
Robust Dual Control based on Gain Scheduling

Janani Venkatasubramanian, Johannes Köhler, Julian Berberich, Frank Allgöwer

Abstract— We present a novel strategy for robust dual control
of linear time-invariant systems based on gain scheduling with
performance guarantees. This work relies on prior results of de-
termining uncertainty bounds of system parameters estimated
through exploration. Existing approaches are unable to account
for changes of the mean of system parameters in the exploration
phase and thus to accurately capture the dual effect. We address
this limitation by selecting the future (uncertain) mean as
a scheduling variable in the control design. The result is a
semi-definite program-based design that computes a suitable
exploration strategy and a robust gain-scheduled controller
with probabilistic quadratic performance bounds after the
exploration phase.

I. INTRODUCTION

The dual control paradigm established research interest
in simultaneous learning and control of uncertain dynamic
systems [1]. This pioneering work recognized that control
inputs to an uncertain system have a ‘probing’ effect to learn
the uncertainty in the system, and a ‘directing’ effect to
control the dynamical system. However, these two effects
are naturally conflicting, drawing attention to the trade-
off between ‘exploration’ (learning system uncertainty) and
‘exploitation’ (controlling the system to achieve optimal
performance), which is also the subject of contemporary
literature on Reinforcement Learning [2]. Dual control re-
lies on stochastic Dynamic Programming (DP) which is,
however, computationally intractable. Either approximations
of stochastic DP, or heuristic probing methods are typically
adopted to solve the problem of tractability [3]. A detailed
survey of dual control methods is provided in [4].

Early works of implicit dual control methods that involve
approximations of DP are based on the wide-sense property
[5], but they require linearization of system dynamics and
approximation of the conditional probability of the states
by its mean and covariance [6], [7]. These methods were
extended to nonlinear systems that could handle input con-
straints, nonetheless based on some approximations [8]. This
laid the foundation of balancing exploration with caution [9].

Explicit dual control methods use heuristic probing tech-
niques for active learning without the need to introduce
approximations of DP [10]. Explicit dual control methods
are closely related to Optimal Experiment Design in closed
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loop [11], [12]. These methods utilize the control inputs
to regulate system dynamics and to probe the closed-loop
system dynamics by solving a combined problem. This led to
application-oriented strategies for dual control that promoted
reducing uncertainty that would be beneficial for optimizing
cost [13]. Some recent application-oriented strategies are
discussed in [14], [15], however, they consider a special
class of systems and their control strategies are not robust
to model uncertainties. The ‘coarse-ID’ family of methods
study robustness guarantees in system identification based
design methods [16]–[18], however, the control policies are
not optimized to balance exploration and exploitation.

Recently, in [19] a high probability uncertainty bound
has been derived that is applicable to both robust control
synthesis and targeted exploration. This bound is then used
in dual control by predicting the influence of the controller
on the future uncertainty. In particular, the work in [20],
building on [19], [21], proposes a dual control strategy that
minimizes worst-case cost attained by a robust controller
that is synthesized with reduced model uncertainty. This
dual control strategy with targeted exploration seems to
perform better than strategies with common greedy random
exploration. The approach in [22], further extending [19],
retains an application-oriented strategy, however, adopts a
more realistic finite horizon problem setting that captures
the trade-offs between exploration and exploitation better.

The results presented in the methods in [19]–[22] seem to
have lower conservatism compared to previous works [11]–
[14], however, only numerically without any performance
guarantees. In particular, the approaches in [19], [20] do
not account for changes in the mean of uncertain system
parameters during exploration. Therefore, this paper seeks to
address these drawbacks by designing a dual control scheme
based on gain scheduling. The mean of future uncertain
system parameters is selected as a scheduling variable. This
leads to a linear matrix inequality (LMI) based design
with guarantees under relaxed assumptions. In particular, the
resulting controller is a state feedback, which depends on the
parameter estimates after exploration and thus on the data,
and it guarantees robust closed-loop performance after an
initial exploration phase.

The remainder of the paper is structured as follows. In
Section II we state the problem setting, and in Section III we
provide important results from the literature that we employ
for our approach. Section IV contains the proposed dual
controller design procedure as well as a proof of robust
closed-loop performance guarantees. Finally, we conclude
the paper in Section V.
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II. PROBLEM STATEMENT

Notation: The transpose of a matrix A is denoted as A>.
The value of the Chi-squared distribution with n degrees of
freedom and probability p is denoted as χ2

n(p). L2 denotes
the space of square-summable functions.

Setting: Consider a discrete-time linear time-invariant
dynamical system of the form

xk+1 = Atrxk +Btruk + wk, wk ∼ N (0, σ2
wI) (1)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
and wk ∈ Rnx is the normally distributed process noise.
The true values of the system dynamics, Atr and Btr, are
unknown.

Control goal - proposed approach: The main goal is to de-
sign a stabilizing state-feedback uk = Knewxk which meets
some desired performance specifications. Since the system
is unknown, we first apply some exciting input to estimate
the parameters and then use bounds on the estimation error
to design a robust controller. Our goal is to simultaneously
design a suitable exploration strategy and a controller for
the system in (1), such that applying the feedback after the
exploration phase provides desired quadratic performance
guarantees with high probability. The main challenge is to
accurately capture the dual effect of performance improve-
ment through exploration. We solve this problem by inter-
preting the new parameter estimate as a scheduling variable,
which influences the control law Knew, using tools from
gain-scheduling. The corresponding necessary preliminaries
regarding uncertainty bounds for parameter estimation, gain-
scheduling and structured exploration are show in Section III
and the overall approach is presented in Section IV.

III. PRELIMINARIES

A. Uncertainty Bound

This subsection discusses preliminary results from [19]
adopted in our work that quantify uncertainty in the system
dynamics that are estimated, given some data. The unknown
matrices Atr and Btr can be estimated through observed data
D = {xk, uk}Nk=0 of length N . In particular, we consider the
least squares estimates of Atr and Btr, similar to [19], which
are given by,

(Â, B̂) = arg min
A,B

N−1∑
k=0

||xk+1 −Axk −Buk||22. (2)

The following lemma provides a high probability credibility
region for the uncertain system matrices.

Lemma 1. [19, Lemma 3.1] Given data set D and 0 <

δ < 1, let D = 1
σ2
wcδ

∑N−1
k=1

[
xk
uk

] [
xk
uk

]>
with cδ =

χ2
n2
x+nxnu

(δ). Suppose we have a uniform prior over the
parameters (A,B). Then, [Atr, Btr] ∈ Θ with probability
1− δ, where

Θ :=

{
A,B :

[
(Â−A)>

(B̂ −B)>

]>
D

[
(Â−A)>

(B̂ −B)>

]
� I
}
. (3)

This lemma provides a data-dependent uncertainty bound.
Given this uncertainty bound, the approaches in [19], [20],
[22] synthesize a robust controller by minimizing a worst-
case cost. This controller facilitates targeted exploration for
dual control strategies by predicting the future uncertainty,
depending on the exploring controller. However, their ap-
proach does not take into account that the estimate of the
system parameters are subject to change through the process
of exploration.

B. Gain Scheduling Approach

To account for the change in the estimates of the system
parameters, we model the system in (1) as a linear parameter
varying (LPV) system. The varying system parameters can be
measured after exploration and are selected as the scheduling
block. The goal is to design a gain-scheduling controller
that ensures that the closed-loop system is stable while
also satisfying a quadratic performance bound, e.g. L2 gain,
from the disturbance input w to the performance output z
with high probability, compare [23], [24]. The performance
specification is imposed on the channel w → z, where the
performance output zk at time k is the generalized error that
depends on the state, control input and disturbance:

zk = Cxk +Duk +Dwwk, (4)

where C, D and Dw are known. In this setup, since the
dynamics are unknown, we have the following assumption
from which an initial error bound of the form given in
Lemma 1 can be derived.

Assumption 1. An initial data set D0 = {xt, ut}−1
k=−N0

is
available and a uniform prior over the parameters (A,B)
is assumed. Moreover, it holds that

D0 :=
1

σ2
wcδ

−1∑
k=−N0

[
xk
uk

] [
xk
uk

]>
� 0. (5)

From the data D0, initial estimates of the system param-
eters Â0 and B̂0 can be derived. The matrix D0 quantifies
the uncertainty associated with these initial estimates for a
given probability 1 − δ and can be determined from D0 as
given in (5). This initial data can be acquired through some
random persistently exciting input, while the later exploration
will use the initially obtained model knowledge to provide a
more targeted exploration strategy. Through the exploration
process for T time steps, data DT = {xt, ut}Tt=0 will be
observed. The new estimates ÂT and B̂T will be computed
from data D0 ∪ DT and made available at time T . The

matrix DT := D0 + 1
σ2
wcδ

∑T−1
k=0

[
xk
uk

] [
xk
uk

]>
will quantify

the uncertainty associated with the estimates ÂT and B̂T .
Existing approaches such as [20] rely on the assumption that
Â0 ≈ ÂT and B̂0 ≈ B̂T . In the following, we propose
a gain scheduling-based approach to provide closed-loop
guarantees for the case Â0 6= ÂT and B̂0 6= B̂T . Since
the system parameters will be updated through the process



of exploration, we proceed now by rewriting (1) as,

xk+1 =Atrxk +Btruk + wk (6)

=Â0xk + B̂0uk + (ÂT − Â0)xk + (B̂T − B̂0)uk

+ (Atr − ÂT )xk + (Btr − B̂T )uk + wk.

From (6), the scheduling and uncertainty blocks can be
selected as,

∆s =
[
ÂT − Â0 B̂T − B̂0

]
,

∆u =
[
Atr − ÂT Btr − B̂T

]
.

(7)

Since the estimates at time T affect both ∆s and ∆u, the
latter blocks can be viewed as time-varying parameters, and
the uncertain system combining (4) and (6) can be written
as an LPV system:


xk+1

zsk
zuk
zk

 =


Â0 I I I B̂0[
I
0

]
0 0 0

[
0
I

]
[
I
0

]
0 0 0

[
0
I

]
C 0 0 Dw D




xk
wsk
wuk
wk
uk

 ,
wsk = ∆sz

s
k,

wuk = ∆uz
u
k ,

(8)

where ws → zs is the scheduling channel and wu → zu

is the uncertainty channel. After the exploration phase, the
control input can now be defined as

uk = Kxk +Ksw
s
k. (9)

The goal is to design K and Ks such that the closed-loop
system is stable and the specified performance criterion is
met. The robust gain-scheduling configuration is illustrated
in Figure 1. As can be seen in Figure 1, the open-loop system

Σ

∆s

K

∆u
wu

ws

u

w

zu

zs

x

z

Fig. 1. Generalized plant view of the robust gain-scheduling problem.

has two uncertainty channels, affected by ∆u and ∆s. The
latter uncertainty ∆s is taken into account for the controller
via wsk, compare (9), and hence plays the role of a scheduling
variable. This accounts for changes in the mean of the system
parameters through data gathered in the exploration phase
that is available after exploration at time T , and thereby

learning the system dynamics better. The closed-loop system
can be written as


xk+1

zsk
zuk
zk

 =


Â0 + B̂0K I + B̂0Ks I I[

I
K

] [
0
Ks

]
0 0[

I
K

] [
0
Ks

]
0 0

C +DK DKs 0 Dw



xk
wsk
wuk
wk

 ,
wsk = ∆sz

s
k, (10)

wuk = ∆uz
u
k .

Given this formulation and suitable bounds on the blocks
∆s and ∆u, we can use established methods from robust
control and gain-scheduling to guarantee a desired perfor-
mance specification. In particular, we consider the case where
a desired quadratic performance specification is given on
the performance channel wk → zk, i.e. for initial condition
x = 0 for all signals w ∈ L2 with output z of the closed
loop, the following inequality should hold with some ε > 0:

∞∑
k=0

(
wk
zk

)>(
Qp Sp
S>p Rp

)(
wk
zk

)
≤ −ε

∞∑
k=0

w>k wk, (11)

where Rp � 0 is assumed. We note that standard design
goals, such as a desired L2-gain of γ are contained as a
special case with Sp = 0, Rp = 1

γ I and Qp = −γI (c.f. [25,
Prop. 3.12]). The following lemma provides a matrix inequal-
ity to design a robust gain scheduling controller satisfying
such a performance specification, given suitable bounds on
the blocks ∆s,∆u.

Lemma 2. Suppose ∆s ∈∆s := {∆ : ∆>Qs∆ +Rs � 0},
∆u ∈ ∆u := {∆ : ∆>Qu∆ + Ru � 0}, with Ru, RS � 0.
If there exists matrices Ks,M,N and scalars λs, λu > 0
satisfying the matrix inequality (13), the closed loop (10)
satisfies the quadratic performance bound (11) with K =
MN−1, i.e., uk = MN−1xk +Ksw

s
k.

Proof. The proof follows the arguments in [23] for LPV
control. First, note that the set definitions ∆s,∆u are linear
in Qs, Qu, Rs, Ru and thus remain valid if (Qs, Rs) and
(Qu, Ru) are multiplied by some positive scalar λs, λu > 0,
respectively. Define X = N−1 and K = MN−1. The Schur
complement of the LMI (13) is multiplied from left and
right by diag(N−1, I, I, I) to obtain





∗
∗
∗
∗
∗
∗
∗
∗



> 

−X 0
0 X

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

λsPs
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

λuPu
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

Qp Sp
S>p Rp



×



I 0 0 0

Â0 + B̂0K I + B̂0Ks I I
0 I 0 0[
I
K

] [
0
Ks

]
0 0

0 0 I 0[
I
K

] [
0
Ks

]
0 0

0 0 0 I
C +DK DKs 0 Dw


≺ 0,

(12)

where Ps =

[
Qs 0
0 Rs

]
and Pu =

[
Qu 0
0 Ru

]
.

Using [23, Thm. 2], quadratic performance is guaranteed
if there exists a positive definite matrix X = X> � 0
satisfying the matrix inequality (12).

We note that for λs, λu constant, inequality (13) is an
LMI and thus can be efficiently solved using line-search like
techniques for (λs, λu) ∈ R2.

C. Exploration and parameter estimation bounds

In this paper, we consider a dual control objective where,
during an initial exploration phase, uncertainty is reduced in
order to design a robust controller based on the data collected
during exploration. The exploration controller is computed
such that it excites the system sufficiently with a minimal
robust LQR cost, based on initial parameter estimates. The
exploration controller takes the form

uk = Kexk + ek, k = 0, . . . , T (14)

with a robustly stabilizing Ke and noise ek ∼ N (0,Σ).
Based on initial estimates of the system dynamics and the as-
sociated uncertainty bound, Ke and Σ are computed such that
they minimize a robust LQR cost

∑∞
k=0 x

>
k Qxk + u>k Ruk.

Similar to [20], this robust LQR cost can be computed as
the H2-norm of the uncertain closed loop system xk+1 =

(Â0 + B̂0Ke)xk + wk and yk =

[
Q

1
2

R
1
2Ke

]
xk. To be more

precise, the robust LQR cost of the exploration controller is
computed as

min
te,Ze,Ye,We

tr Ye

s.t. S1(We, Ye, Ze) � 0, te > 0

Se(te, Ze,We,Σ, D0, Â0, B̂0) � 0

(15)

where S1, Se are defined as

S1(We, Ye, Ze) =

 Ye
Q

1
2We

R
1
2Z>e

WeQ
1
2 ZeR

1
2 We

 ,

Se(te, Ze,We,Σ) =

He Fe Ge
F>e Ce − teI 0
G>e 0 teD0


with

He =

[
We 0
0 Σ

]
, Fe =

[
WeÂ

>
0 + ZeB̂

>
0

ΣB̂>0

]
,

Ge =

[
−We −Ze

0 −Σ

]
, Ze = WeK

>
e , Ce = We − σ2

wI.

A more detailed derivation and additional explanations are
provided in [20]. In (15), We denotes the controllability
Gramian, which plays an essential role to propagate the in-
fluence of the exploration phase on the parameters estimates
based on the new data DT . Similar to [20], we make the
following assumption.

Assumption 2. For the system (1) evolving under an explo-
ration controller (14) with Ke,We satisfying the constraints
in (15), the empirical covariance can be approximated via a
solution We of (15) as

T−1∑
t=0

[
xt
ut

] [
xt
ut

]>
≈ T

[
We WeK

>
e

KeWe KeWeK
>
e + Σ

]
. (16)

Assumption 2 implies that the empirical covariance can be
approximated via its stationary distribution Σxx = E[xx>],
which is in turn approximated by the worst-case state co-
variance, i.e., by We satisfying (15). Clearly, this is an
assumption that is not guaranteed to hold, but it is usually
a good approximation. Based on (16), the uncertainty bound
DT can be computed as

DT = D0 +
T

σ2
wcδ

[
We Ze
Z>e Z>e W

−1
e Ze + Σ

]
. (17)

Since the uncertainty bound DT is a nonlinear function of
Ze and We, we compute an affine lower bound of it as in
[20, Lemma 1][
We Ze
Z>e Z>e W

−1
e Ze

]
�
[
We

Z>e

]
V + V >

[
We

Z>e

]>
− V >WeV.

(18)
For a fixed V , this leads to an affine lower bound on
DT , denoted as DT , via (17). The bound is tight when[
We Ze

]
= WeV , so it is optimal to choose V =

W−1
e

[
We Ze

]
=
[
I K>e

]
. However, Ke is not known

at this point, and hence a candidate K0 is used instead to
compute V , which can be computed, e.g., based on a robust
LQR for the nominal model [20].

An essential ingredient of the proposed approach is the
handling of the uncertainty bounds D0, DT , which influence
the uncertain parameters ∆u,∆s in (10), as derived in the
following proposition.

Proposition 1. Let Assumption 1 hold, where Â0 and B̂0

are the initial estimates. Let

∆0 =
[
Â0 −Atr B̂0 −Btr

]
.






−N 0 0 (CN +DM)>S>p
0 λsQs 0 (DKs)

>S>p
0 0 λuQu 0

Sp(CN +DM) SpDKs 0 Qp +D>wS
>
p + SpDw

 ?


Â0N + B̂0M I + B̂0Ks I I[

N
M

] [
0
Ks

]
0 0[

N
M

] [
0
Ks

]
0 0

CN +DM DKs 0 Dw



−N 0 0 0
0 − 1

λs
R−1
s 0 0

0 0 − 1
λu
R−1
u 0

0 0 0 −R−1
p




≺ 0. (13)

Then, with probability 1− δ, we have

∆0 ∈∆0 := {∆0 : ∆>0 ∆0 � D−1
0 }, (19)

and with probability 1− δ, we have

∆u ∈∆u := {∆u : ∆>u ∆u � D−1
T }. (20)

If (19) and (20) hold, then for any ε > 0 we have

∆s ∈∆s =

{
∆s : ∆>s ∆s �

(
1 +

1

ε

)
D−1

0

+ (1 + ε)D−1
T

}
.

(21)

Proof. Let

∆0 =
[
Â0 −Atr B̂0 −Btr

]
. (22)

By Lemma 1, with 0 < δ < 1, the following hold with
probability 1− δ.

∆>0 ∆0 � D−1
0 ,

∆>u ∆u � D−1
T .

(23)

The scheduling block can now be represented as

∆s = −(∆0 + ∆u). (24)

To derive a probabilistic bound for ∆s, we have

∆>s ∆s = (∆0 + ∆u)>(∆0 + ∆u)

= ∆>0 ∆0 + ∆>0 ∆u + ∆>u ∆0 + ∆>u ∆u

�
(

1 +
1

ε

)
∆>0 ∆0 + (1 + ε) ∆>u ∆u.

(25)

The third inequality follows by Young’s inequality which
implies that for every ε > 0, ∆>0 ∆u+∆>u ∆0 ≤

(
1
ε

)
∆>0 ∆0+

ε∆>u ∆u. Therefore, the bound for ∆s is

∆>s ∆s �
(

1 +
1

ε

)
D−1

0 + (1 + ε)D−1
T .

The relation between the different sets is visualized in
Figure 2. Using Lemma 1 with the initial data D0, we know
that the true system parameters θtr are in some ellipse ∆0

around the initial parameter estimate θ̂0. Using Lemma 1
after the exploration, we know that the true parameter θtr is
contained in an ellipse ∆u around the new point estimate
θ̂T . Combining both of these bounds we know that the new
point estimate θ̂T , and thus the scheduling variable ∆s, is

contained in an ellipse ∆s around the initial point estimate.

Fig. 2. Illustration of the sets ∆0,∆s,∆u (shifted w.r.t θ̂0, θ̂T ) with
the true parameters θtr , the initial parameter estimate θ̂0 and the estimate
resulting from the exploration θ̂T .

IV. DUAL CONTROL

In this section, the proposed robust dual control strategy is
presented. The overall proposed algorithm is summarized in
Algorithm 1 in Section IV-A and its theoretical properties are
analyzed in Theorem 1 in Section IV-B. Finally, Section IV-C
discusses the approach relative to existing methods.

A. Proposed Algorithm

The overall goal of the proposed dual approach is to design
a structured exploration strategy, such that the designed
controller satisfies some desired quadratic performance (11)
with high probability 1 − δ ∈ (0, 1). Since we assume
that we do not have a prior on the model, we start with
some random (ideally persistently exciting) exploration over
N0 ∈ N steps to obtain initial data D0 (Assumption 1). Then
we use the least mean squares estimate (2) to obtain initial
estimates Â0, B̂0 and a high probability uncertainty bound
D−1

0 (c.f. Lemma 1 and (19) in Prop. 1). Before solving the
dual control problem, we first seek some initial candidate
feedback K0 ∈ Rm×n. This step is in principle not necessary,
however, in case K0 − Ke is small, this step can greatly
reduce the conservatism in the convex relaxation (18). Thus,
as also suggested in [20, Sec. IV.C], we compute K0 as a
robust LQR for the nominal model (15).

In order to emphasize its dependence on the variables and
uncertainty parameters, we denote the matrix in (13) with



Qs = −I,Qu = −I by

S2(Ks,M,N, λs, λu, R
−1
s , R−1

u ).

Furthermore, the satisfaction of (13) is ensured if ∆>s ∆s ≺
D−1
s , ∆>u ∆u ≺ D−1

T , where Ds denotes the uncertainty
bound associated with ∆s. Since the set inclusions (19)–(21)
from Proposition 1 hold, it suffices to show

D−1
s �

1 + ε

ε
D−1

0 + (1 + ε)D−1
T , (26)

By applying the Woodbury matrix identity to (26) and
multiplying by (1+ε), we get

(1 + ε)Ds � εD0 − εD0 (DT + εD0)
−1
εD0. (27)

Applying the Schur complement to (27) results in the fol-
lowing equivalent LMI

S3(ε,D0, DT , Ds) =

[
εD0 − (1 + ε)Ds εD0

εD0 DT + εD0

]
.

Given K0, D0, Â0, B̂0, δ, Qp, Sp, Rp, T and some fixed ε,
te, λs, λu > 0, we solve the following semi-definite program
(SDP), which is a combination of the robust gain-scheduling
problem (13) and the exploration inequalities (15), (17):

inf
We,Ze,Ye,Σ

Ks,M,N,DT ,Ds

tr(Ye) (28a)

s.t. S1(We, Ye, Ze) � 0 (28b)

Se(te, Ze,We,Σ, D0, Â0, B̂0) � 0 (28c)

S2(Ks,M,N, λs, λu, Ds, DT ) ≺ 0 (28d)

S3(ε,D0, DT , Ds) � 0 (28e)
T

σ2
wcδ

[
We Ze
Z>e Z>e K

>
0 +K0Ze −K0WeK

>
0 + Σ

]
+D0 −DT � 0. (28f)

Solving this optimization problem directly leads to the
controller parameters required for the implementation, i.e.,
the exploration controller Ke = Z>e W

−1
e , the exploration

variance Σ, and the robust gain scheduled controller pa-
rameters Ks and K = MN−1. Essentially, (28b)-(28c)
are needed to compute the cost tr(Ye) of the controller
during the exploration phase, compare (15). Moreover, (28d)
contains the main robust control LMI (compare Lemma 2)
which returns a common Lyapunov function N � 0 as
well as controller parameters M,Ks which guarantee robust
performance of the closed loop (10) for all uncertainties
∆u,∆s satisfying ∆>u ∆u ≺ D−1

T and ∆>s ∆s ≺ D−1
s .

In this context, (a bound on) the data obtained during
exploration is approximated via DT−D0, which implies that
the uncertainties for robust controller design, i.e., the values
DT and Ds, in turn depend on the controller during the
exploration phase Ke through (28e) and (28f). This couples
the exporation and robust control, thus resulting in a dual
effect of the proposed controller.

Regarding the computational complexity of (28), we note
that for ε, te, λs, λu > 0 fixed, this is a standard (small-
scale) semi-definite program (SDP), which can be efficiently

solved. Hence, the optimization problem can be solved by
using a line-search like procedure (or gridding) for the
variables ε, te, λs, λu > 0 and solving the SDP in an inner
loop.

After solving (28), we apply the targeted exploration
sequence ut = Kext + et, et ∼ N (0,Σ) for t = 0, . . . , T .
Next, with the new data D0 ∪ DT , we use the least
mean square estimate (2) to obtain an improved/updated
estimate ÂT , B̂T and a new bound D−1

T on the uncer-
tainty. Then, we can directly apply the designed gain-
scheduling controller with the new scheduling variable ∆s =(
ÂT − Â0 B̂T − B̂0

)
. Using (10), this controller can be

explicitly written as a state feedback control law Knew using

uk = Kxk +Ksw
s
k (29)

= Kxk +Ks((ÂT − Â0)xk + (B̂T − B̂0)uk)

= (Im −Ks(B̂T − B̂0))−1(K +Ks(ÂT − Â0))xk

=: Knewxk.

We note that (I −Ks(B̂T − B̂0)) is non-singular (with high
probability) due to the equivalence in [23, Thm. 2]. The
overall procedure is summarized in Algorithm 1.

Algorithm 1 Dual control using gain-scheduling
1: Specify confidence level δ ∈ (0, 1), quadratic perfor-

mance (Qp, Sp, Rp) (11), exploration cost Q, R � 0,
initial and targeted exploration length N0, T .

2: Random exploration to obtain initial data D0 (Ass. 1).
⇒ Initial estimates Â0, B̂0 and uncertainty bound D−1

0 ,
compute robust LQR controller K0 (15).

3: Solve the optimization problem (28) for different values
ε, te, λs, λu > 0 (e.g., via line-search in an outer loop).
⇒ Exploration sequence Ke = Z>W−1, Σ and gain-
scheduled controller Ks, K = MN−1.

4: Apply the exploration input uk = Kexk + ek, ek ∼
N (0,Σ) for k = 0, . . . , T .

5: Update estimates ÂT , B̂T using new data.
6: Compute the equivalent state-feedback Knew and apply

the feedback uk = Knewxk, k > T .

B. Theoretical analysis

The following result proves that Algorithm 1 leads to a
controller with closed-loop guarantees.

Theorem 1. Let Assumptions 1–2 hold, suppose (28) is
feasible and Algorithm 1 is applied. Assume further that the
set inclusions (19)–(21) from Proposition 1 hold. Then the
state-feedback Knew from (29) is well-defined and satisfies
the quadratic performance bound (11).

Proof. First, we recap that Lemma 2 guarantees the perfor-
mance bound (11), assuming suitable bounds on ∆s,∆u.
Then, we show that exploration inequalities in combination
with Assumption 2 ensure the bounds on ∆s,∆u.
Part I. According to Lemma 2, satisfaction of the matrix
inequality (28d) guarantees that the robust gain-scheduling
controller u = MN−1xk + Kswk ensures the quadratic



performance bound (11), if ∆>s ∆s ≺ D−1
s , ∆>u ∆u ≺ D

−1

T .
Moreover, it is a direct consequence of the synthesis LMI
that Knew is well-posed. Thus, it only remains to show that
∆>s ∆s ≺ D−1

s , ∆>u ∆u ≺ D
−1

T .
Part II. Since the set inclusions (19)–(21) from Proposi-
tion 1 hold, it suffices to show D

−1

T � D−1
T and

D−1
s �

1 + ε

ε
D−1

0 + (1 + ε)D
−1

T , (30)

Assumption 2 ensures that the bound (17) holds. The convex
relaxation (18) (c.f. [20, Lemma 1]) in combination with
inequality (28f) ensures that DT � DT and thus ∆>u ∆u ≺
D
−1

T . Finally, as shown earlier, inequality (28e) is equivalent
to (30), which implies ∆>s ∆s ≺ D−1

s .

We point out that, the since the properties in Proposition 1
only hold with some probability 1 − δ, the quadratic per-
formance (11) only holds with some probability, which is
inherent in the considered stochastic/Gaussian setup.

C. Discussion

The proposed method detailed in Algorithm 1 combines
structured exploration techniques as developed in [19], [20]
and robust gain scheduling controller design. Given an
initial data set (compare Assumption 1) and a quadratic
performance specification Qp, Sp, Rp on the channel w 7→
z, Theorem 1 implies that Algorithm 1 guarantees robust
performance for the closed loop with input uk = Knewxk,
after an initial exploration phase whose worst-case cost is
minimized simultaneously with the controller design. The
influence of the exploring controller uk = Kexk + ek,
e ∼ N (0,Σ), on the performance after exploration is quan-
tified by (approximately) predicting the future uncertainty
depending on Ke and Σ via (17)–(18).

Compared to previous works [19]–[22], the key difference
of the present approach is that the mean of the parameter
estimates after exploration is taken into account by consid-
ering it as a scheduling variable via wsk = ∆sz

s
k. Initially,

it is only known that ∆s ∈ ∆s (compare Lemma 2), but
after exploration ∆s is available and can hence be exploited
for controller design. This is in contrast to existing works,
which simply assumed ∆s = 0, i.e., the mean value of
the parameter estimates does not change over time. An
important observation is that, according to (29), the state-
feedback Knew depends on ÂT , B̂T and hence, on the data
DT obtained during time steps 0 through T . This means
that the proposed controller explicitly exploits measurements
during the exploration phase, which was not the case in [19]–
[22]. Furthermore, [19]–[22] require a repeated LMI based
design after the exploration phase, which is not the case
in our formulation wherein we pre-compute a closed-form
solution that guarantees quadratic performance based on a
predicted bound of the exploration data.

Theorem 1 requires that Assumption 1 holds, which is a
non-restrictive condition on the initial data and parameters.
On the contrary, Assumption 2 is essentially an approxima-
tion on the empirical covariance, which is required to predict

the influence of the exploration phase on the parameter
estimates. While Assumption 2 is generally not guaranteed to
hold, it is approximately satisfied in practice and its validity
can be verified a posteriori, i.e., after the exploration phase.

We briefly wish to elaborate on the impact of different
values cδ, σw corresponding to different noise and confidence
levels. Assuming a fixed initial uncertainty D0 is given,
cδ, σw have the same effect and only appear in (28f) to
determine DT . In case we increase cδ and/or σ2

w (assum-
ing D0 is fixed), the optimal controller parameters K,Ks

resulting from (28) remain unchanged and only the cost of
the exploration (Ye,We, Ze,Σ) increases proportionally. This
is natural, as a higher noise level and/or a higher desired
confidence level requires a stronger excitation to yield the
required model quality. Thus, since the magnitude of noise
and/or confidence level does not directly impact the resulting
controller K,Ks (although Knew may change), the main
structural property that would qualitatively change the shape
of the resulting robust dual control strategy would be varying
noise levels for the different states.

V. CONCLUSION

In this paper, we formulate a novel dual control approach
for linear time-invariant systems with performance guaran-
tees based on gain-scheduling. We propose an LMI-based
controller design procedure which simultaneously computes
a controller to apply during an exploration phase as well
as a robust controller for closed-loop performance after
exploration. Similar to [20], the influence of the exploration
on the closed loop is quantified by predicting the future
uncertainty of the system parameters. The key difference
is that we account for the change in the mean estimate
of system parameters after exploration by formulating an
LPV closed-loop system and selecting the uncertain system
parameters as a scheduling variable. In contrast to existing
methods, the robust controller takes the estimates after ex-
ploration into account and therefore, it depends explicitly
on the data obtained during exploration. Finally, we prove
desirable theoretical properties of the proposed approach. An
interesting issue for future research is a detailed comparison
of the presented dual controller to existing alternatives.
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