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Abstract— In this paper, we consider a finite horizon, non-
stationary, mean field game (MFG) with a large population of
homogeneous players, sequentially making strategic decisions,
where each player is affected by other players through an
aggregate population state termed as mean field state. Each
player has a private type that only it can observe, and a mean
field population state representing the empirical distribution
of other players’ types, which is shared among all of them.
Recently, authors in [1] provided a sequential decomposition
algorithm to compute mean field equillibrium (MFE) for such
games which allows for the computation of equilibrium policies
for them in linear time than exponential, as before. In this paper,
we extend it for the case when state transitions are not known, to
propose a reinforcement learning algorithm based on Expected
Sarsa with a policy gradient approach that learns the MFE
policy by learning the dynamics of the game simultaneously.
We illustrate our results using cyber-physical security example.

I. INTRODUCTION

There is an increasing number of applications today that
involve large scale interactions among strategic agents, such
as smart grid, autonomous vehicles, cyber-physical systems,
Internet of Things (IoT), renewable energy markets, electric
vehicle charging, ride sharing apps, financial markets, crypto-
currencies and many more. Such applications can be modeled
through MFGs introduced by Huang et al [2] and Lasry and
Lions [3], where each player is affected by other players not
individually, but through a ‘mean field’ that is an aggregate
of the population states.

Multi-agent systems have become ubiquitous owing to
their variety of applications. In the recent decade, several
multi-agent reinforcement learning (MARL) approaches have
been proposed to learn optimal strategies for the agents in
the system. However, these approaches scale poorly with
size and the dynamic nature of the environment makes the
learning of these strategies rather difficult. In contrast, a
planning framework based on the mean field approximation
has shown potential due to the remarkable property wherein
the agents decouple from one another with the increase in
their number. As such the agents interact only through the
mean field which makes dynamics of the system tractable.
MARL systems work well with probabilistic models but fail
with large number of agents and this is where the mean field
concept has proven useful.

mean field approximation has been in use in game the-
ory applications to study large number of non-cooperative
players. In such games, given the mean field states, players’
MFE strategies are computed backward recursively through
dynamic programming (or HJB equation in continuous time),
whereas given players’ strategies, mean field states are com-
puted forward recursively using Mckean Vlasov equation (or

Fokker-Plank equation). Overall, MFE strategies and mean
field states are coupled across time through a fixed-point
equation. Recently, in [1], the author presented a sequential
decomposition algorithm that computes such equilibrium
strategies by decomposing this fixed-point equation across
time, and reducing the complexity of this problem from
exponential to linear in time. It involves solving a smaller
fixed-point equation for each time instant t.

The concept of a generalized MFG is discussed by authors
in [4], where they prove the uniqueness and existence of
Nash equillibrium (NE). They also propose a Q-learning
algorithm with Boltzmann policy and analyze its conver-
gence properties and complexity. In [5], the authors pro-
pose a posterior sampling based approach where each agent
samples a transition probability from a previous transition
and converges to the optimal oblivious strategy for MFGs.
Authors in [6] consider a multi-agent setting with agents
coupled by the average action of the agents. They show that
the mean field Q algorithm that converges to the NE. In [7],
the authors propose reinforcement learning (RL) algorithms
for stationary MFGs that compute MFE and social-welfare
optimal solution strategies. In [8], the authors consider a
non stationary MFG and propose a fictitious play iterative
learning algorithm to devise optimal strategies for mean field
states. They argue that if the agent plays the best response to
the observed population state flow, they eventually converge
to the NE.

Most prior research assume a full knowledge of the
dynamics of the system. They also assume a stationary mean
field approximation while computing the MFE. In our paper,
however, we consider a non stationary MFG with no prior
knowledge of the system dynamics, to derive the optimal
policy as a function of the mean field state. The main
contribution of our paper is an RL algorithm that solves
the fixed point equation that was proposed by the authors
in [1] while learning the dynamics of the Markov decision
process (MDP) simultaneously. We prove the convergence of
our algorithm to the MFE analytically. Finally, we show con-
vergence to the mean field equilibrium strategy for a stylized
problem of Malware Spread where the strategy derived from
our algorithm coincides with the optimal strategy obtained
assuming the full knowledge of the system.

The paper is structured as follows. In Section II, we
present our model. In Section III, we present the sequential
decomposition algorithm with backward recursion presented
in [1] to compute MFE of the game. In Section IV, we
present our reinforcement learning algorithm and prove its
convergence to MFE polices. In Section VI, we present
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a cyber-physical system security example. We conclude in
Section VII.

A. Notation

We use uppercase letters for random variables and low-
ercase for their realizations. For any variable, subscripts
represent time indices and superscripts represent player iden-
tities. We use notation −i to denote all players other than
the player i i.e. −i = {1, 2, . . . , i− 1, i+ 1, . . . , N}. We
use notation at:t′ to represent the vector (at, at + 1, . . . , at′)
when t′ ≥ t or an empty vector if t′ < t. We use
a−it to mean

(
a1t , a

2
t , . . . , a

i−1
t , ai+1

t , . . . , aNt
)
. We remove

superscripts or subscripts if we want to represent the whole
vector, for example at represents (a1t , . . . , a

N
t ). We denote

the indicator function of any set A by 1{A}. For any finite
set S, P(S) represents space of probability measures on
S and |S| represents its cardinality. We denote by Pσ (or
Eσ) the probability measure generated by (or expectation
with respect to) strategy profile σ and the space for all such
strategies as Kσ . We denote the set of real numbers by R. All
equalities and inequalities involving random variables are to
be interpreted in a.s. sense.

II. MODEL

We consider a finite horizon discrete-time large population
sequential game with N homogeneous players, where N
tends to ∞. We denote the set of homogeneous players
by N and the set of time periods by T . In each time
instant t ∈ T , a player i ∈ N observes a private type
xit ∈ X = {1, 2, · · · , Nx} and a common observation
of the mean field population state zt ∈ Z , where zt =
(zt(1), zt(2), . . . , zt(Nx)) is the fraction of population hav-
ing type x ∈ X at time t given as.

zt(x) =
1

N

N∑
i=1

1{xit=x} (1)

with
∑Nx
i=1 zt(i) = 1. Consequently, the player i takes

an action ait ∈ A = {1, 2, · · · , Na} based on policy
σit
(
.|z1:t, xit

)
, and receives a reward R

(
xit, a

i
t, zt

)
which is

a function of its current type xit, action ait and the common
observation zt. Player i’s type evolves as a controlled Markov
process,

xit+1 = fx
(
xit, a

i
t, zt, w

i
t

)
. (2)

The random variables (wit)i∈N ,t∈T are assumed to be mu-
tually independent across players and across time. We can
also express the above update of xit through a kernel,
xit+1 ∼ τ(·|xit, ait, zt), where τ (·|·) represents the transition
probabilities of the MDP. In this paper, we assume that τ is
unknown. We develop a model-free RL algorithm to derive
the equilibrium policy where τ is used to simulate the model
and generate samples for learning. The idea of MFGs is
to approximate the finite population game with an infinite
population game such the the mean field state zt converges
to the statistical MFE of the game [7].

In any time period t, player i observes (z1:t, x
i
1:t) and

takes action ait according to a behavioral strategy σi = (σit)t,

where σit : Zt × X t → P(A) defined over the space
Kσ which implies Ait ∼ σit(·|z1:t, xi1:t). In the case of a
finite time-horizon game, GT , each player wants to choose
the strategy σ̃ that maximizes its total expected discounted
reward over a time-horizon T , discounted by discount factor
0 < δ ≤ 1, given as

J σ̃t = Eσ̃t:T
[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, zk

)
|zt, xit

]
. (3)

III. PRELIMINARIES

A. Solution concept: Markov perfect equillibrium (MPE)

The Nash equilibrium of GT is defined as strategies σ̃ =
(σ̃it)i∈N ,t∈T that satisfy, for all i ∈ N ,

Eσ̃
i,σ̃−i

[
T∑
t=1

δt−1R
(
Xi
t , A

i
t, Zt

)]

≥ Eσ
i,σ̃−i

[
T∑
t=1

δt−1R
(
Xi
t , A

i
t, Zt

)]
. (4)

For sequential games, however, a more appropriate equi-
librium concept is MPE [9], which is used in this paper.
We note that although a Markov perfect equilibrium is also
a Nash equilibrium of the game, the opposite might not be
true always. An MPE (σ̃) satisfies sequential rationality such
that for GT , ∀i ∈ N , ∀t ∈ T , ∀hit ∈ Hit, where Hit is the
space of all possible mean field trajectories till time t, and
∀σi ∈ Kσ ,

Eσ̃
iσ̃−i

[
T∑
n=t

δn−tR
(
Xi
n, A

i
n, Zn

)
|z1:t, xi1:t

]

≥ Eσ
iσ̃−i

[
T∑
n=t

δn−tR
(
Xi
n, A

i
n, Zn

)
|z1:t, xi1:t

]
. (5)

B. A solution concept: MFE

MFE can be defined as the combination of the optimal
policy σ̃ := {σ̃t}t∈T and the mean field states z := {zt}t∈T
that satisfy the following:

1) A policy σ̃ for some z1:T such that

Eσ̃
i

[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, Zk

)
|z1:T , xi1:t

]

≥ Eσ
i

[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, Zk

)
|z1:T , xi1:t

]
. (6)

2) A function Φ[z] : Sz → 2Sσ such that

Φ (z) = {σ̃ ∈ Sσ : σ̃ is optimal for z} (7)

3) A mapping Λ: Sσ → Sz with σ̃ ∈ Sσ , z = Λ (σ̃) is
constructed recursively as,

zt+1(y) =
∑
xt,at

τ (y|x, a, zt) σ̃t(a|zt, xt)zt(dxt) (8)

Then, the pair (σ̃, z) can be called a MFE which is a good
approximation for the MPE when the population grows large.



C. A methodology to compute MFE

In this section, we summarize the backward recursive
methodology based on sequential decomposition that would
be used to compute the MPE. It is worth noting that, [1]
provides a sequential decomposition algorithm used for the
case when model of the MDP us known. Here, we modify
the algorithm so that it could be used for the model-free
case as well. We consider Markovian equilibrium strategies
of player i which depend on the common information zt at
time t, and on its current private type xit. Equivalently, player
i takes action of the form Ait ∼ σit(·|zt, xit). Similar to the
common agent approach [10], an alternate and equivalent
way of defining the strategies of the players is as follows. We
consider a common fictitious agent that views the common
information zt and generates a prescription function γit :
X → P(A) as a function of zt through an equilibrium gener-
ating function θit : Z → (X → P(A)) such that γit = θit[zt].
Then action Ait is generated by applying this prescription
function γit on player i’s current private information xit, i.e.
Ait ∼ γit(·|xit). Thus Ait ∼ σit(·|zt, xit) = θit[zt](·|xit).

We are only interested in symmetric equilibria of such
games such that Ait ∼ γt(·|xit) = θt[zt](·|xit) i.e. there is no
dependence of i on the strategies of the players.

For a given symmetric prescription function γt = θ[zt], the
statistical mean field zt evolves according to the discrete-time
McKean Vlasov equation, ∀y ∈ X :

zt+1(y) =
∑
x∈X

∑
a∈A

zt(x)γt(a|x)τ (y|x, a, zt) , (9)

which implies

zt+1 = φ (zt, γt) . (10)

D. Backward recursive algorithm for GT
This section summarizes the proposed a novel model-free

algorithm to compute the optimum policy function θ̃t as
a function of mean field zt where equilibrium generating
function (θ̃t)t∈[T ] is defined as θ̃t : Z → {X → P(A)},
and for each zt, we generate γ̃t = θ̃t[zt]. In addition,
we generate an action value function Qt defined as Qt :
Π × Z × X × A → R that captures the expected sum of
returns at time t following certain action from a state and
then continuing with the optimal policy σ̃t+1 from time t+1
onwards. As per our knowledge, this is the first attempt to
solve a fixed point equation using the action value function
in a model-free algorithm and determining the corresponding
equilibrium policy when the mean field is non-stationary. The
algorithm can be summarized as follows:

1) Initialize ∀zT+1, x
i
T+1 ∈ X , AiT+1 ∈ A, γ̃T+1 ∈ Π,

VT+1

[
zT+1, x

i
T+1

] 4
= 0, (11)

θ̃T+1 [zT+1]
4
= 0. (12)

2) For t = T, T − 1 . . . 1 and ∀zt, θ̃t [zt] is generated
through the following steps.

a) Compute Qt, ∀xit ∈ X , ∀ait ∈ A, and ∀γ̃t ∈ Π
as,

Qt(zt, x
i
t,at, γ̃t)

4
= R

(
zt, x

i
t, a

i
t

)
+

δE
[
Vt+1

(
zt+1, X

i
t+1

)
|zt, xit

]
, (13)

where the expectation in (13) is with respect
to the random variable Xi

t+1 through the mea-
sure τ

(
xit+1|xit, ait, zt

)
. The mean state zt+1 =

φ (zt, γ̃t).
b) Set θ̃t[zt] = γ̃t, where γ̃t is the solution to the

following fixed-point equation at all xit ∈ X and
∀i ∈ N

γ̃t
(
·|xit
)
∈

arg max
γt(·|xit)

Eγt(·|x
i
t)
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)
|zt, xit

]
(14)

where expectation in (14) is with respect to ran-
dom variable Ait through the measure γt(ait|xit).

c) The value function Vt is computed ∀xit ∈ X as,

Vt
(
zt, x

i
t

)
= Eγ̃t(·|x

i
t)
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)
|zt, xit

]
(15)

Then, an equilibrium strategy is defined as

σ̃it
(
ait|z1:t, xi1:t

)
= θ̃[zt]

(
ait|xit

)
, (16)

where θ̃[zt] = γ̃t. The proof for the existence of the solution
to the fixed point equation in (14) which is the MPE of the
game has already been provided in [1] and will be revisited
when we prove the convergence of our algorithm.

IV. REINFORCEMENT ALGORITHM

In this section, we describe our proposed RL algorithm
that computes the optimal policy which maximizes the ex-
pected sum of returns as specified in (3). The optimal policy
σ̃ is defined for a discretized set of mean states z ∈ Z , given
as θ̃ [z]. At any time t, and for any current mean state zt ∈ Z ,
θ̃t [zt] maps to a function γ̃t that prescribes the probabilistic
action ait, an agent i should take, given the state xit.

We implement the RL algorithm based on Expected
Sarsa [11] and without the explicit knowledge of the the
transition probabilities τ(xit+1|xit, ait). The algorithm basi-
cally computes the Qt-values at each instant and then learns
the optimal policy γ̃t by solving the fixed point equation
in (14). We use Expected Sarsa to update the Qt values,
from the current reward rt and Vt+1, the value at the future
state. This update can be expressed as

Qt (zt, xt, at, γ̃t) = (1− α)Qt
(
zt, x

i
t, a

i
t

)
+

α
(
rt + δVt+1

(
zt+1, x

i
t+1

))
(17)

The Q-values are a function not only of the states and
the actions but also of the current mean field state zt and
the current optimal policy θ̃ [zt] = γ̃t. The current optimal
policy and current mean state determine the next mean state
zt+1 which determines the value function Vt+1

(
zt+1, x

i
t+1

)
at the future state. Therefore, the functions Qt is defined



over all possible equilibrium policies γ̃t (·|xt) ∈ Π, where
Π is the space of all possible strategies from a given
state xt. The value function Vt+1

(
zt+1, x

i
t+1

)
is determined

using functional approximation. In addition, due to the non-
stationarity of the mean states, the equation in (14), which
is used to solve for the optimal policy, is not just a single
step optimization, but a fixed point equation which needs
to be solved with repeated iterations. In our paper, we use
a policy gradient approach to solve for the optimal policy
at each mean state and for every time iteration repeatedly.
The entire RL algorithm described here is summarized in
Algorithm 1.

At each time instant t, the policy iteration algorithm
computes the equilibrium policy based on the action value
function Qt through a policy gradient approach. In other
words, the solution to the fixed point equation in (14) is the
policy where Qt has the highest gradient. Given that the the
function Qt is a function of the optimal policy itself, the
new found policy changes the Qt. Therefore, this process
is repeated over several iterations in order to arrive at the
required prescription function γ̃t. This is repeated at all the
mean states zt ∈ Z so that we get the final equilibrium
function θ̃ [z].

V. CONVERGENCE

In this section, we prove the convergence of the proposed
RL algorithm to the equilibrium strategy of the statistical
MFG. Using backward recursion and sequential decomposi-
tion, the RL algorithm is able to arrive at the equilibrium
strategy for player i at each time t. In other words, we
show that the a player i has no incentive to deviate from the
equilibrium strategy σ̃ given that the other players are playing
the equilibrium strategy. Before proving convergence, we
establish two lemmas related to the main theorems. In the
first lemma we show that the value function Vt captures the
expected sum of rewards accumulated by playing the σ̃ at
time t by the ith player. We follow it with the proof of the
next lemma establishing the optimality of the V value over
the expected sum of rewards accumulated by playing any
other strategy other than σ̃.

Lemma 1: ∀t ∈ [T ], ∀zt, xit ∈ X ,

Vt
(
zt, x

i
t

)
= Eσ̃t:T

[
T∑
k=t

δk−tR
(
xik, A

i
k, zk

)
|zt, xit

]
(18)

= J σ̃t (19)

where σ̃t is the equilibrium policy at time t and J σ̃t is the
accumulated optimal returns from t till T by following the
equilibrium policy.

Proof: We prove the lemma using the theory of
mathematical induction.

At t = T , from (15),

VT
(
zT , x

i
T

)
=Eσ̃T

[
QT

(
zT , x

i
T , A

i
T , σ̃T (·|·, zt)

)]
(20)

=Eσ̃T
[
R
(
xiT , A

i
T , zT

)]
, (21)

Algorithm 1: Equilibrium Policy
Input:
L: Batch Size for Sarsa
I: Policy Iterations
T: Time Length
Output:
σ̃: Optimal Policy

1 Initialize: VT+1

2 Initialize: θ̃T+1

3 for t = T. . . 1 do
4 for zt ∈ Z , γ̃t ∈ Π do
5 Next mean state: zt+1 ∼ φ (zt, γ̃t)

6 Optimum policy: γ̃t+1 = θ̃t+1 [zt+1]
7 for l = 1, 2, . . . L do
8 for

(
xil, a

i
l

)
∈ X ×A do

9 Sample: xil+1 ∼ τ
(
.|xil, ail, zt

)
10 Sarsa Target:

G = R(xil, a
i
l, zt) + δVt+1

(
zt+1, x

i
l+1

)
11 Qt

(
zt, x

i
l, a

i
l, γ̃t

)
=

(1− α)Qt
(
zt, x

i
l, a

i
l, γ̃t

)
+ αG

12 end
13 end
14 end
15 for z ∈ Z do
16 for n = 1 . . . I do
17 γ̃n = PG (Qt (zt, ·, ·, γ̃n−1))
18 Increment: n = n+ 1
19 end
20 θ̃ [zt] = γ̃n
21 end
22 for z ∈ Z do
23 for xi ∈ X do
24 γ̃ = θ̃ [zt]
25 Vt

(
zt, x

i
)

= Eγ̃
[
Qt
(
zt, x

i, Ai, γ̃
)]

26 end
27 end
28 end
29 σ̃ = θ̃[zt] ∀zt

Result: σ̃

which is true from (13). For any mean state zt, γ̃t =
σ̃t (·|·, zt), therefore, we have,

VT
(
zT , x

i
T

)
= Eγ̃T

[
R
(
xiT , A

i
T

)]
. (22)

which is the maximum returns the agents can receive at t =
T because γ̃t is the solution to the fixed point equation in (14)
that maximizes (22).

Now assuming that the proposition is true for t = t + 1,
we get,

Vt+1

(
zt+1, x

i
t+1

)
= J σ̃t+1 (23)

= Eσ̃t+1:T

[
T∑

k=t+1

δk−(t+1)R
(
xik, A

i
k, zk

)
|zt+1, x

i
t+1

]
(24)



(25)

At time t = t, we have,

Vt
(
zt, x

i
t

)
=Eσ̃t

[
Qt
(
zt, x

i
t, A

i
t, σ̃t (·|·, zt)

)
|zt, xit

]
(26a)

=Eσ̃t [R
(
xit, zt, A

i
t

)
+

δVt+1

(
zt+1, x

i
t+1

)
|zt, xit] (26b)

(26a) is from the definition in (15) while (26b) is from the
definition in (13). Using the assumption in (24), we get,

Vt
(
zt, x

i
t

)
= Eσ̃t

[
R
(
xit, A

i
t, zt

)
+

δEσ̃t+1:T

[
T∑

k=t+1

δk−(t+1)R
(
xik, zk

)
|zt+1, x

i
t+1

]

|zt, xit

]
(27)

Using the the expression for expected sum of returns in (3),
we get,

Vt
(
zt, x

i
t

)
= Eσ̃t [R

(
xit, zt, A

i
t

)
+ δJt+1] (28)

Lemma 2: ∀i ∈ N ,t ∈ [T ],∀zt, xit ∈ X , ait ∈ A,

Vt
(
zt, x

i
t

)
≥ Eσ

i
t,σ̃
−i
t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)
|zt, xit

]
(29)

where zt+1 = φ (zt, σ̃t (·|zt, ·)).
Proof: Given that at time t+ 1 the equilibrium policy

is σ̃t+1 is the solution to the fixed point equation in (14),
let us assume that the player i plays a different policy σ̂t+1

such that ∀xit+1 ∈ X ,

γ̂t
(
·|xit+1

)
/∈ arg max

γt
E
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)
|zt, xit

]
(30)

with σ̂t
(
·|zt, xit

)
= γ̂t

(
·|xit
)
.

Now, the equation on the other side of the inequality in(29)
can be changed assuming σ̂ as the suboptimal policy as
follows:

Eσ
i
t,σ̃
−i
t
[
Qt
(
zt+1, X

i
t , A

i
t, γ̃t

) ∣∣zt, xit, ait]
=Eγ̂

i
t ,σ̃
−i
t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

) ∣∣zt, xit, ait] (31a)

Considering (30), we can proceed as,

Eγ̂
i
t ,σ̃
−i
t
[
Qt
(
zt, X

i
t , A

i
t, γ̃t

) ∣∣zt, xit, ait]
≤Eγ̃

i
t ,σ̃
−i
t
[
Qt
(
zt+1, X

i
t , A

i
t+1, γ̃t

) ∣∣zt, xit, ait] (32a)

=Vt
(
zt, x

i
t

)
(32b)

where the last statement is from the definition in (13).

Theorem 1: A strategy (σ̃) constructed from the above
algorithm is an MFE of the game. i.e

Eσ̃
[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, Zk

) ∣∣z1:t, xi1:t
]

≥ Eσ
i,σ̃−i

[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, Zk

) ∣∣z1:t, xi1:t
]

(33)

Proof: We prove it through the technique of mathe-
matical induction and will use the results that were proved
before in Lemma 1 and Lemma 2.

For the base case, we consider t = T . The expected sum
of returns, when the player i follows the equilibrium policy
σ̃ is given as

JT = Eσ̃T
[
R
(
xiT , A

i
T , zT

) ∣∣z1:T , xi1:T ] (34)

= VT
(
zT , x

i
T

)
, (35)

which is true from Lemma 1.
Now, from Lemma 2, we have,

VT ≥Eσ
i
T ,σ̃
−i
T

[
QT

(
zT , x

i
T , A

i
T , γ̃T

)
|zt, xit

]
(36)

=Eσ
i
T ,σ̃
−i
T

[
R
(
xiT , A

i
T , zT

) ∣∣z1:T , xi1:T ] (37)

Assuming that the condition in (33) holds at t = t + 1, we
get,

Eσ̃
[

T∑
k=t+1

δk−t−1R
(
xik, A

i
k, zk

) ∣∣z1:t+1, x
i
1:t+1

]

≥ Eσ
iσ̃−i

[
T∑

k=t+1

δk−t−1R
(
xik, A

i
k, zk

) ∣∣z1:t+1, x
i
1:t+1

]
(38)

We need to prove that the expression in (33) holds for t = t
as well. Let us represent the left hand side of (33) as L, i.e.

L = Eσ̃
[
T∑
n=t

δk−tR
(
Xi
k, A

i
k, Zk

) ∣∣z1:t, xi1:t
]

(39)

The expectation at t + 1 is independent of the rewards at
time t, therefore, we can rewrite (39) as

L = Eσ̃t
[
R
(
xit, a

i
t, zt

)
+

δEσ̃t+1:T

[
T∑

k=t+1

δk−t−1R
(
Xi
k, A

i
k, Zk

) ∣∣z1:t+1, x
i
1:t+1

]]
(40)

Using Lemma 1, and the definition of Vt in (15) we get,

L =Eσ̃t
[
R
(
xit, a

i
t, zt

)
+ δVt+1

(
z1:t+1, x

i
1:t+1

)]
(41a)

=Eσ̃t
[
Qt
(
zt, x

i
t, a

i
t, σ̃t (·|zt, ·)

)]
(41b)

=Vt
(
zt, x

i
t

)
(41c)

Now, from Lemma 2,

L ≥Eσ
i
t,σ̃
−i
t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)
|zt, xit

]
(42a)

=Eσ
i
t,σ̃
−i
t
[
R(xit, A

i
t, zt) + δVt+1

(
zt+1, X

i
t+1

)
|zt, xit

]
(42b)

which is true as per the definition in (13). The expression can
now be expanded using Lemma 1 and use the assumption we
made in (38).

L ≥Eσ
i
t,σ̃
−i
t

[
R(zt, x

i
t, a

i
t)+



δEσ̃
[
T∑
k=t

δk−tR
(
xik, A

i
k, zk

)
|zt, xit

]]
(43a)

≥Eσ
i
t,σ̃
−i
t

[
R(zt, x

i
t, a

i
t)+

δEσ
iσ̃−i

[
T∑

k=t+1

δk−t−1R
(
xik, A

i
k, zk

) ∣∣z1:t+1, x
i
1:t+1

]]
(43b)

=Eσ
i,σ̃−i

[
T∑
k=t

δk−tR
(
Xi
k, A

i
k, zk

) ∣∣z1:t, xi1:t, ai1:t
]

(43c)

Theorem 2: Let σ̃ be an MFE of the mean field game.
Then there exists an equilibrium generating function θ̃ that
satisfies (14) in the backward recursion algorithm such that
σ̃ is defined using θ̃.

Proof: Given that σ̃ is the MFE of the game, the
equilibrium generating function such that

θ̃[z] = σ̃ (·|z, ·) ∀z (44)

At time t, let us assume that γ̃t
(

= θ̃ [zt]
)

be the prescription
function that gives the equilibrium action but does not satisfy
the fixed point equation in (14), i.e.

γ̃t /∈ arg max
γt

Eγt
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)]
(45)

Let us assume that γ̂t be a solution to the fixed point equation
in the RL algorithm, then

Eγ̂t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)]
≥ Eγ̃t

[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)]
(46)

But, we know

Eγ̂t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)]
(47a)

= Eσ̂t
[
Rt
(
xit, A

i
t, zt

)
+ Vt+1

(
zt+1, x

i
t+1

)]
(47b)

= Eσ̂t,σ̃t+1:T

[
T∑
n=t

δn−tR
(
Xi
n, A

i
n, Zn

) ∣∣z1:t, xi1:t, ai1:t
]

(47c)

≥ Eγ̃t
[
Qt
(
zt, x

i
t, A

i
t, γ̃t

)]
(47d)

= Vt
(
zt, x

i
t

)
(47e)

which is contradictory on the consideration that σ̃ is a MPE
of the game.

Assumption 1: Let the reward function R
(
xit, a

i
t, zt

)
and

the state transition matrix τ
(
xit+1|xit, ait, zt

)
be continuous

functions in zt.
Theorem 3: Under the assumption 1, there exists a solu-

tion to the fixed point equation in (14).
Proof: It has already been shown that when the reward

function is bounded, there exists a MFE for finite horizon
games. It can also been shown that the solutions to the fixed
point equations are MFE of the game. Thus there exists an
equilibrium policy for the game achieved at each time t.

VI. NUMERICAL EXAMPLE

A. Security of cyber-physical system: Malware Spread

We consider a security problem in a cyber physical net-
work with positive externalities. It is a discrete version of the
malware problem presented in [12], [13], [14], [15]. Some
other applications of this model include flu vaccination, entry
and exit of firms, investment, network effects. In this model,
we suppose there are large number of cyber-physical nodes
where each node has a private state xit ∈ {0, 1} where xit = 0
represent ‘healthy’ state and xit = 1 is the infected state.
Each node can take an action ait ∈ {0, 1}, where ait = 0
implies “do nothing” whereas ait = 1 implies “repair”. The
dynamics(= Qx (·|·)) are given by

xit+1 =

{
xit + (1− xit)wit for ait = 0

0 for ait = 1

where wit ∈ {0, 1} is a binary valued random variable with
P (wit = 1) = q representing the probability of a node getting
infected. Thus if a node doesn’t do anything, it could get
infected with certain probability, however, if it takes repair
action, it comes back to the healthy state. Each node gets a
reward

r(xit, a
i
t, zt) = −(k + zt(1))xit − λait. (48)

where zt(1) is the mean field population state being 1 at
time t, λ is the cost of repair and (k + zt(1)) represents
the risk of being infected. We pose it as an infinite horizon
discounted dynamic game. We consider parameters k =
0.2, λ = 0.5, δ = 0.9, q = 0.9 for numerical results presented
in Figures 1-3.
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Fig. 1. γ(1|0): Probability of choosing action 1, given xi = 0

The learning parameter α for the sarsa update was set at
0.1. The overall length of the time-horizon T was chosen to
be 60 iterations long.

Figure 1 and Figure 2 show the equilibrium policies γ̃
at different values of the mean state zt for states xit = 0
and xit = 1. The plotted graphs are the probabilities with
which we choose action ait = 1. The plots of our algorithm
are compared across the true strategy that was obtained by
assuming the knowledge of the dynamics of MDP and then
solving the fixed point equation. The strategies estimated
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Fig. 2. γ(1|1): Probability of choosing action 1, given xi = 1

using the proposed RL algorithm coincides with the true
strategies establishing the accuracy of our algorithm.

VII. CONCLUSION

We considered a finite horizon discrete-time sequential
MFG with infinite homogeneous players. The players had
access to their private type and the common information of
mean population state. A fixed point decomposition method
was suggested in an earlier paper that computes the equilib-
rium strategy at different mean states but with the knowledge
of the dynamics of the MDP. Here, we proposed a RL
algorithm that employs Expected Sarsa to learn the dynamics
of the game and solve the fixed point equation, iteratively, to
arrive at the equilibrium strategy. In the end, we implement
our algorithm on a practical cyber-physical application to
demonstrate that the algorithm does converge to the same
optimal policy that was obtained when dynamics of the game
was known. We also analytically show the convergence of
our algorithm to the MFE of the game. To the best of our
knowledge, this is the first RL algorithm to learn optimal
policies of non-stationary mean field games.

REFERENCES

[1] D. Vasal, “Signaling equilibria in mean-field games,” pp. 1–21, 2019.
[2] M. Huang, R. P. Malhamé, P. E. Caines et al., “Large population

stochastic dynamic games: closed-loop mckean-vlasov systems and the
nash certainty equivalence principle,” Communications in Information
& Systems, vol. 6, no. 3, pp. 221–252, 2006.

[3] J.-M. Lasry, P.-L. Lions, J.-M. Lasry, and P.-L. Lions, “Mean field
games,” Japan. J. Math, vol. 2, pp. 229–260, 2007.

[4] X. Guo, A. Hu, R. Xu, and J. Zhang, “Learning mean-field games,” in
Advances in Neural Information Processing Systems, 2019, pp. 4967–
4977.

[5] N. Tiwari, A. Ghosh, and V. Aggarwal, “Reinforcement learning for
mean field game,” arXiv preprint arXiv:1905.13357, 2019.

[6] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field
multi-agent reinforcement learning,” arXiv preprint arXiv:1802.05438,
2018.

[7] J. Subramanian, “Reinforcement learning in stationary mean-field
games,” Proceedings of the 18th International Conference of Au-
tonomous Agents and Multi-Agent Systems, AAMAS’19, pp. 251–259,
2019.
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