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Fully decentralized conditions for local convergence of DC/AC converter
network based on matching control

Taouba Jouini1, Zhiyong Sun2

Abstract— We investigate local convergence of identical
DC/AC converters interconnected via identical resistive and
inductive lines towards a synchronous equilibrium manifold.
We exploit the symmetry of the resulting vector field and
develop a Lyapunov-based framework, in which we measure the
distance of the solutions of the nonlinear power system model
to the equilibrium manifold by analyzing the evolution of their
tangent vectors. We derive sufficient and fully decentralized
conditions to characterize the equilibria of interest, and provide
an estimate of their region of contraction. We provide ways
to satisfy these conditions and illustrate our results based on
numerical simulations of a two-converter benchmark.

I. INTRODUCTION

In the advent of high penetration of renewable energy
resources in the electrical network [1], power system stability
remains at the heart of the understanding of the ramifications
of these unprecedented changes affecting the generation,
operation and distribution of energy, where power electronic
DC/AC converters, play key role in maintaining reliable
power supply.

a) Literature review: Despite their intrinsic differences,
synchronous machines and DC/AC converters share struc-
tural similarities, which are often exploited to design efficient
control strategies that endow resilience to the electrical grid.
Thus, different schemes for machine emulating control e.g.,
droop control [2], virtual synchronous machines [3], syn-
chronverters [4], are extensively studied and labeled as grid-
friendly for meeting power demands and showing robustness
against common disturbances. In particular, the matching
control, introduced recently in [5] has gained much attention,
due to its simple implementation and advantageous plug and
play properties [6].

One of the major difficulties in the network analysis of
power system stability, is the presence of a continuum of
steady states due to the symmetry of the vector field de-
scribing the multi-converter or multi-machine dynamics [7].
In particular, the rotational invariance indicates the absence
of a reference frame or absolute angle in power system
and presents a fundamental obstacle for defining suitable
error coordinates. A common approach in power system
literature is to eliminate this continuum of equilibria, e.g., by
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performing transformations either resulting from grounding
a node [8], or projecting into the orthogonal complement
[9], if the equilibrium manifold is a linear subspace, where
classical stability tools such as Lyapunov direct method, can
be deployed. Nonetheless, this type of transformations are
not possible for high-order systems, where the dynamics do
not have a direct coupling term or if the Laplacian matrix
cannot be expressed explicitly. This has been highlighted at
different occasions in power system literature.

Differential geometric methods have been adopted in the
study of nonlinear solutions of symmetric vector fields and
we distinguish two main avenues. First, contraction theory
and differentiation methods [10] assess the stability of non-
linear trajectories, in terms of their convergence with respect
to one another. Contraction theory captures the convergence
towards a particular solution with a specific smooth property
[11] relying on infinitesimal virtual displacements. The study
of differential system dynamics on the tangent bundle shows
for example the convergence to an attractor for coupled
identical nonlinear oscillators [12]. Contracting systems are
also referred to as convergent.

Second, Lyapunov theory and incremental methods [13]
have been recognized as promising tools to study the stability
of trajectories with respect to one another, besides being
attracted towards an equilibrium of interest. Incremental
Lyapunov theory is tailored to power system models in the
aftermath of a failure or disturbance from an energy-shaping
perspective.

Another approach, under the name of differentiable Lya-
punov framework, merges integration methods revolving
around incremental Lyapunov functions with differentiation
methods, based on contraction analysis [14]. This approach
allows the study of stability of nonlinear trajectories by
looking at the dynamics of their virtual displacements and
measures well-defined distance, called Finsler distance, be-
tween them via integration.

b) Contributions: In this work, we consider high-
fidelity power system model, consisting of identical DC/AC
converters interconnected via identical resistive and inductive
lines. Based on preliminary results in [15], we exploit struc-
tural properties of the vector field to prove convergence of the
nonlinear trajectories, under fully decentralized conditions,
which can be verified individually at each converter. For this,
we adopt the differential stability framework presented in
[14], by lifting the Lyapunov function to the tangent bundle.
Based on considerations in the quotient manifold, we show
that solutions of the multi-converter system converge towards
a synchronous equilibrium manifold on a contraction region
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characterized by small distance of the angles, frequency and
AC signals to the subspace, representing the tangent vector of
the rotational invariance at steady state. We link our stability
results theories in the study of weak/partially contracting
systems. Our simulations illustrate our results, where the
stability conditions are satisfied and the contraction region
is numerically estimated.

c) Notation: : We define an undirected graph G =
(V,E), where V is the set of nodes with |V|= n and E ⊆V×
V is the set of interconnected edges with |E|=m. We assume
that the topology specified by E is arbitrary and define the
map E →V , which associates each oriented edge ei j =(i, j)∈
E to an element from the subset I = {−1,0,1}|V|, resulting
in the incidence matrix B ∈ Rn×m. We denote by 1n the
vector of all ones, I ∈ R2×2 the identity matrix I =

[
1 0
0 1

]
,

I the identity matrix of dimensions p, with p ∈ N and
J = I⊗ J with J =

[
0 −1
1 0

]
. We define the rotation matrix

R(γ) =
[

cos(γ) −sin(γ)
sin(γ) cos(γ)

]
, and R(γ) = I⊗ R(γ). Let diag(v)

denote a diagonal matrix, whose diagonals are elements of
the vector v and Rot(γ) = diag(r(γ1), . . .r(γn)), k = 1 . . .n,
with r(γk) =

[
−sin(γk) cos(γk)

]>. Let S1 be the unit circle,
and Tn = S1× . . .S1 the n-th dimensional torus. Let d(·, ·) be
the distance metric. Given a set A⊆Rn, we denote by TzA
the tangent space of A at z and the tangent bundle of A by
TA=

⋃
z∈A
{z}×TzA. Let K and K∞ be comparison functions

defined by all the maps k : R≥0→ R≥0, that are continuous
and strictly increasing, where k(0) = 0. For K∞ functions, it
holds that k(t)→ ∞ as t→ ∞.

II. SYSTEM SETUP

A. Multi-source power system dynamics

We start from the following general model describing
the evolution of identical DC/AC converters in closed-loop
with the matching control [6], a control strategy that renders
the closed-loop DC/AC converter structurally similar to a
synchronous machine, interconnected with identical resistive
and inductive lines.

We model the dynamics of a balanced and averaged
three-phase DC/AC converter in closed-loop with matching
control, after transformation into a rotating dq frame, at the
nominal steady state frequency ωn > 0, with angle θdq(t) =∫ t

0 ωn dτ (by the so-called Clark transformation [16]), given
by first-order differential equations,

γ̇k
Cdcv̇dc,k

Li̇k
Cv̇k

=

 η(vdc,k−v∗dc)

−Kp(vdc,k−v∗dc)−
µ
2 r(γk)

>ik
−(RI+Lωn J) ik+

µ
2 r(γk)vdc,k−vk

−(GI+C ωn J)vk+ik−inet,k

+


0
i∗dc,k

0
0

 (1)

where γk ∈ S1 is the virtual converter angle, η is a positive
control gain, γ̇k = ωk ∈ R is the relative (to the nominal)
frequency. Let vdc,k ∈ R denote the DC voltage across the
DC capacitor with nominal value v∗dc. The parameter Cdc > 0
represents the DC capacitance and the conductance Gdc > 0
together with the proportional control gain K̂p > 0, are
represented by Kp = Gdc + K̂p. This results from designing
a controllable current source idc,k = K̂p(vdc,k − v∗dc) + i∗dc,k,

where we denote by i∗dc,k ∈ R a constant current source
representing DC side input to the converter. Let µ ∈ [0,1] be
the constant modulation amplitude, ik ∈ R2 the inductance
current, vk ∈ R2 the output voltage and i`,k ∈ R2 the line
current. The filter resistance and inductance are represented
by R > 0 and L > 0. The capacitor C > 0 is set in parallel
with the load conductance G > 0 to ground and connected
to the network via the line current inet,k ∈ R2.

By lumping the states of n identical converters and m
identical lines and defining the impedance matrices ZR =
R I+Lωn J, ZC = G I+C ωn J, Z` = R` I+L`ωn J, we obtain
the following power system model,

γ̇
v̇dc
i̇
v̇
i̇`

= K−1


η(vdc−v∗dc1n)

−Kp(vdc−v∗dc1n)− µ
2 Rot(γ)> i

−ZR i+ µ
2 Rot(γ)vdc−v

−ZC v−B i`+i
−Z` i`+B> v

+K−1


0
u
0
0
0

 , (2)

where we define the angle vector γ =
[
γ1 . . .γn

]> ∈ Tn,
with relative frequencies ω =

[
ω1 . . .ωn

]> ∈Rn, DC voltage
vector vdc =

[
vdc,1 . . .vdc,n

]> ∈ Rn, AC inductance current
i =

[
i1 . . . in

]> ∈ R2n and output capacitor voltage v =[
v1 . . .vn

]> ∈ R2n. The last equation in (2) describes the
line dynamics and in particular, the evolution of the line
current i` :=

[
i`1 . . . i`m

]> ∈ R2m, where R` > 0 is the line
resistance, L` > 0 is the line inductance, B = B ⊗ I and
K = diag(I,Cdc I,L I,C I,L` I). The multi-converter input is
represented by u =

[
i∗dc,1, . . . , i

∗
dc,n
]> ∈ Rn.

Let N be the dimension of the state vector z =[
γ> ṽ>dc x>

]>. We define the relative DC voltage ṽdc =

vdc−v∗dc1n, the vector of AC signals x=
[
i> v> i>`

]> and
the input u =

[
0 u 0 . . . 0

]
∈ RN given by the vector

in (2).
By putting it all together, we arrive at the nonlinear power

system model compactly described by,

ż = f (z,u), (3)

for all z ∈ RN , where f (z,u) denotes the vector field in (2).
Consider the nonlinear power system model in (3), for all

θ ∈ S1, it holds that,

f (θ h0 +H(θ)z,u) = f ([z],u) = H(θ) f (z,u) , (4)

where h0 =
[
1>n 0> 0>

]>
, H(θ) =

[
I 0 0
0 I 0
0 0 R(θ)

]
, and

[z] =
{[

(γ +θ1n)
> ṽ>dc (R(θ)x)>

]>
, θ ∈ S1

}
. (5)

In fact, the rotation matrix R(θ), commutes with the
impedance matrices ZR, ZC, Z`, the skew-symmetric matrix J
and the incidence matrix B. Notice that for θ = 2k π, k ∈ Z,
it holds that [z] = z and hence z ∈ [z].

The symmetry (4) arises from the fact that nonlinear power
system model (3) has no absolute angle. In fact, a shift in
all (virtual) angles γ ∈ Tn, induces a rotation in the angles
of AC signals. Up to re-defining the dq transformation angle
to θ ′dq(t) = θdq(t)+θ , the vector field (3) remains invariant
under the translation and rotation actions in (4).



B. Steady state manifold

In light of Section II-A, we aim to understand the prop-
erties of the induced synchronous equilibrium manifold,

M= {z∗ ∈ RN | f (z∗,u) = 0}, (6)

resulting from setting (3) to zero, for a given input vector
u ∈ RN to be specified. Next, we investigate the properties
of the equilibrium manifoldM and define properties related
to its symmetry and feasibility.

Lemma II.1. Consider the equilibrium manifold M de-
scribed by (6). Then, M has the following properties:

1) Synchronization: The frequencies of all converters syn-
chronize at the nominal frequency ωn.

2) Rotational symmetry: M has a rotational symmetry
given by the equilibrium manifold,

[z∗]=
{[

(γ∗+θ1n)
> 0> (R(θ)x∗)>

]>
, θ ∈ S1

}
, (7)

that is, for all z∗ ∈M, it holds that [z∗] ∈M.
3) Feasibility: If u(z∗) = µ

2 Rot(γ∗)>i∗, then M is non-
empty.

Proof.
1) By the chosen dq frame with θ̇dq = ωn, we set the

angle dynamics in (2) to zero. This implies that for
vdc = v∗dc, the relative frequency γ̇ = ω = 0 at steady
state.

2) The existence of a symmetry for M is a direct con-
sequence of (4), applied to the steady state equations,
satisfying (6).

3) The feasibility condition follows from setting DC volt-
age dynamics in (2) to zero and solving for the input
i∗dc,k, given by i∗dc,k−

µ
2 r>(γ∗k ) i∗k = 0, for k = 1 . . .n.

Assumption 1 (Feasibility of the steady states). Assume that
the input u in (2) is given by u = u(z∗).

III. LOCAL ASYMPTOTIC CONTRACTION OF POWER
SYSTEM MODEL

A. Preliminaries

Under Assumption 1, we consider the power system
model (3). Let M⊂ RN be a non-empty steady-state man-
ifold as defined in (6). Because of the symmetry (4), we
define the quotient manifold RN/∼ induced by the follow-
ing equivalence relation for z1 =

[
γ>1 ṽ>dc,1 x>1

]>
, z2 =[

γ>2 ṽ>dc,2 x>2
]>

, given by,

z1 ∼ z2 iff ∃θ ∈ R,γ1− γ2 = θ1n, x1 = R(θ)x2, (8)

and defined by the equivalence class (5). The equivalence
between two AC signals x1 and x2 follows from re-defining
dq frame angle. Hence (3) represents a quotient system on
RN/ ∼, in the sense of [14, Sec. VIII-B] and [11, Sec. B]:
For every initial condition z′0 ∈ [z0], the solution φ(·,z′0) to
(3) satisfies φ(·,z′0) ∈ [φ(·,z0)].

Assumption 2 (Isolated equilibria on RN/∼). Consider the
system (3) defined on the quotient manifold RN/∼. Assume
that the equilibria of the manifoldM on RN/∼ are isolated.

Based on Assumption 2, let D ⊂ RN be a neighborhood
of [z∗] ∈M. In general, the steady state manifold M has
multiple equilibria that are isolated (by Assumption 2) on
RN/∼. We refer to the study of contraction of solutions of
(3) restricted to a region of the space D containing [z∗]⊂M
by local contraction analysis.

Next, we consider the following variational system on D,
(and implicitly on D/∼),

ż = f (z,u), (9)

δ ż =
∂ f (z)

∂ z
δ z,

where ∂ f (z)/∂ z denotes the partial derivatives of (3) repre-
senting the Jacobian and δ z lies on TzD the tangent space
of D at z.

Definition III.1 (Lyapunov function with respect to S). A
differentiable function V : U → R, U ⊆ RN , is a Lyapunov
function with respect to a non-empty, closed and invariant
set S ⊆ U , if

1) V is positive definite with respect to S, that is,
• V (z) = 0, z ∈ S,
• V (z)> 0, z ∈ U \S.

2) Lie derivative of V is negative definite with respect to
S, that is,
• V̇ (z) = 0, z ∈ S,
• V̇ (z)< 0, z ∈ U \S.

Definition III.3 is equivalent to the notion of smooth
Lyapunov function with respect to S using K∞ functions
introduced in [17].

Our analysis of the Jacobian of the nonlinear power system
model (3) in [15], [18], takes under the loop the behavior of
the differential system in (9) restricted to the tangent space
Tz∗M with z∗ ∈M, as shown in Figure 1 and described by,

δ ż = A(z∗) δ z, A(z∗) =
[

A11 A12
A21 A22

]
, (10)

with δ z =
[
δ z>1 δ z>2

]> ∈ Tz∗M corresponding to the par-
tition δ z1 =

[
δγ> δ ṽ>dc

]>
, δ z2 = δx. Note that the Jaco-

bian A(z∗) = ∂ f
∂ z |z=z∗ has a one-dimensional zero subspace

denoted by,

span{v(z∗)}= span{
[
1n
> 0> (Jx∗)>

]>},
where Jx∗ =

[
(J i∗)> (Jv∗)> (J i∗`)

>]>. For all
δ z ∈ Tz∗M, we show in [15] asymptotic stability of
span{v(z∗)}, in the sense of [17, Theorem 2.8] under the
following steady state condition:

Condition III.2 (Equilibira of interest [15]). Consider a
steady state z∗ ∈ M. Assume the following condition is
satisfied at the k-th converter,

Q∗sw,k >
µ2v∗2dc
16R

, k = 1 . . .n, (11)



where Q∗sw,k =
1
2 µ(Jr(γ∗k ))

>i∗k v∗dc, denotes steady state reac-
tive power after the switching block (before the output filter)
at the k-th converter.

Tz∗M

z∗ + span{v(z∗)}

z∗

δz

Fig. 1. Proof of asymptotic stability of span{v(z∗)} in the sense of [17]
for trajectories on the tangent space Tz∗M for the linearized power system
model (10) in [15].

Definition III.3 (Finsler-Lyapunov function [14]). A dif-
ferentiable function V : TD × R≥0 → R≥0, is a Finsler-
Lyapunov function, if it satisfies

c1F(x,δx, t)p ≤V (x,δx, t)≤ c2F(x,δx, t)p, (12)

for some c1,c2 > 0 and with p ∈ N, where F(x,δx, t) is a
Finsler structure (see [14]), uniformly in x and t.

By the key property (12), there exists a well-defined
distance on D via integration defined below,

Definition III.4 (Finsler distance [14]). Consider a candi-
date Finsler-Lyapunov function V on the manifold X and the
associated Finsler structure F . For any subset X ⊂ X , and
any two points z1,z2 ∈ X , let Γ(z1,z2) be the collection of
piecewise C1 curves, γ : I →X , connecting z1 and z2 with
γ(0) = z1 and γ(1) = z2. The Finsler distance d : X ×X →
R≥0 induced by the structure F is defined by

d(z1,z2) := inf
Γ(z1,z2)

∫
γ
F
(

γ(s),
∂γ
∂ s

, t
)

ds (13)

The pseudo-distance induced by F =
√

V on D is a
distance on the quotient manifold D/∼.

To analyze the behavior of the linearized trajectories on the
tangent bundle TD of the variational system (9), we define a
parameterized Lyapunov function V : TD→R, with respect
to S = span{v(z∗)} (from Definition III.3 and as in [15]) and
given by,

V (δ z)=δ z>
(

P− Pv(z∗)v(z∗)>P
v(z∗)>Pv(z∗)

)
︸ ︷︷ ︸

Π

δ z, P =
[

P1 0
0 P2

]
(14)

where P is a symmetric, positive definite matrix with block
diagonals P1 > 0 and P2 > 0 and δ z ∈ TzD. The Lyapunov
function in (14) represents the squared distance of the tangent
vector δ z ∈ RN to the linear subspace span{v(z∗)}, in the
weighted inner product defined by 〈·, ·〉P = (·)>P(·), P > 0
and the weighted Euclidean norm || · ||P =

√
〈·, ·〉P. Note

that by Definitions III.4 and III.3, V (δ z) represents a Finsler
Lyapunov function.

We say that a solution to (9) is asymptotically contracting
on a forward invariant set C, if for all initial conditions

z1,z2 ∈ C,

d (φ(t,z1),φ(t,z2))≤ k (d(z1,z2)) (15)
lim
t→∞

d (φ(t,z1),φ(t,z2)) = 0,

where t > 0, k(·) is a K-function and d(·, ·) is a pseudo-
distance metric. Notice that if d(z1,z2) = 0, for all [z1] =
[z2], then d(·, ·) becomes a distance metric on C/∼ and the
solutions to (9) satisfying (15) on C/ ∼ are incrementally
asymptotically stable, see [14, Theorem 3].

It is noteworthy that the pseudo-distance induced by
√

V
on D in (14) is a distance on the quotient space D/∼.

B. Local contraction analysis

Since asymptotic contraction of (9) on a forward invariant
set C ⊆ D is equivalent to incremental asymptotic stability
on the quotient C/ ∼, in the next section, we show incre-
mental asymptotic stability of the quotient system (9) and
characterize a forward invariant set Cε .

Theorem III.5. Let the power system model (3), under
Assumption 1, 2 and Condition III.2 be defined on a neigh-
borhood D ⊂ RN of [z∗] ⊂M. Then, the solutions to (3)
asymptotically contract towards the synchronous equilibrium
manifold [z∗] on Cε ⊆D, where,

Cε = {(z,δ z) ∈ D,V (δ z)≤ ε} , (16)

with ε being positive and sufficiently small.

Proof. We consider the variational system (9) under As-
sumptions 1, 2 and Condition III.2 and follow ideas inspired
from [14]. We take the derivative of the Lyapunov function
(14) and add and substract A(z∗) as defined in (10). Then,
we obtain for all (z,δ z) ∈ D,

V̇ (δ z) = δ z>Π

(
∂ f (z)

∂ z

)
δ z+δ z>

(
∂ f (z)

∂ z

)>
Π δ z,

=δ z>
(

PA(z∗)+A(z∗)>P
)

δ z+δ z>
(

ΠG(z)+G(z)>Π

)
δ z,

=−δ z>Q(P)δ z+δ z>
(

ΠG(z)+G(z)>Π

)
δ z,

where δ z∈ TzD, and the matrix G(z) = ∂ f (z)
∂ z −A(z∗) is given

by,

G(z) =
[

G11 G12
G21 0

]
=

 0 0 0 0 0
−C−1

dc Ŵ (z) 0 −C−1
dc Ŷ (z)> 0 0

L−1M̂(z) L−1Ŷ (z) 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
and we define the matrices,

Ŵ (z) =
1
2

µ diag
(
(JRot(γ))>i− (JRot(γ∗))>i∗

)
,

Ŷ (z) =
1
2

µ
(
Rot(γ)−Rot(γ∗)

)
, µ ∈ [0,1]

M̂(z) =
1
2

µ
(
diag(vdc)JRot(γ)− v∗dc JRot(γ∗)

)
.

By Conditions III.2, we have that span{v(z∗)} ⊂ Cε is
asymptotically stable, which establishes that the set Cε is
forward invariant.



On the set Cε ⊆ D given by (16), we have that, for all
γ ∈ Γ(z, [z∗]),

d(z, [z∗])≤ inf
Γ(z,[z∗])

∫
γ

√
ε ds < ε ′,ε ′ > 0.

which follows from the definition of Finsler distance in
(12). This implies in particular that, ||z− z∗|| < ε ′, since
z∗ ∈ [z∗], hence there exists sufficiently small ε̂ > 0, so
that, δ z>

(
ΠG(z)+G(z)>Π

)
δ z ≤ ε̂ . Thus, we have that

V̇ (δ z)≤−δ z>Q(P)δ z+ ε̂ , with Q(P) given in (14).
By choice of Q1 = q1I, Q2 = q2

(Jx∗)(Jx∗)>

(Jx∗)>(Jx∗) , q1,q2 > 0 and
from ε̂ → 0, we have that V̇ (δ z) = 0⇔ δ z = span{v(z∗)}.

By [14, Theorem 1], the system (9) and hence (3) defined
on the quotient space D/∼ is incrementally asymptotically
stable on Cε/∼. As a consequence, the solutions to (3) are
asymptotically contracting towards [z∗] for all trajectories
inititalized on Cε given by (15).

δ z

z∗+ span{v(z∗)}

[z∗] = z∗+
∫ θ

0
v(z∗)ds

θ ∈ S1

d(δ z,span{v(z∗)})

Fig. 2. Convergence of a solution to (3) initialized on Cε ⊆ D into
the synchronous equilibrium manifold [z∗] under Assumptions 1,2 and
Condition III.2. The distance of the linearized trajectories δ z on the tangent
space to the subspace span{v(z∗)} shrinks and corresponds to the contraction
of the solution towards the equilibrium manifold. The lines on the surface
represent the vector z∗ + span{v(z∗)}. Integrating over θ ∈ S1 yields the
equilibrium manifold [z∗].

C. Integral curve of span{v(z∗)}
We establish a formal link between the linear subspace

span{v(z∗)} and the synchronous equilibrium manifold [z∗],
following our stability approach depicted in Figure 2. In
fact, the convergence of linearized trajectories on the tangent
bundle to span{v(z∗)} corresponds to the convergence of
nonlinear solutions to [z∗] via integration. It hold that for
θ ∈ S1,

[z∗] = z∗+
∫ θ

0
v(z∗) ds = z∗+

∫ θ

0

 1n
0

JR(s)x∗

 ds,

which follows from (8). In fact, v(z∗) is the tangent vector of
[z∗] in the θ− direction and lies on the tangent space Tz∗M.

This can also be deduced from (4) by expanding the Taylor
series around (θ ′,z∗), θ ′ ∈ S1, z∗ ∈M of left and right terms
in (4) and comparing the terms of their first derivatives with
respect to θ . In this way, we obtain,

∂ f (z)
∂ z

∣∣∣∣
z=z∗

(
∂H
∂θ

∣∣∣∣
θ ′

z∗+h0

)
(θ −θ ′) = 0

where ∂ f (z)
∂ z |z=z∗ =A(z∗) and h0+

∂H
∂θ |θ=θ ′ z∗= v(z∗) (by the

equivalence relation (8)), hence we recover A(z∗)v(z∗) = 0.
Theorem III.5 specifies a parameterized forward invariant

set representing the contraction region, see [10] for solutions
of the power system model (3), characterized by small
distance of angles, DC voltages (and thus frequency), and
AC signal to the subspace span{v(z∗)} and hence to the set
[z∗]. For similar conditions, considering reduced-order power
system models, we refer the reader to phase cohesiveness
in [19, Theorem 4.1] and frequency boundedness in [20,
Lemma 4.1].

D. Equilibria of interest

We are interested in those equilibria z∗ ∈M that verify the
steady state condition (11). This condition can be evaluated
in a fully decentralized fashion and is dependent on the
converter’s resistance R, modulation amplitude µ ∈ [0,1],
nominal DC voltage v∗dc and reactive power output Q∗sw,k. In
particular, condition (11) requires sufficient reactive power
support and resistive damping, which are well-known practi-
cal stability conditions [21]. In addition to virtual impedance
and current measurement (see [15, Remark 2]), constant
reactive power load, set in parallel with the load conductance
G > 0, can equivalently be considered to satisfy (11).

E. Link to other stability theories

Our stability analysis finds roots in concepts of partial con-
traction theory [10]–[12] (or termed semi-contraction [10]),
allowing to extend the application of contraction analysis,
to include convergence to behaviors, e.g., convergence to
an equilibrium manifold. This can be interpreted as the
contraction of the linearized trajectories in all directions up
to that of the linear subspace span{v(z∗)}, see [12, Example
4.2]. In fact, the symmetric part of the Jacobian projected
into the orthogonal complement of span{v(z∗)}), given by

−
(

Π

(
∂ f
∂ z

)
+
(

∂ f
∂ z

)>
Π

)
, is positive definite with respect to

span{v(z∗)}, for trajectories initialized on Cε .

IV. SIMULATIVE EXAMPLE

We consider two identical DC/AC converter model in
closed-loop with the matching control and connected via an
RL line, as in (2). The network setup and parameters can be
found in the Table I.

By choice of the current source i∗dc, Assumption 1 is
verified. Since the synchronous equilibrium satisfies the alge-
braic condition in (11) after adding a reactive load b = 1.08,
we numerically find an estimate of the region of contraction
Cε , defined by (16) in a systematic way following estimate
in (16).



Converter 1 Converter 2 RL Line
i∗dc 37.23 37.23 –
v∗dc 1000 1000 –
Cdc 10−3 10−3 –
Gdc 10−5 10−5 –
η 0.0003142 0.0003142 –
L 5 ·10−4 5 ·10−4 –
C 10−5 10−5 –
µ∗ 0.33 0.33 –
G 0.01 0.01 –
b 1.08 1.08 –
R 0.2 0.2 –
Kp 0.099 0.099 –
Rnet – – 0.2
Lnet – – 5 ·10−5

TABLE I
PARAMETER VALUES OF THE TWO DC/AC CONVERTERS (IN P.U).

Fig. 3. Region of contraction of the two-DC/AC converter angles (in rad)
and convergence of the sample angle solutions of (3) to the subspace 12,
for ε = 3.5, and resulting from varying the initial angles, while keeping
the remaining initial states fixed. The initial conditions of angle deviations
γ1− γ∗1 and γ2− γ∗2 are denoted by the different stars and all the angles are
in rad.

Figure IV depicts the region of contraction of the two
DC/AC converter angles (in rad) and the convergence of
angle solutions to the subspace 12, for ε = 3.5, resulting from
varying the initial angles, while keeping the remaining initial
states fixed and showing the convergence to equilibrium
manifold as predicted by our theory. Hereby, we notice in
particular the synchronization of DC voltages, and that AC
signals remain close to their steady state values. A large
range of bounded disturbances (estimated by transient power
values) can be considered in our simulations, despite the
conservativeness of the estimate of the region of contraction.

V. CONCLUSIONS

We considered local convergence of a multi-converter
power system model. The symmetry of the vector field
allowed for the adoption of a Lyapunov based framework
with considerations in the quotient space. Our Lyapunov
function is a distance measure from the solution of the power
system model to the synchronous equilibrium manifold that
shrinks under sufficient and fully decentralized conditions,
for trajectories initialized on region of the space character-
ized by small distance to the tangent space of the rotational

invariance. Our numerical simulations validate our results.
The scope of future investigations includes extensive numer-
ical estimations of the region of contraction and investigation
of the conservativeness of our estimate.
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