists a local εi-InitSOPSF Si

from T (Σi) to T (Σ̂i), ∀i∈ [1;N ], as in Definition 11. Let ε=
max

i
εi, and M̂∈R

N×N be a matrix with elements {M̂}ii=

0, {M̂}ij =φij , ∀i,j ∈ [1;N ], i 6= j, 0≤φij ≤ span(Ŷji). If

∀i∈ [1;N ], ∀j∈Ni,

α−1
j (εj) + φij ≤ ϑi, (7)

then, function S : X×X̂→R≥0 defined as

S(z, ẑ) := max
i

{
ε

εi
Si(zi, ẑi)}, (8)

is an ε-InitSOPSF from T (Σ)=I0N (T (Σ1),. . ., T (ΣN)) to

T (Σ̂)=I
M̂
(T (Σ̂1),. . ., T (Σ̂N)).

Remark 13: Let φi = [φi1;. . .;φiN ]. Vectors φi serve later

as internal input quantization parameters for the construction

of symbolic models for T (Σi) (see Definition 15). Moreover,

the values of φi will be designed later in Theorem 20.

V. CONSTRUCTION OF SYMBOLIC MODELS

In this section, we consider Σ =
(X,X0,Xs, P,W, F,Y, h) as an infinite, deterministic

dt-SS. Note that throughout this section, we are mainly

talking about switched subsystems rather than the overall

network. However, for the sake of better readability, we

often omit index i of subsystems throughout the text in this

section. We assume the output map h satisfies the following

general Lipschitz assumption: there exists an ℓ ∈ K∞ such

that: ‖h(x)− h(y)‖ ≤ ℓ(‖x− y‖) for all x, y ∈ X. Here,

we also use Σp to denote a dt-SS Σ in (1) with constant

switching signal p(k)=p, ∀k∈N.

Here, we establish an ε-InitSOPSF between T (Σ) and

its symbolic model by assuming that, for all p ∈ P , Σp

is incrementally input-to-state stable (δ-ISS) [18] as defined

next.

Definition 14: System Σp is δ-ISS if there exist functions

Vp : X×X→R≥0, αp, αp, ρp∈K∞, and constant 0<κp<1,

such that for all x, x̂∈X, and for all w, ŵ∈W

αp(‖x− x̂‖) ≤ Vp(x, x̂) ≤ αp(‖x− x̂‖), (9)

Vp(fp(x,w),fp(x̂, ŵ))≤κpVp(x, x̂) + ρp(‖w − ŵ‖). (10)

We say that Vp, ∀p ∈ P , are multiple δ-ISS Lyapunov

functions for system Σ if it satisfies (9) and (10). Moreover,

if Vp = Vq, ∀p, q ∈ P , we omit the index p in (9)-(10), and

say that V is a common δ-ISS Lyapunov function for system

Σ.

Now, we show how to construct a symbolic model T (Σ̂)
of T (Σ) associated with the dt-SS Σ.



Definition 15: Consider a transition system T (Σ) =
(X,X0, Xs,U,W,F ,Y,H), associated with the switched sys-

tem Σ= (X,X0,Xs,P,W,F,Y, h), where X, W are assumed

to be finite unions of boxes. Let Σp, ∀p ∈ P , be δ-ISS as

in Definition 14. Then one can construct a symbolic model

T (Σ̂)=(X̂,X̂0, X̂s,Û ,Ŵ ,F̂ ,Ŷ ,Ĥ) where:

• X̂ = X̂×P×{0,. . ., kd−1}, where X̂= [X]η and 0<η≤
min{span(Xs), span(X\Xs)} is the state set quantization

parameter; X̂0 = X̂0×P ×{0}, where X̂0 = [X]η; X̂s =
X̂s×P ×{0,· · ·, kd−1}, where X̂s=[Xs]η;

• Û = U = P ; Ŷ = Y ; Ĥ : X̂ → Ŷ , defined as Ĥ(x̂, p, l) =
H(x̂, p, l) = h(x̂); Ŵ = [W]φ, where φ, satisfying 0 <
‖φ‖ ≤ span(W), is the internal input set quantization

parameter;

• (x̂+, p+, l+)∈F̂((x̂, p, l), û, ŵ) if and only if ‖fp(x̂, ŵ)−
x̂+‖≤η, û = p and the following scenarios hold:

– l < kd − 1, p+ = p and l+ = l + 1;

– l = kd − 1, p+ = p and l+ = kd − 1;

– l = kd − 1, p+ 6= p and l+ = 0;

In order to construct a local ε-InitSOPSF from T (Σ) to

T (Σ̂), we raise the following assumptions on functions Vp

appeared in Definition 14.

Assumption 16: There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, q ∈ P, Vp(x, y) ≤ µVq(x, y). (11)

Assumption 16 is an incremental version of a similar as-

sumption in [19] that is used to prove input-to-state stability

of switched systems under constrained switching signals.

Assumption 17: Assume ∃ γp ∈ K∞, ∀p∈P , such that

∀x, y, z ∈ X, Vp(x, y) ≤ Vp(x, z) + γp(‖y − z‖). (12)

Assumption 17 is non-restrictive as shown in [20] provided

that one is interested to work on a compact subset of X.

Now, we establish the relation between T (Σ) and T (Σ̂)
via the notion of local ε-InitSOPSF as in Definition 11.

Theorem 18: Consider a dt-SS Σ = (X,X0,Xs,P,W,F,
Y,h) with its equivalent transition system T (Σ) =
(X,X0,XS ,U,W,F ,Y,H). Suppose Σp, ∀p∈P , is δ-ISS as in

Definition 14, with functions Vp, αp, αp, ρp and constant κp,

and assume Assumptions 16 and 17 hold. Let ǫ > 1. For any

design parameters ε, ϑ ∈ R≥0, let T (Σ̂) be a symbolic model

of T (Σ) constructed as in Definition 15 with any quantization

parameter η satisfying

η ≤ min{γ̂−1((1− κ)ε− ρ(ϑ)), α−1(ε)}, (13)

where κ = max
p∈P

{

κ
ǫ−1

ǫ
p

}

, ρ = max
p∈P

{

κ
−

kd
ǫ

p ρp

}

, γ̂ =

max
p∈P

{

κ
−

kd
ǫ

p γp

}

, and α=max
p∈P

{

κ
− l

ǫ
p αp

}

. If, ∀p ∈ P, kd ≥

ǫ ln(µ)

ln( 1

κp
)
+ 1, then function V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)κ
−l
ǫ

p , (14)

is a local ε-InitSOPSF from T (Σ) to T (Σ̂).
Given the results of Theorems 12 and 18, one can see

that conditions (7) and (13) may not hold simultaneously.

Therefore, we raise the following assumption which provides

a small-gain type condition such that one can verify if

conditions (7) and (13) can be satisfied simultaneously.

Assumption 19: Consider network I0N(T (Σ1),. . . ,
T (ΣN)) induced by N ∈ N≥1 transition systems T (Σi).
Assume that each T (Σi) and its symbolic model T (Σ̂i)
admit a local εi-InitSOPSF Vi as in (14), associated with

functions and constants κi, αi, and ρi appeared in Theorem

18. Define

γij :=

{

(1 −κi)
−1ρi◦α

−1
j if j∈Ni,

0 otherwise,
(15)

for all i, j ∈ [1;N ], and assume that functions γij defined

in (15) satisfy

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < Id, (16)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.

The next theorem is main result of the paper. We show

that under the above small-gain assumption, one can always

compositionally design local quantization parameters to sat-

isfy conditions (7) and (13) simultaneously.

Theorem 20: Suppose that Assumption 19 holds. Then,

there always exist local quantization parameters ηi and

φij , ∀i,j ∈ [1;N ], such that (7) and (13) can be satisfied

simultaneously.

VI. CASE STUDY

Consider a network of discrete-time switched system Σ =
(X,X0,Xs, P, F,Y, h) as in Definition 4, consisting of n
systems Σi each described by:

Σi :

{

xi(k+1)= aipi(k)xi(k)+diωi(k)+bipi(k),
yi(k)= cixi(k),

(17)

where pi(k)∈Pi = {1, 2}, k∈N, denote the modes of each

system Σi. The switching signal is set to be pi(k) = 1 if

k is odd and pi(k) = 2 if k is even, ∀k ∈ N. The other

parameters are as the following: ai1=0.05, ai2=0.1, bi1=
0.1, bi2 =0.15, di =0.05, ci = [ci1;. . .; cin] with ci(i+1) =1,

cij = 0, ∀i ∈ [1;n− 1], ∀j 6= i+1, cn1 = cnn = 1, cnj =
0, ∀j ∈ [2;n−1]. The internal inputs are subjected to the

constraints ω1(k) = cn1xn(k) and ωi(k) = c(i−1)ix(i−1)(k),
∀i∈ [2;n]. For each switched system, the state sets are Xi=
X0i = (0,0.6), ∀i ∈ [1;n], the secret sets are Xs1 =(0,0.2],
Xs2=[0.4,0.6), Xsi=(0,0.6), ∀i∈ [3;n], the output sets are

Yi =
∏n

j=1Yij where Yi(i+1) = (0,0.6), Yii = Yij = {0},

∀i∈ [1;n−1], ∀j 6= i+1, Ynn =Yn1 = (0,0.6), Ynj = {0},

∀j ∈ [2;n−1], and internal input sets are W1=Yni, Wi=
Y(i−1)i, ∀i ∈ [2;n]. Intuitively, the output of the network is

the external output of the last system Σn. The main goal

of this example is to check approximate initial-state opacity

of the concrete network using its symbolic model. Now, let

us construct a symbolic model of Σ compositionally with

accuracy ε̂=0.25 as defined in (6). We use our compositional

approach to achieve this goal.

Consider functions Vipi
=|xi − x̂i|, ∀i ∈ [1;n]. It can be

readily verified that (9) and (10) are satisfied with αipi
=

αipi
= Id, ρipi

= 0.05, ∀pi ∈ Pi, κi1 = ai1 = 0.05, κi2 =
ai2=0.1. Condition (12) is satisfied with γipi

=Id, ∀pi∈Pi.

Moreover, since Vipi
=Viqi , ∀pi, qi∈Pi, Vi(xi, x̂i)= |xi−x̂i|



T (Σ̂1): T (Σ̂2):

q1
0Y

q2
0y

q3
0Y

q4
0y

(2,y)/(2,Y)

(2,Y) (1,y)/(1,Y)

(1,y)/(1,Y)

(2,y)/(2,Y)

q1
Y Y

q2
yy

q3
Y Y

q4
yy

(2,y)/(2,Y)

(2,Y) (1,y)/(1,Y)

(1,y)/(1,Y)

(2,y)/(2,Y)

Fig. 1. Local symbolic models of transition systems.

I(T (Σ̂1),T (Σ̂2)):

[1; 1] [2; 2][2; 2] [1; 1]

z1
0Y

z2
0Y

z3
0Y

z4
0Y

z5
0y

z6
0y

z7
0y

z8
0y

[2; 2]

[2; 2] [2; 2]

[2; 2]

[1; 1]

[2; 2]
[1; 1]

Fig. 2. Symbolic model of a network of 2 transition systems.

is a common δ-ISS Lyapunov function for system Σi. Next,

given functions κi=0.1, ρi=0.06Id, αi=Id, γ̂i=1.05Id,

and αi = Id as appeared in Theorem 18, we have γij < Id
by (15), ∀i, j∈ [1;n]. Hence, the small-gain condition (16) is

satisfied. Then, by applying Theorem 20, we obtain proper

pairs of local parameters (εi,ϑi)=(0.25,0.25) for all of the

transition systems. Accordingly, we provide a suitable choice

of local quantization parameters as ηi = 0.2, ∀i ∈ [1;n],
such that inequality (13) for each transition system T (Σi) is

satisfied. Then, we construct local symbolic models T (Σ̂i)=
(X̂i,X̂0i ,X̂si ,Ûi,Ŵi,F̂i,Ŷi,Ĥi) as defined in Definition 15,

where X̂i = X̂0i = {0.2,0.4}×{1, 2}×{0}, X̂s1 = {0.2}×
{1, 2}×{0}, X̂s2 = {0.4}×{1, 2}×{0}, X̂si = {0.2,0.4}×
{1, 2}×{0}, ∀i∈ [3;n], Ŷi =

∏i
j=1{0}×{0.2,0.4}×

∏n
j=i+2{0},

∀i ∈ [1;n−1], Ŷn = {0.2,0.4}×
∏n−1

j=2{0} ×{0.2,0.4}, Ŵi =
{0.2,0.4}, ∀i∈ [1;n]. Now, using the result in Theorem 18,

one can verify that Vi((xi,pi,li),(x̂i,pi,li))= |xi−x̂i| is a local

εi-InitSOPSF from each T (Σi) to its symbolic model T (Σ̂i).
Furthermore, by the compositionality result in Theorem 12,

we obtain that V=max
i

{Vi((xi,pi,li),(x̂i,pi,li))}=max
i

{|xi−

x̂i|} is an ε-InitSOPSF from T (Σ)=I0N (T (Σ1),. . ., T (ΣN))
to T (Σ̂)=I0N (T (Σ̂1),. . ., T (Σ̂N )) with ε=max

i
εi=0.25.

Now, let us verify approximate initial-state opacity for

T (Σ) using the network of symbolic models T (Σ̂). To do

this, we first show an example of a network consisting of

2 transition systems, as shown in Figures 1 and 2. The

two automata in Figure 1 represent the symbolic models

of the local transition systems, and the one in Figure 2 is

the network of symbolic models. Each circle is labeled by

the state (top half) and the corresponding output (bottom

half). Initial states are distinguished by being the target

of a sourceless arrow. The symbols on the edges show

the switching signals pi(k) ∈ {1, 2} and internal inputs

coming from other local transition systems. For simplicity

of demonstration, we use symbols to represent the state

and output vectors, where q1 = [0.4,2,0], q2 = [0.2,1,0],

q3 = [0.4,1,0], q4 = [0.2,2,0], z1 = [q4;q1], z2 = [q3;q3],
z3 = [q1;q1], z4 = [q2;q3], z5 = [q1;q4], z6 = [q2;q2],
z7 = [q4;q4], z8 = [q3;q2], y = 0.2, Y = 0.4, 0y = [0;0.2],
0Y = [0;0.4], yy = [0.2;0.2], Y Y = [0.4;0.4]. One can

easily see that I0N (T (Σ̂1),T (Σ̂2)) is 0-approximate initial-

state opaque, since for any run starting from any secret state,

i.e. z1 and z4, there exists a run from a non-secret state, i.e.

z2 and z3, such that the output trajectories are exactly the

same. One can readily verify that the symbolic network has

this property regardless of the number of systems (i.e. n),

due to the homogeneity of systems Σi and the symmetry of

the circular network topology. Thus, one can conclude that

T (Σ̂)=I0N (T (Σ̂1),. . ., T (Σ̂n)) is 0-approximate initial-state

opaque. Therefore, by Corollary 9, we obtain that the original

network T (Σ)=I0N (T (Σ1),. . ., T (Σn)) is 0.5-approximate

initial-state opaque.
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