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A Continuation Method for computation of H∞ gains of Linear
Continuous-Time Periodic Systems

Paul Rousse*, John Hauser** and Pierre-Loı̈c Garoche*

Abstract— A continuation method is applied to compute the
H∞ gain of a periodic linear system. The H∞ gain of a
periodic linear system can be equivalently found by solving a
Periodic Differential Riccati Equation (PDRE) for an increasing
sequence of gain candidates until no solution exists. Solving the
PDRE can be cumbersome. However, for a null gain candidate,
the PDRE is a Periodic Differential Lyapunov Equation (PDLE)
that can be solved efficiently. Similarly, for a small increase in
the gain candidate, the solution can be approximated by solving
another PDLE. We describe an application of the continuation
method where the corrector uses a Boundary Value Problem
solver. Therefore, using a continuation method can be promising
for such a problem. The gain candidate is increased until no
solution to the PDRE exists. Compared to Hamiltonian based
approaches, our approach suffers less from ill-conditioned
differential equations for systems where the periodicity is long
compared to the dynamic of the system of interest.

I. INTRODUCTION

Periodic systems appear frequently in physical systems as
in [1], [2], and [3]. Their analysis remains challenging. They
exhibit behaviors of Linear Parameter Varying systems as
well as discrete-time systems.

Computation of H∞ norm for linear periodic systems has
been studied using the Hamiltonian system e.g. [5]. The
transition matrix of the Hamiltonian system is computed over
one time period for a given H∞ gain candidate. Such an
approach has disadvantages. The Hamiltonian matrix is ill-
conditioned (it has stable and unstable parts) and therefore
accurate computation of the transition matrix is difficult to
achieve, in the general case. Many efforts have been devoted
to improve numerical accuracy. This approach [5] relies on
the group property of the transition matrix: the time interval
over one period is partitioned and the transition matrix is
computed over each interval. The transition matrix is then
obtained as the product of each transition matrix computed
along the time partition.

In another approach [6], the time-dependent system matri-
ces are projected over a non-finite frequency domain basis.
The lifted system is a Linear Time-Invariant system, then, a
finite-dimensional approximation of the system is obtained
by projecting over the low-frequencies. Finally, the H∞ gain
of this LTI system is a good approximation of the H∞ gain
of the original periodic linear system.

A third approach amounts to solve a Periodic Differential
Riccati Equation (associated with the Hamiltonian system
previously cited). Since solutions of the Differential Riccati
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Equation (DRE) might have finite escape time, finding a
periodic solution can be difficult. However, solutions vary
according to a Periodic Differential Lyapunov Equation for
small variations of the PDRE’s parameters. Continuation
methods have been successfully used to compute complex
solutions for subclasses of the family of Riccati equations as
in [7] (for a perturbed Lyapunov equation), [8] (for a DRE),
[9] (for Algebraic Riccati Equation), and [10] (for modified
Algebraic Riccati Equation). In practice, finding the solution
to the PDRE is complex as it involves a numerical integration
of the DRE plus a boundary constraint over this solution.
In this paper, we use the continuation method to solve the
PDRE for the specific case of H∞ gain computation. We
follow the curve of solutions to the PDRE when the gain
candidate varies from∞ to the actual H∞ gain of the system.
The implicit function theorem guarantees the existence of the
solution along the curve (see Theorem 4.E in Chapter 4.8 of
[11]).

Contributions: We propose an application of the con-
tinuation method to solve the PDRE in the specific case of
H∞ norm computation. Up to the knowledge of the author,
such an approach has not been investigated in the past.

Plan: Section II defines the H∞ norm computation
problem for periodic linear systems. Section III proposes
a continuation method approach to address this problem.
Section IV details our implementation of the continuation
method. Section V treats the norm computation for a toy
example and a flying wing aircraft model.

Notation: C0(I; Rn×m) (resp. C1(I; Rn×m)) is the set
of continuous functions over I (resp. continuous, differen-
tiable, and of continuous derivative over I) from I to Rn×m.
L2(R+;Rn) is the set of square-integrable functions from
R+ to Rn. Sn×n is the set of square symmetric matrices of
size n. For a function f of n arguments, Dif is its differential
with respect to the ith argument. For a given time-dependent
square matrix A(·) ∈ C0(R+; Rn×n), its transition matrix
ΦA(·, ·) is the time-dependent matrix, defined over R+×R+,
solution of Φ̇A(t, τ) = A(t)ΦA(t, τ), for t, τ ∈ R+, with
initial condition ΦA(τ, τ) = In where In ∈ Rn×n is the
identity matrix. For a T -periodic A(·), T > 0, ΦA(T, 0) is
the monodromy matrix of A(·).

II. H∞ NORM COMPUTATION

Let G be the T -periodic linear system that associates
to a noise w ∈ L2(R+;Rm), the output y = G ◦ w ∈

 



L2(R+;Rp) defined by

G :

{
ẋ = A(t)x +B(t)w

y = C(t)x
(1)

where A(·), B(·) and C(·) are T -periodic Lipschitz matrix
functions (i.e. X(t + T ) = X(t) for any t ∈ R where X ∈
{A,B,C}), of size n× n, n× p and m× n (resp.) defined
over R, such that A(·) is exponentially stable, (A(·), B(·))
is controllable and (A(·), C(·)) detectable. The H∞ norm
defined by

‖G‖∞ = Supremum
‖G ◦w‖2
‖w‖2

(2)

The H∞ gain of G cannot be directly computed using
(2). Classically, the equivalent following dual constrained
optimization problem is solved instead of (2)

Infimum γ

Such that
‖G ◦w‖2
‖w‖2

≤ γ
(3)

For a given γ ≥ 0, the constraint in (3) is equivalent to
showing that

Infimum
∫ ∞
0

γ2‖w(t)‖2 − ‖y(t)‖2dt

Such that y = G ◦w
(4)

has a positive solution.
Checking that ‖G‖∞ < γ for a given gain-candidate γ > 0

is equivalent to the existence of a symmetric, T -periodic,
and positive definite solution P to the following Periodic
Differential Riccati Equation (PDRE)

0 =Ṗ +A(t)>P + PA(t)

+ C(t)>C(t) + αPB(t)B(t)>P

P (0) = P (T )

(5)

where α = 1
γ2 . Such a result is stated in Chapter 6,

Theorem 6.14 of [12] in the case of linear continuous time-
periodic systems1. In this work, we propose a continuation
method to solve the following optimization problem (equiv-
alent to (3))

α∗ = Supremum α
Such that there is a positive definite T -

periodic solution P (·) to (5)
(6)

Then, the H∞ norm of G is equal to 1√
α∗

.
Remark 1: In Hamiltonian based approaches, the LQR

problem (4) is solved by finding the optimal w∗ of
(4). Such w∗ is obtained by computing the monodromy
matrix ΦH(T, 0) (see the Notation paragraph at the
end of Section I)) of the Hamiltonian matrix H(t) =[

A(t) αB(t)B(t)>

−C(t)>C(t) −A(t)>

]
. H(·) is known to be symplectic

(see 6.3.1.2 in [12]) and therefore any stable eigenvalue of
H(·) is associated to an unstable eigenvalue. This property
leads to numerical instabilities when the period T of G is

1In [12], the PDRE is formulated with P̃ = γ2P−1.

large compared to the characteristic time constant of G’s
dynamic. By using (5) to solve (4), we avoid such numerical
problems of Hamiltonian based methods. More details are
given in Section V-A.

III. CONTINUATION METHOD FOR H∞ GAIN
COMPUTATION

Let R : C1(R;Sn×n)× R+ → C0(R;Sn×n) be such that

R(P (·), α) =Ṗ (·) +A(·)>P (·) + P (·)A(·)
+ C(·)TC(·) + αP (·)B(·)B(·)TP (·).

We study the curve α → Pα(·) of T -periodic symmetric
matrix C1 functions2 that satisfies

R(Pα(·), α) = 0. (7)

The next paragraphs motivate the use of continuation
methods to find the H∞ norm of G. They introduce prelim-
inary theoretical background necessary for the implemen-
tation of the method. We give existence conditions of the
curve α → Pα(·) over an interval [0, α∗), α∗ > 0. For
any α ∈ (0, α∗), the H∞ gain of G is overapproximated
by 1/

√
α, i.e. ‖G‖∞ ≤ 1√

α
; and when α = α∗, no

positive definite solution exists and therefore ‖G‖∞ = 1√
α∗

.
Section IV is devoted to an implementation that evaluates
such α∗.

Existence of P0(·): The equation R(P0(·), 0) = 0 is a
PDLE where A(·) is stable and (C(·), A(·)) is observable. By
the Lyapunov Theorem (see the Extended Lyapunov lemma
in Chapter 6, Section 2.3.1 of [12]), a T -periodic solution
P0(·) exists, is unique, and is positive definite over R.

Existence of Pα(·) over α ∈ [0, α∗): To prove the ex-
istence of Pα(·) for greater values than α = 0, we apply the
implicit function theorem to (7) (as described in Chapter 4.8
of [11]). The implicit function theorem guarantees that if the
curve α→ Pα(·) exists at some given α, it locally exists on
a neighborhood I of α when R is differentiable at (Pα(·), α)
and its differential Q 7→ D1R(Pα(·), α) ·Q is invertible. We
now detail the computation of D1R and explicit conditions
of Q 7→ D1R(Pα(·), α) ·Q to be invertible.

Let us assume that a T -periodic Pα(·) exists for a given
α ≥ 0. By differentiating R with respect to α, it holds

D1R(Pα(·), α) ·Qα(·) +D2R(Pα(·), α) = 0 (8)

where Qα(·) is a T -periodic symmetric matrix function.
Qα(·) corresponds to the tangent vector of the curve α →
Pα(·) at α. When the tangent Qα(·) is well defined in the
vector space of symmetric T -periodic matrix functions, the
curve α → Pα(·) is defined in the neighborhood of α

2The operator R is defined in the vector space of differentiable
P (·) functions. However, R could have been defined in its integral
form for continuous (not necessarily differentiable) functions
P (·). E.g. Ri(P (·), α) = r(·) where r(t) = P (t) − P (0) +∫ t
0

(
A(s)>P (s) + P (s)A(s) + C(s)TC(s) + αP (s)B(s)B(s)TP (s)

)
ds.

We chose the differential form for readability.

 



(application of the implicit function theorem in Chapter 4.8
of [11]).

Using variational calculus over (7) (see Chapter 2.1 of
[11]), we can explicitly derive (8). The tangent vector Qα(·)
satisfies the following Periodic Differential Lyapunov Equa-
tion (PDLE){

0 = Q̇α +QαFα(t) + Fα(t)>Qα + Pα(t)B(t)B(t)>Pα(t)

Qα(T ) = Qα(0)
(9)

where
Fα(·) = A(·) + αB(·)B(·)>Pα(·) (10)

and Qα(·) a T -periodic function of C1(R;Sn×n). Solutions
of (9) are known (see Chapter 6 of [12]) to satisfy

Qα(t) =Φα(t, 0)>Qα(0)Φα(t, 0)

+

∫ t

0

Φα(t, s)>Uα(s)Φα(t, s)ds
(11)

where Φα(·, ·) is the transition matrix of Fα(·) and
Uα(·) = Pα(·)B(·)B(·)>Pα(·). The invertibility of D1R at
(Pα(·), α) is equivalent to the existence of a periodic solution
Qα(·) to (11) for any Uα(·), i.e. if

X → X − Φα(T, 0)>XΦα(T, 0)

is invertible, then D1R is invertible and α → Pα(·) exists
in the neighborhood of α.

Let us study the map L over Sn×n

L : X → X − Φα(T, 0)>XΦα(T, 0). (12)

For a Y = Sn×n, the equation L(X) = Y is a Discrete-
Time Lyapunov Equation. L has n2 eigenvalues which are
1 − λiλ

∗
j where λi, λj are eigenvalues of the monodromy

matrix Φα(T, 0) of Fα(·). Therefore, as long as Φα(T, 0)
has no eigenvalues on the unit disk, the linear operator L
is invertible. This condition can be equivalently stated by: if
Fα(·) is stable, the tangent Qα(·) is defined.

Let α s.t. Fα(·) is exponentially stable, then the tangent
Qα(·) exists and is positive definite. Therefore, the curve
α→ Pα(·) is monotonically increasing (i.e. for any α′ > α,
Pα′(·) � Pα(·) over R). There is a α̃ > 0 such that Fα̃(·) is
not stable. Let α∗ be the maximal value such that Fα(·) is
stable over α ∈ [0, α∗). The curve α → Pα(·) is therefore
continuously defined over the interval [0, α∗). It follows

Theorem 1: There is a α∗ > 0 s.t. Pα(·) is a symmetric
positive definite T -periodic function for any α ∈ [0, α∗)
satisfying

0 = Ṗα+A(·)>Pα+PαA(·)+C(·)TC(·)+αPαB(·)B(·)TPα.
Proof: The existence of the curve over [0, α∗) follows

from the implicit function theorem applied to R in the vector
space of symmetric T -periodic matrix function and reals.

IV. IMPLEMENTATION

P0(·) and Qα(·) (for a given Pα(·)) are solutions of a
PDLE and can be numerically evaluated since it only requires
numerical integration and solving a Discrete-Time Lyapunov
Algebraic Equation (as detailed in Section III). Therefore, the

curve α → Pα(·) is well defined at α = 0 and its tangent
can be evaluated at any Pα. This is the ideal playground
for continuation methods (as described in [13]). We now
describe our implementation of the continuation method for
H∞ norm computation. We follow the curve Pα(·) that
satisfies (7) for increasing values of α until the implicit
function theorem is not applicable, i.e. until Fα(·), defined
in (10), becomes unstable.

Classical implementations of the continuation method in-
volve 3 steps: a prediction step, a correction step, and a
step size control step. In the prediction step, the tangent
of the curve is used to compute a first-order prediction of
the next point on the curve. The correction step projects the
first-order prediction on the curve, it is usually implemented
with a root-finding algorithm that solves (7) for the current
point. Finally, the step size is adapted according to local
geometric measurements of the curve and/or to convergence
rates within the correction step’s algorithm.

The next paragraphs give more details about the predic-
tion, the correction, and the step size control steps. Our
implementation is substantially inspired by [13] with an
additional mechanism in the step size control.

At each iteration, we compute the solution Pk to the PDRE
for the current gain candidate αk. The prediction P̃k is the
first-order approximation P̃k = Pk−1 + hkQk where Q̃k is
the solution to the PDLE (9) and hk = αk − αk−1 is the
step size.

Prediction: is based on a first-order prediction P̃k+1

P̃k+1 = Pk + hkQk

where Qk is the current tangent vector.
Corrector: The corrector step is implemented with a

Boundary Value Problem (BVP) solver to find the periodic
solution of (5). Our implementation uses the bvp5c solver
(see [14]). The BVP solver implements a Newton method
coupled with a numerical integration scheme to solve the
root-finding problem PT (P0)−P0 = 0 where PT associates
to an initial value P0 the value at T of the solution P (·) to
the ODE in (5). When the BVP’s Newton method does not
converge, the step size is divided by a factor 2.

Step Control: In light of Chapter 6 in [13], our step
control algorithm is based over local measurements of the
geometry of {(P (·), α) | R(P (·), α) = 0} ⊂ C1(R;Sn×n)×
R. These measurements are compared to user-defined param-
eters and the step size is controlled accordingly.
κk = ‖Qk(0)‖

‖Qk−1(0)‖ measures the contraction of Pk(0)

between two iterations. βk = angle(Qk(0), Qk−1(0)) mea-
sures the angle of the tangent vector between two iterations3,
βk is related to the measurement of the local curvature (see
[13]).

The step size is controlled such that the measurements κk
and βk respectively converge to the user-defined parameters

3The angle function over matrices is defined using the regular arc cosinus
function arccos as follows angle(A,B) = arccos

(
〈A,B〉
‖A‖‖B‖

)
where

〈A,B〉 = trace(A>B) is a scalar product over the set of matrices and
‖·‖ is its induced norm s.t. ‖A‖ =

√
trace(A>A).

 



κ0 and β0. Let

f̃k = max

{
κk
κ0
,
βk
β0

}
be the contracting ratio of the step size. To bound the
variations of the step size, the actual contracting ratio of
the step size is chosen as the saturated f̃k within the bounds[
1
2 , 2
]
fk = max

{
min

{
f̃k, 2

}
, 12

}
. At the next iteration,

the step size would be hk+1 = hk

fk
. Contrary to [13], the

corrector’s step size contraction is measured with the actual
step of the Newton iteration method.

When the correction step fails, we cannot conclude that
the corresponding PDRE is unsolvable, i.e. we don’t know
if α∗ < αk. Therefore, αk is used as an upper bound only
for the next step only (and not all the remaining steps). We
implement it as follows:
• at each iteration, when the correction step fails to find

a solution for a given αk, we use ᾱ = αk as an upper
bound for the next iteration;

• when the correction step successfully find a solution,
this upper bound is reset (i.e. ᾱ =∞).

Algorithm 1: Continuation algorithm for H∞ gain computation.

Data: (A(·), B(·), C(·)): a T -periodic linear system
T : the period

tol: the tolerance
Result: α̃ an approximation of α

P0 = solve PDLE(A,C) ; // Initial solution of the PDRE for α = 0
h = 1 ; // Initial step size
α0 = 0 ; // Initial α
k = 0 ; // iteration step
while |αk − αk−1| ≤ tol do

/* Prediction step */
Fk = A+ αkBB

>Pk ;
Uk = PkBB

>Pk ;
Qk = solve DTLE(Fk, Uk) ; // Evaluation of PDRE’s differential

at (Pk, αk)

P̃k+1 = Pk + hQk ; // Prediction of the solution to the PDRE

/* Correction step (BVP Solver) */
(P k+1, accept step) = solve PDRE(P̃k+1) ; // Solve the

PDRE equation for the initial guess P̃k+1

/* Step Control */
compute κk and βk;

/* Next Iteration */
if accept step then

Pk+1 = P k+1;
hk+1 = min(hk

f
, ᾱk − αk) ; // application of the step

control
k = k + 1;
ᾱk =∞; // reset α’s upper bound

else
ᾱk = αk ; // temporary upper bound of α
hk = hk

2
; // step refused, reduce the step size

end
end

Algorithm: Algorithm 1 describes our implementation
of the continuation method for the computation of the H∞

Fig. 1. Each dot corresponds to an iteration in Algorithm 1. The sequence
of {αk} converges to α∗ solution of (3). Each red star corresponds to an
accepted solution of the BVP solver (i.e. the Newton algorithm of the BVP
solver converged to a solution Pk(·) to (5) with a residual below 10−6),
each blue dot is non-accepted one.

gain of a T -periodic system G = (A(·), B(·), C(·)).

V. EXAMPLE

We use the implementation in Algorithm 1 of the con-
tinuation method detailed in Section IV to compute the H∞
norm of two systems. Section V-A treats the case of a simple
2D toy example. Section V-B studies a flying wing aircraft
model.

A. Toy example

We study the T -periodic system G as defined in (1) with
the following parameters

A(t) = A0 +A1 sin(2πt)

B(t) = B0 +B1 cos(2πt)

C(t) =
[
1 1

]
with

A0 =

[
−1 0.3
−0.7 −0.3

]
, A1 =

[
1 0
0 0.3

]
,

B0 =
[
−1 2

]>
and B1 =

[
0.1 0

]>
.

(A(·), B(·), C(·)) are T -periodic matrix function with T =
1. Using Algorithm 1 that implements the continuation
method described in Section III and IV to solve (3), we
find α∗ = 0.028326 and therefore the H∞ norm of G is
‖G‖∞ = 5.9416.

Figure 1 shows the sequence {αk}k determined with the
continuation algorithm. As α goes from 0 to α∗, one of the
eigenvalues converges to the unit disk. Figure 2 plots the
root locus of Φα(T, 0) (Fα(·)’s monodromy matrix) when α
goes from 0 to α∗. When α = α∗, eigenvalues intersect the
unit circle of the complex plane. Trajectories associated to
these eigenvalues are neutral. Figure 3 plots some internal
values used in the continuation method’s Algorithm 1. When
α → α∗, the curvature βk at the kth iteration diverges and
the Jacobian of the BVP solver gets closer to noninvertibility.
These behaviors can be explained in light of (12). Since
Fα(·) is neutrally stable (and not exponentially stable) when
α = α∗, eigenvalues its monodromy matrix Φα(T ) get closer
to the unit circle and therefore the associated linear operator
Lα defined in (12) becomes noninvertible. The tangent vector
Qα(·), which requires Lα to be invertible, diverges. However,
even if the tangent Qα diverges at α∗, the solution Pα(·) does
not seems to diverge (see Figure 4).

These observations should be compared to a Hamiltonian
approach. For this example, eigenvalues of the Hamiltonian
matrix (as defined in Remark 1) for α = α∗ ± 1 · 10−10

have a maximal absolute value of 0.9 when t ∈ [0, T ]. Since
the monodromy matrix is the solution of a linear system
with the Hamiltonian as a dynamic matrix, in the worst
case, eigenvalues of ΦH(T, 0) are equal to exp

(
|λ|T

)
where

 



Fig. 2. Eigenvalues of the monodromy matrix Φk(T, 0) of Fk(·) defined
in (10) for α = αk . The iteration number k is written near the eigenvalue
λ1k . As αk goes to α∗, the eigenvalue λ1k of Φk converges to the unit
circle. At α∗, Fα∗ (·) is not exponentially stable anymore and have neutral
trajectories.

|λ| is the maximal eigenvalue modulus of H(·) over [0, T ].
In this case |λ| = 0.9 and therefore the condition number
of the matrix might reach exp

(
2|λ|T

)
≈ 5 · 1015. Indeed,

the monodromy matrix condition number is approximately
1015. This ill conditioning does not only happen when α
is close to α∗ but over the entire interval [0, α∗]. In such
a situation, the Hamiltonian approach induces too many
numerical instabilities.

B. Flying wing

We study a thrust vectored flying wing model as described
in [15] (with drag and lift coefficients from ). The flying wing
state is composed of a velocity vector v = (vx, vz), the pitch
angle θ, and the incidence angle α (see Figure 5). We design
a path following controller u = g(t, x) using the projection
operator approach (as described in [16]) that stabilizes the
flying wing around a periodic path x∗(·) composed of a
deceleration followed by an acceleration (both longitudinal).
The path is described as a deceleration from 8m.s−1 to

1m.s−1 within 10s and acceleration from 1m.s−1 to 8m.s−1

within 10s. The two motions are both separated by 10s and
the periodic motion is repeated every T = 40s.

The closed-loop model of the flying wing can be described
as the autonomous nonlinear system

ẋ = f(t,x). (13)

We compute the state-to-state H∞ gain of the model lin-
earized around x∗. I.e. we compute the gain of Gi,j defined
in (1) with A(t) = df(t,x)

dx

∣∣∣
x=x(t)

and with B(·) = Bj and

C(·) = Ci, where Bj = ej , Ci = e>i for i, j = 1, . . . , 4
(where el, for l = 1, . . . , 4, are the canonical basis’s vectors
of R4). H∞ gains of systems Gi,j for i, j = 1, . . . , 4 are
given in Table I. The numerical integration of the PDRE and

j
i 1 2 3 4

1 0.491837 0.325122 0.195526 0.17978
2 1.45941 0.614567 0.215295 1.25802
3 1.33081 0.779088 0.778269 1.29261
4 0.111972 0.0623993 0.0671938 0.101557

TABLE I
State-to-state H∞ gains of flying wing system defined in Section V-B.
‖Gi,j‖∞ corresponds to the H∞ norm between a disturbance over the
jth state’s dimension and observed through the ith state’s dimension.

PDLE is implemented as a S-function in Matlab Simulink
and integrated using a fourth order Runge Kutta numerical
integration scheme. Algorithm 1 stops after 43 iterations in
average when tol = 1e − 6. The computation of each gain
Gi,j , for i, j = 1, . . . , 4, takes 16 seconds in average on an
Intel i5-8250U.

VI. CONCLUSION

We described a method to estimate the H∞ gain of a
Periodic Linear System. To do so, we compute an increasing
sequence of solutions to a Periodic Differential Riccati Equa-
tion (PDRE) parametrized by the gain candidate. Solutions
of the PDRE are then computed with a prediction-correction
algorithm.

Working with the PDRE instead of using the Hamiltonian
open new horizons such as the computation of H∞ norm
for periodic systems subject to Integral Quadratic Constraint
(IQC). For such systems, the knowledge of the PDRE’s
solution can be used to find necessary optimality conditions
over the weights of the different IQCs.

The prediction step in the continuation method’s algorithm
can be improved by using Taylor expansions of a higher
order. Higher derivatives of the PDRE according to the gain
candidate can be computed. They are all solutions of a
Periodic Lyapunov Differential Equation for which efficient
numerical methods exist. Such an extension would allow us
to take longer steps in the prediction-correction algorithm
and therefore fewer iterations would be necessary to compute
the H∞ gain.

 



(a) Curvature (b) Step Size (c) Jacobian determinant of the BVP solver

Fig. 3. Plots (a), (b), and (c) depict internal states of Algorithm 1 with respect to iterations (at steps where the corrector successfully solved (5)). Each
number below the markers correspond to the iteration value k. Each plot is in log-log scale with an abscissa corresponding to the distance of αk to the
optimal α∗. The curvature (a) of α → Pα(·) diverges as α → α∗. (b) shows the step size hk of the continuation method. The tangent vector is not
defined at α∗. The Jacobian of the root-finding algorithm in the BVP solver (c) approaches noninversibility when α→ α∗.

Fig. 4. Coefficients of Pk(0) through iterations compared to their
associated αk’s value. Dotted lines correspond to the continuous curves
α→ P ijα (0), i, j ∈ {1, 2}.

APPENDIX

To use the projection operator method, we choose a
smooth representation of the dynamical model of the flying
wing, and its lift coefficient cL(·) and drag coefficient cD(·)
are chosen as smooth functions of the angle of attack
a, CL1(a) = cL1tanh

(
cL1

cL1
a
)

, CL2(a) = cLsin (2a),
ϕ = 1

4 (1 + tanh (b(a+ a1)) (1− tanh (b(a− a1)), and
cL(a) = ϕ(a)CL1(a)+(1−ϕ(a))CL2(a), where cL1 = 6.4,
cL1 = 1.3, a1 = 33.5◦, and b = 9 and cD(a) = (cD −
cD) 1−cos(2a)

2 + cD where cD = 1.8 and cD = 0.02. cL and
cD.
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