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Stochastic stabilisation and power control for nonlinear feedback loops
communicating over lossy wireless networks

Alejandro I. Maass, Dragan Nešić, Vineeth S. Varma, Romain Postoyan, and Samson Lasaulce

Abstract— We study emulation-based stabilisation of nonlin-
ear networked control systems communicating over multiple
wireless channels subject to packet loss. Specifically, we es-
tablish sufficient conditions on the rate of transmission that
guarantee Lp stability-in-expectation of the overall closed-loop
system. These conditions depend on the cumulative dropout
probability of the network nodes for static protocols. We use
the obtained stability results to study power control, where we
show there are interesting trade-offs between the transmission
rate, transmit power, and stability. Lastly, numerical examples
are presented to illustrate our results.

I. INTRODUCTION

Wireless networks are being increasingly used in control
systems given the recent advances in wireless sensing, high-
performance computing, and cloud technology, see e.g. [1].
Understanding the interplay between the network and control
loop components is essential. In this context, packet loss has
been one of the most studied communication constraints in
the literature regarding controller design. Various works such
as [2]–[5] have studied packet dropouts for linear discrete-
time systems and single communication channels, i.e. one
pair of transmitter and receiver. Since wireless networked
control systems (WNCSs) may be composed of multiple
wireless channels with different properties and thus statistics,
single channel results usually have a limited applicability
in practice. Multiple channels with different probabilities
of successful reception per channel have been considered
in e.g. [6]–[9] also for linear systems. General nonlinear
WNCSs subject to stochastic packet dropouts are studied in
[10]–[12]. The work [10] models the WNCS with stochastic
impulsive systems and provide conditions for mean-square
stability under Bernoulli distributed packet loss. A predictive
control strategy is developed in [11] to stabilise discrete-time
nonlinear plants under Markovian packet dropouts. Lastly,
[12] provides conditions for the Lp stability-in-expectation
of the WNCS under Bernoulli dropouts and different types
of scheduling. In [10]–[12], one wireless channel for the
communication between controller and plant is considered.
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An important aspect of wireless channels is that the
dropout effect can be compensated by adjusting the transmis-
sion power leading to an improved probability of successful
reception. However, increasing the power of a transmitter
increases interference between channels that communicate at
the same time. Power control, as a solution to interference
management, has been well studied in the wireless commu-
nity in e.g. [13]–[15] without the presence of a closed-loop
setting. In the control community, power control has been
studied for estimation in e.g. [16]–[18], and for controller
design in e.g. [19], [20]. In addition to power control, design-
ing channel access policies may help to mitigate interference
as seen in [21].

In this paper, we study controller design and power control
for general nonlinear plants in which all communications
between plant and controller are done through multiple
wireless channels subject to packet loss. We use the emu-
lation approach to design the controller, see e.g. [22], [23].
We assume each wireless channel has its own successful
reception probability which can be modified by adapting the
transmitting power if required. Under almost surely exponen-
tially stable protocols, we provide sufficient conditions on the
rate of transmission that guarantee Lp stability-in-expectation
of the WNCS. For static protocols, we show that these
conditions depend on the successful reception probabilities
of the wireless channels. An advantage of our framework is
that the obtained stability conditions can be directly used to
study power control. We show that there are essential trade-
offs between the rate of transmission, transmitting power,
and stability, and we illustrate how to allocate powers that
can achieve stability for a given transmission rate. Lastly,
we provide numerical examples to exhibit the virtue of our
approach.

Our main contributions are threefold: 1) The proposed
modelling framework is based on hybrid systems and it
encompasses the linear models used in [6]–[9]. That is,
we cover nonlinear plant and controller, stochastic and
time-varying transmission instants, packet dropouts, inter-
transmission behaviour given by the continuous plant dy-
namics, and at-transmission behaviour given by packet trans-
missions. 2) We extend the nonlinear work in [12] to the
case of multiple wireless channels each with a different
successful reception probability. Our stability results are then
significantly less conservative than the ones in [12] when
the latter are applied to our setting. 3) We study transmitter
power control, which to the best of our knowledge has not
been done for general nonlinear systems in a closed-loop
setting.



II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notation

Denote by Rm×n the set of all real matrices of dimension
m×n. Let R≥0 , [0,∞), R>0 , (0,∞), N , {0, 1, 2, . . . },
and N>0 , N\{0}. Given t ∈ R and a piecewise continuous
function f : R → Rn, we define f(t+) , lim

s→t,s>t
f(s). For

any x ∈ Rn and y ∈ Rm, we use (x, y) , [x> y>]> ∈
Rn+m. For x ∈ Rn, |x| denotes the standard Euclidean norm,
and the same notation is used to denote the induced 2-norm
of a matrix. The identity matrix of dimension n×n is denoted
by In. The expectation and probability operators are denoted
by E{·} and Pr{·}, respectively. We write x ∼ Exp(α) to
say that the random variable x is exponentially distributed
with parameter α. The complementary error function is
defined as erfc(x) , (2/

√
π)
∫∞
x

exp(−t2)dt. Given a
(Lebesgue) measurable function f : R → Rn, ‖f‖Lp

.
=(∫

R |f(s)|p ds
)1/p

, for p ∈ N>0, ‖f‖L∞
.
= ess supt∈R |f(t)|,

and ‖f‖L∞[a,b]
.
= ess supt∈[a,b] |f(t)|. We say that f ∈ Lp

for p ∈ N>0 ∪ {+∞} whenever ‖f‖Lp
< ∞. Given

[a, b] ⊂ R, ‖f‖Lp[a,b]
.
=
( ∫

[a,b]
|f(s)|p ds

)1/p
denotes the

Lp norm of f when restricted to the interval [a, b].

B. Stability notions

We will consider hybrid systems of the form

ż(t) = f(z(t), w(t)), t ∈ [tk, tk+1]

z(t+k ) = Qk(z(tk)),

y = H(z),

with state z ∈ Rnz , some prescribed output y ∈ Rny ,
external disturbance w ∈ Rnw which is assumed to belong
to Lp, a sequence of random maps Qk, and (ti+1 − ti) ∼
Exp(ω) with parameter ω ∈ R>0. The definition of solutions
to (1) can be found in [12], [23]. Similar hybrid systems have
been used to model nonlinear stochastic WNCS, see e.g. [10].
For system (1), we introduce the following definition.

Definition 1: Let p ∈ N>0 ∪ {+∞} and γ ≥ 0 be given.
We say that (1) is Lp stable-in-expectation from w to y with
gain γ if there exists K ≥ 0 such that E

{
‖y‖Lp[t0,t]

}
≤

K|z0|+γE
{
‖w‖Lp[t0,t]

}
, for all t ≥ t0 ≥ 0, z0 ∈ Rnz , and

w ∈ Lp. �

C. Setup and problem definition

Consider the nonlinear plant ẋp = fp(xp, u, w), y =
gp(xp), where xp ∈ Rnp is the state of the plant, u ∈ Rnu

is the control input, w ∈ Rnw is an external disturbance,
y ∈ Rny is the plant output, and (np, nu, nw, ny) ∈ N4

>0.
We follow an emulation approach [22], [23] and thus

assume that a stabilising continuous-time nonlinear controller
has been designed with model ẋc = fc(xc, y, w), u = gc(xc),
where xc ∈ Rnc is the controller state, and nc ∈ N>0. The
controller is then implemented over the wireless network as
per the architecture in Fig. 1, for which it no longer receives
(y, u), but the networked versions (ŷ, û), i.e. the vector of the
most recently transmitted plant and controller output values.

Plant Wireless
Network Controller

y

û

ŷ

u

Fig. 1. Schematic of the wireless networked control system.

Therefore, with the wireless network, the plant and controller
can be written as

ẋp = fp(xp, û, w), y = gp(xp), (2a)
ẋc = fc(xc, ŷ, w), u = gc(xc). (2b)

The objectives of this work are to establish sufficient
conditions in the network, in terms of data transmission rate,
for which stability is preserved when the controller is imple-
mented over the network, and to exploit these conditions to
design suitable transmitter control policies.

III. WIRELESS NETWORK MODEL

The framework we present below can cover different types
of wireless networks such as ad-hoc networks, which are
essentially a collection of wireless nodes that can communi-
cate at the same time [24]. The interference between devices
can be very high and thus packet dropouts might have a
significant impact on performance. Moreover, larger scale
wireless networks such as WiFi or 5G small cells networks
may also be subject to high interference.

A. Transmission instants

In wireless networks, because of synchronisation times,
acknowledgements, etc., transmissions instants can be time-
varying and random. Consequently, we assume the following.

Assumption 1: Consider a Poisson point process r(t) with
intensity ω that satisfies r(t) = 0 for t ∈ [0, t0) and
r(t) = k for t ∈ [tk−1, tk). The sequence of transmission
instants {tk}k∈N is defined inductively by: t0 = τ0 with
τ0 ∼ Exp(ω), and for each k > 0, tk = tk−1 + τk, with
τk ∼ Exp(ω), where the sequence {τk}k∈N is i.i.d. �
Poisson processes count the number of occurrences of some
specific event through time. These are a natural modelling
tool in numerous applied probability problems [25].

B. Network-induced error

An important object useful for our analysis is the so-called
network-induced error, which is defined as e , (ey, eu),
where ey , ŷ − y and eu , û − u. We next define the
concept of network node. A node consists of several sensors
and/or actuators (grouped either by their spatial location or
merely by convention) with their corresponding data being
transmitted at the same transmission instant, we may also
refer to this node as cluster. Consequently, we partition
the network-induced error as e = (e1, . . . , eN ) (after re-
ordering, if needed), where en, n ∈ {1, . . . , N}, is the
network-induced error associated with the n-th node, and
N ∈ {1, . . . , ny + nu} is the total number of nodes in the



network. Each node may contain different links (we also refer
to them as channels), thus we write en = (en,1, . . . , en,`n)
(after re-ordering, if needed), for all n = 1, . . . , N and
associated partition `n ∈ {1, . . . , ny + nu}. We say that the
WNCS has N nodes and `1 + · · ·+ `N channels.

C. Interference model

Consider that within a node n, every link in ∈ {1, . . . , `n}
has a transmitter and a receiver. Let the transmitter power of
link in be given by pn,in ∈ [0, Pmax], Pmax ∈ R≥0 is the
maximum allowable power at any given time instant, and the
channel gain from link’s in transmitter to link’s jn receiver
be given by gn,injn . Therefore, the signal-to-interference-
and-noise ratio (SINR) γn,in perceived by the receiver of
link in (within node n) is given by (see e.g. [24])

γn,in ,
gn,ininpn,in

σ2
n,in

+
∑
jn 6=in gn,jninpn,jn

, (3)

where σ2
n,in

is the noise variance at the receiver of link in.
The probability of successful reception is a function the

SINR, and we write fn,in in link in and node n as fn,in =
ψ(γn,in), where ψ is a nonlinear function. In our examples
we specify the model for both the probability and the channel
gains, however they are not necessary for our results.

D. Wireless network dynamics

We now present the dynamics of the wireless network
in terms of the network-induced error. Firstly, between
transmission instants, we assume that ŷ and û are generated
by zero-order hold devices, i.e. ˙̂y = 0 and ˙̂u = 0 for
t ∈ [tk, tk+1] and k ∈ N. Therefore, for t ∈ [tk, tk+1],

ė =

[
−ẏ
−u̇

]
=

[
− ∂gp
∂xp

fp(xp, eu + gc(xc), w)

− ∂gc
∂xc

fc(xc, ey + gp(xp), w)

]
. (4)

Next we present the dynamics of e at transmission instants.
We assume that the network nodes are governed by a
scheduling protocol. Consider that node n is scheduled to
transmit at time instant tk. Then, we assume the corre-
sponding error components associated with node n, en,in ,
in ∈ {1, . . . , `n}, will be set to zero only if the transmission
is successful, i.e. en,in(t+k ) = 0, where t+k is the time
instant immediately after the transmission (or “jump”). On
the other hand, whenever a packet loss occurs, we assume
the corresponding error components remain unchanged since
the signal was not updated, i.e.en,in(t+k ) = en,in(tk).

The above verbal description can be written as a math-
ematical equation for e(t+k ). We first introduce a random
process that is useful to describe packet losses. Define
Θn(k) = diag{θn,1(k), . . . , θn,`n(k)} for all n = 1, . . . , N ,
where each {θn,in(k)}k∈N, is a sequence of independent
random variables such that θn,in(k) = 1 with probability
fn,in , and θn,in(k) = 0 with probability 1−fn,in . Therefore,
the dynamics of the network-induced error at jumps are

e(t+k ) = diag{Θ1(k), . . . ,ΘN (k)}h(k, e(tk))

+ (I − diag{Θ1(k), . . . ,ΘN (k)})e(tk), (5)

where h is a mapping that is determined by the implemented
scheduling protocol. We refer to (5) as the protocol equation.

Assumption 2: Nodes are independent, i.e. {Θn(k)}k∈N
and {Θm(k)}k∈N are independent for all n 6= m. Chan-
nels are independent at each node, i.e. {θn,in(k)}k∈N and
{θn,jn(k)}k∈N are independent for all in 6= jn. We further
assume that {Θn(k)}k∈N are independent of {τk}k∈N. �

Remark 1: We emphasise that our modelling framework
covers a broader scenario than the one adopted in the
previous work [12]. Particularly, (5) generalises the protocol
equation found in [12], which is e(t+k ) = θ(k)h(k, e(tk)) +
(1− θ(k))e(tk), where {θ(k)}k∈N is a scalar i.i.d. sequence
of Bernoulli random variables such that θ(k) = 1 with
probability f and θ(k) = 0 with probability 1−f . That is, in
[12], the probability of success f is assumed to be the same
for every channel and every node, which is often unrealistic.
On the contrary, we assume that every channel in the network
has its own probability of successful transmission. �

IV. STABILITY

A. Class of scheduling protocols

In order to establish our stability result, we need the
underlying scheduling protocols to be almost surely (a.s.)
uniformly globally exponentially stable (UGES) as first in-
troduced in [12], and we formalise it in the below definition.

Definition 2: Let W : N × Rne → R≥0 be given and
suppose there exist a sequence of non-negative independent
random variables {κk}k∈N, and numbers a1, a2, κ̄ ∈ R>0

such that the following conditions hold for the discrete-time
system (5) for all k ∈ N and all e ∈ Rne ,

a1|e| ≤W (k, e) ≤ a2|e|, (6a)
W (k + 1, h(k, e)) ≤ κkW (k, e), (6b)

E {κk} ≤ κ̄ < 1, ∀k ∈ N. (6c)

Then, we say that (5) is a.s. UGES with Lyapunov function
W . �

The definition above is the stochastic counterpart of the
well-known UGES definition introduced in [23], where κk =
λ for some 0 ≤ λ < 1. Finding κk, and thus κ̄, is done case
by case, i.e. for a given scheduling protocol, we can find κk
and κ̄ that satisfy the above definition.

Example 1 (Round-robin protocol): Nodes in the network
are visited in a predetermined and cyclic manner [23]. For
round-robin we have that h in (5) is defined as h(k, e) ,
(I −∆(k))e, where ∆(k)

.
= diag{δ1(k)Is1 , . . . , δN (k)IsN },∑N

n=1 sn = ne, and δn(k) = 1 if k = n + σN, σ ∈
N, or δn(k) = 0 otherwise. Round-robin is UGES with
a1 = 1, a2 =

√
N , and λ =

√
(N − 1)/N , see Proposition

4 in [23]. Note that κk ∈ {λ, 1}. Then, by definition of
{Θn(k)}n=1,...,N we get that κk is given by

κk ,
(∑N

n=1

(∏`n
in=1 θn,in(k)

)
δn(k)

)
λ

+ 1−
(∑N

n=1

(∏`n
in=1 θn,in(k)

)
δn(k)

)
. (7)

Given the definition of δn(k), only one element of the
summation is active at transmission time k (since only one



node transmits per time instant). By using (7), we have that
κ̄ = 1−

(
minn∈{1,...,N} fn,1 · · · fn,`n

)
(1− λ). �

B. Main results

We now show that under a.s. UGES protocols, Lp stability-
in-expectation of the WNCS in Fig. 1 is guaranteed with
sufficiently frequent data transmission and some assumptions
on (2). We first present the model for the overall WNCS in
Fig. 1. Define the augmented state x , (xp, xc), then by
using (2), the definition of e, (4), and (5), we get

ẋ = f(x, e, w), t ∈ [tk, tk+1] (8a)
ė = g(x, e, w), t ∈ [tk, tk+1] (8b)

x(t+k ) = x(tk), (8c)

e(t+k ) = diag{Θ1(k), . . . ,ΘN (k)}h(k, e(tk))

+ (I − diag{Θ1(k), . . . ,ΘN (k)})e(tk), (8d)

where g is given by the right-side of (4), and f(x, e, w) ,
(fp(xp, eu + gc(xc), w), fc(xc, ey + gp(xp), w)).

We will use the following proposition together with small-
gain arguments to show Lp stability-in-expectation of the
overall system (8).

Proposition 1: Consider the WNCS (8) and suppose the
following holds.

(i) The protocol (8d) is a.s. UGES with Lyapunov func-
tion W that is locally Lipschitz in e, uniformly in k.

(ii) There exists L ≥ 0 such that

〈∂W/∂e,g(x, e, w)〉 ≤ LW (k, e) + |ỹ(x,w)| (9)

holds for almost all e ∈ Rne , all (x,w) ∈ Rnx ×Rnw ,
t ∈ (tk, tk+1), and k ∈ N, where ỹ : Rnx × Rnw →
Rne is a continuous function of (x,w).

If the intensity of the intertransmission process ω satisfies

ω > L/(1− κ̄), (10)

then the error subsystem (8b)–(8d) is Lp stable-in-
expectation from ỹ(x,w) to W (e) with finite expected
linear gain γe , s∞(ω)/(ω − L), where s∞(ω) ,∑∞
j=0

[ (
ω

ω−L

)j
×
∏j−1
ι=0 E{κι}

]
<∞. �

Note that (9) assumes an exponential growth on the e–
subsystem. It is satisfied when W is Lipschitz in e and g is
globally Lipschitz for instance, see [23].

We can now state the main result of this paper. The
proof follows immediately from Proposition 1 and the small-
gain theorem for systems with jumps [23, Theorem 1].
The main idea behind the proof is to view system (8) as
the interconnection of the x- and e- system through inputs
ỹ(x,w) and W (e).

Theorem 1: Consider the WNCS (8) and suppose the
following holds.

(i) The protocol (8d) is a.s. UGES with Lyapunov func-
tion W that is locally Lipschitz in e, uniformly in k.

(ii) Condition (ii) of Proposition 1 holds with ỹ , G(x)+
Ew, for G : Rnx → Rne and E ∈ Rne×nw .

(iii) System (8a) is Lp stable from (W (e), w) to ỹ(x,w)
with finite gain γ for some p ∈ N>0 ∪ {+∞}.

If there exists an intensity of the inter-transmission process
ω that satisfies (10) and

γs∞(ω)/(ω − L) < 1, (11)

then the WNCS (8) is Lp stable-in-expectation from w to
(G(x),W (e)) with finite linear gain. �
Any stabilisable and detectable linear time-invariant system
satisfies condition (iii). For examples of nonlinear systems
that satisfy this condition we refer the reader to [26].

The rate of data transmission is measured in terms of the
intensity ω of the inter-transmission process. The required ω
that ensures Lp stability-in-expectation of system (8) can be
easily computed numerically from Theorem 1. We emphasise
that the bound on ω depends on the expectation E {κk}. For
static protocols, as shown in Section IV-A, we can find a
closed form expression for E {κk} which depends on the
cumulative probability of the network nodes.

We provide a closed-form bound on ω in the corollary
below, however, it is more conservative than (11).

Corollary 1: Suppose conditions (i), (ii), and (iii) of
Theorem 1 hold. If ω satisfies

ω > (γ + L)/(1− κ̄), (12)

then the WNCS is Lp stable-in-expectation from w to
(G(x),W (e)) with finite linear gain. �

The bound (12) is more conservative than (11) since it
depends on κ̄, which is the upper bound on E {κk}. For
instance, if we use a round-robin protocol, then κ̄ depends on
the smallest cumulative probability (i.e. worst overall channel
quality) between the network nodes. In fact, the bounds in
[12] are only applicable to our set-up if their probability
of transmission is equal to the worst cumulative probability
between the nodes, hence making [12] conservative when
applied to a more general scenario.

V. POWER CONTROL IN WNCS
Depending on the application, the transmission rate

bounds provided in Section IV-B could be hard to satisfy, e.g.
hardware not capable of handling it. However, these results
can be used to tune the transmitter powers to ensure feasible
transmission rates. A naive power control scheme would
be using the maximum power in every transmitter, but this
may not be viable since increasing power in turn increases
the interference between channels, which may worsen the
probability of success. In addition, maximum power causes
serious energy consumption and electromagnetic pollution.
We provide a more practical scheme which guarantees sta-
bility of the WNCS (8) for a given intensity of transmission.

To solve the power control problem, we use Corollary
1. From Assumption 1 we know that τ̄ , E {τk} = 1/ω.
That is, the reciprocal of the intensity of transmission can be
thought of as the average maximum allowable transmission
interval (MATI) that guarantees stability1. From Corollary 1,

1Note that our average MATI is different from the notion considered in
the work [27], which is expressed in terms of a reverse average dwell-
time condition for a deterministic setting. The value of our average MATI
τ̄ depends on the particular application. For instance, τ̄ may represent a
hardware constraint on how fast the network can physically transmit.



and for a given τ̄ , we have that any a.s. UGES protocol
such that κ̄ satisfies 0 < κ̄ < 1 − τ̄(γ + L) ensures
Lp stability-in-expectation of (8). Now, suppose we use a
round-robin protocol (or any other periodic static protocol)
to schedule transmissions, then by Example 1 we have that κ̄
depends on the minimum cumulative probability between the
nodes. That is, it depends on the node with the worst overall
channel quality, which we denote by n. Then the required
probabilities that ensure stability for a given τ̄ satisfy

fn,1 · · · fn,`n >
τ̄(γ+L)

1−λ . (13)

In wireless communications, the objective of power control
is to adjust the transmitter powers of all users such that
the SINR of each user meets a given threshold required for
acceptable performance [24]. Note that (13) is essentially a
threshold on SINR since success probabilities are related to
SINR. In fact, we can state the following lemma.

Lemma 1: If there exists a set of transmitter powers
{pn,1, . . . , pn,`n} such that

`n∏
in=1

ψ
(

gn,ininpn,in

σ2
n,in

+
∑

jn 6=in
gn,jninpn,jn

)
>
τ̄(γ + L)

1− λ
, (14)

and 0 ≤ pn,in ≤ Pmax, in = 1, . . . , `n. Then, (8) is Lp
stable-in-expectation transmitting data every τ̄ seconds in
average. �
Lemma 1 provides a practical way of finding transmitter
powers to achieve stability for a given τ̄ . We show in
the next section that this can be easily done numerically
for given models of success probability ψ and channel
gains gn,inin . Moreover, we could formulate an optimisation
problem which objective is to use minimal transmission
power to achieve stability. That is, find {pn,1, . . . , pn,`n}
that minimise some cost function J(pn,1, . . . , pn,`n) under
constraints (14) and 0 ≤ pn,in ≤ Pmax, in = 1, . . . , `n.
However, this is out of the scope of this paper.

VI. NUMERICAL EXAMPLES

We illustrate our results in the control of an unstable batch
reactor over wireless channels. This is a two-input two-output
system, and its model parameters can be found in [28, p.62].
Particularly, the plant is given by ẋp = Apxp + Bpu, y =
Cpxp, which is stabilised by a PI controller with the state-
space representation ẋc = Acxc + Bcy, u = Ccxc + Dcy.
The wireless network is composed of two nodes N = 2,
and each node has two channels `1 = `2 = 2. We adopt
the round-robin protocol in Example 1. We send the two
output measurements through the two channels in Node 1,
and the two control inputs through the two channels in Node
2. Therefore, e = (e1, e2), where e1 = (ŷ1−y1, ŷ2−y2) and
e2 = (û1 − u1, û2 − u2). We can thus write the dynamics

ẋ = A11x+A12e, (15a)
ė = A21x+A22e, (15b)

A21 , −diag{Cp, Cc}A11, A22 , −diag{Cp, Cc}A12,

A11 ,

[
Ap +BpDcCp BpCc

BcCp Ac

]
, A12 ,

[
BpDc Bp
Bc 0

]
. We

now find the parameters required to compute the bounds in
Theorem 1 and Corollary 1. From Example 1, we have that
λ =
√

0.5. Similar to Example 3 and Section IX in [23] we
get L =

√
N |A22| = 25.27 and γ = 27.34.

A. Comparison between the transmission bounds

Suppose the wireless network is initially configured such
that the probabilities of sucessful transmission are given by
f1,1 = 0.3, f1,2 = 0.8, f2,1 = 0.75, and f2,2 = 0.8. From
Example 1 we get κ̄ = 1−(0.3×0.8)(1−

√
0.5) = 0.93, and

E{κk} = 0.93 for k = 1+2σ, and E{κk} = 0.82 for k = 2+
2σ, σ ∈ N. We compute the numerical bound from Theorem
1, which can be derived by solving numerically for ω in
(11), giving a value of ω∗num = 428.64. Then, we compute
the closed-form stability bound from Corollary 1 using (12),
giving us ω∗closed = 748.45. We can see that ω∗closed/ω

∗
num = 1.75,

i.e. the closed-form bound is around twice more conservative
than the numerical bound. Recall from the discussion at the
end of Section IV-B, that ω∗closed also corresponds to the bound
in [12] if we were to use it in our setting. That is, the bound
in [12] is twice more conservative when applied to more
general scenarios, which highlights our results.

These intensity values can be translated into average
MATI bounds since E{τ∗} = 1/ω∗. The closed-form bound
requires the network to transmit packets, on average, every
1.3[ms], and every 2.3[ms] for the less conservative bound.

Fig. 2. Physical placement of the transmitters and receivers of channels one
and two at Node 1.

B. Power control for a given average MATI

To model probability of success we choose ψ(γn,in) ,
(1− 0.5 erfc(γn,in))

M , where M is the packet size in bits
and erfc(·) is the complementary error function. Suppose that
Node 1 has the worst (lowest) cumulative probability, that its
transmitters and receivers are physically placed as per Fig. 2,
and that we require an average MATI of τ̄ = 1[ms]. Then,
by Lemma 1, we need to find p1,1 and p1,2 such that(

1− 0.5 erfc
(

g1,11p1,1
σ2+g1,21p1,2

))M
×
(

1− 0.5 erfc
(

g1,22p1,2
σ2+g1,12p1,1

))M
> 0.1057. (16)

We compute the channel gains by using g1,ij = 1/d4
1,ij

as in [29], where d1,ij is the distance between the trans-
mitter in channel i ∈ {1, 2} and the receiver in channel
j ∈ {1, 2} (both within Node 1). Given Fig. 2, we get



g1,11 = 0.2, g1,22 = 0.063, and g1,12 = g1,21 = 0.012.
We pick σ2 = 1, M = 1024 bits, and Pmax = 70. We
plot the left-hand side of (16) for different values of powers
p1,1, p1,2 as illustrated in Fig. 3. We have also plotted the
plane f1,1×f1,2 = 0.1057 to illustrate the stabilising region,
which is the region above such plane.
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Fig. 3. Probabilities of successful transmission with respect to transmitter
powers at Node 1.

Note from the data-tips in Fig. 3 that the naive strategy of
setting p1,1 = p1,2 = Pmax ensures stability as one would
expect provided there is enough available power. However,
our results illustrate that a more advanced strategy can
guarantee stability with significantly less power. For instance,
setting p1,1 = 17 and p1,2 = 41 ensures stability with about
76% less power usage at transmitter Tx1, and 41% at Tx2.

VII. CONCLUSIONS

We provided sufficient conditions on the intensity of
transmission that guarantee Lp stability-in-expectation of a
nonlinear WNCS subject to multiple packet losses. These are
control-oriented results but they try to bridge the gap between
control and communication literature by carefully modelling
the network and connecting the main result to power control
via realistic and well-known interference models. In our ap-
proach, the stability and power control problems are coupled
a posteriori, and future work involves studying the co-design
problem of stability and power control for our current setting.
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[12] M. Tabbara and D. Nešić, “Input–output stability of networked control
systems with stochastic protocols and channels,” IEEE Transactions
on Automatic control, vol. 53, no. 5, pp. 1160–1175, 2008.

[13] C. Saraydar, N. Mandayam, D. Goodman et al., “Pricing and power
control in a multicell wireless data network,” IEEE Journal on selected
areas in communications, vol. 19, no. 10, pp. 1883–1892, 2001.

[14] S. Kandukuri and S. Boyd, “Optimal power control in interference-
limited fading wireless channels with outage-probability specifica-
tions,” IEEE transactions on wireless communications, vol. 1, no. 1,
pp. 46–55, 2002.

[15] C. Zhang, A. Agrawal, V. S. Varma, and S. Lasaulce, “Thresholding-
based distributed power control for energy-efficient interference net-
works,” in 2018 IEEE 29th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE,
2018, pp. 1–6.

[16] D. Quevedo, A. Ahlén, A. Leong, and S. Dey, “On kalman filtering
over fading wireless channels with controlled transmission powers,”
Automatica, vol. 48, no. 7, pp. 1306–1316, 2012.

[17] X. Ren, J. Wu, K. H. Johansson, G. Shi, and L. Shi, “Infinite horizon
optimal transmission power control for remote state estimation over
fading channels,” IEEE Transactions on Automatic Control, vol. 63,
no. 1, pp. 85–100, 2017.

[18] Y. Li, J. Wu, and T. Chen, “Transmit power control and remote state
estimation with sensor networks: A bayesian inference approach,”
Automatica, vol. 97, pp. 292–300, 2018.

[19] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power management
in wireless control systems,” IEEE Transactions on Automatic Control,
vol. 59, no. 6, pp. 1495–1510, 2014.

[20] V. S. Varma, A. M. de Oliveira, R. Postoyan, I.-C. Morarescu, and
J. Daafouz, “Energy-efficient time-triggered communication policies
for wireless networked control systems,” IEEE Transactions on Auto-
matic Control, 2019.

[21] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Random access design for
wireless control systems,” Automatica, vol. 91, pp. 1–9, 2018.

[22] G. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of non-
linear networked control systems,” IEEE Transactions on Automatic
Control, vol. 46, no. 7, pp. 1093–1097, jul 2001.
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allowable transmission interval condition for the stability of networked
control systems,” IEEE Transactions on Automatic Control, 2020.

[28] M. Green and D. J. Limebeer, Linear robust control. Courier
Corporation, 2012.

[29] T. ElBatt and A. Ephremides, “Joint scheduling and power control for
wireless ad hoc networks,” IEEE Transactions on Wireless communi-
cations, vol. 3, no. 1, pp. 74–85, 2004.


