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Abstract

In this paper, we investigate when system identification is statistically easy or hard, in the finite sample
regime. Statistically easy to learn linear system classes have sample complexity that is polynomial with
the system dimension. Most prior research in the finite sample regime falls in this category, focusing on
systems that are directly excited by process noise. Statistically hard to learn linear system classes have
worst-case sample complexity that is at least exponential with the system dimension, regardless of the
identification algorithm. Using tools from minimax theory, we show that classes of linear systems can
be hard to learn. Such classes include, for example, under-actuated or under-excited systems with weak
coupling among the states. Having classified some systems as easy or hard to learn, a natural question
arises as to what system properties fundamentally affect the hardness of system identifiability. Towards this
direction, we characterize how the controllability index of linear systems affects the sample complexity
of identification. More specifically, we show that the sample complexity of robustly controllable linear
systems is upper bounded by an exponential function of the controllability index. This implies that
identification is easy for classes of linear systems with small controllability index and potentially hard if
the controllability index is large. Our analysis is based on recent statistical tools for finite sample analysis
of system identification as well as a novel lower bound that relates controllability index with the least
singular value of the controllability Gramian.

1 Introduction

Linear system identification focuses on using input-output data samples for learning dynamical systems of
form:

xk+1 = Axk +Buk +Hwk, (1)

where xk represents the state, uk represents the control signal, and wk is the process noise. The statistical
analysis of system identification algorithms has a long history [1]. Until recently, the main focus was
providing guarantees for the convergence of system identification in the asymptotic regime [2–4], when
the number of collected samples N tends to infinity. Under sufficient persistency of excitation [5], system
identification algorithms converge and the asymptotic bounds capture very well how the identification error
decays with N qualitatively.

However, our standard asymptotic tools (e.g. the Central Limit Theorem), do not always capture all
finite-sample phenomena [6, Ch 2]. Moreover, the identification error depends on various system theoretic
constants, like the state space dimension n, which might be hidden under the big-O notation in the asymptotic
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bounds. As a result, system identification limitations, like the curse of dimensionality, although known to
practitioners, are not always reflected in the theoretical asymptotic bounds.

With the advances in high-dimensional statistics [6], there has been a recent shift from asymptotic
analysis with infinite data to statistical analysis of system identification with finite samples. Over the past
two years there have been significant advances in understanding finite sample system identification for both
fully-observed systems [7–14] as well as partially-observed systems [15–24]. A tutorial can be found in [25].
The above approaches offer mainly data-independent bounds which reveal how the state dimension n and
other system theoretic parameters affect the sample complexity of system identification qualitatively. This is
different from finite sample data-dependent bounds-see for example bootstrapping [8] or [26], which might
be more tight and more suitable for applications but do not necessarily reveal this dependence.

Despite these advances, we still do not fully understand the fundamental limits of when identification is
easy or hard. In this paper, we define as statistically easy, classes of systems whose finite-sample complexity
is polynomial with the system dimension. Most prior research in the finite-sample analysis of fully observed
systems falls in this category by assuming system (1) is fully excited by the process noise wk. We define as
statistically hard, classes of linear systems whose worst-case sample complexity is at least exponential with
the system dimension, regardless of the learning algorithm. Using recent tools from minimax theory [13], we
show that classes of linear systems which are statistically hard to learn do indeed exist. Such system classes
include, for example, under-actuated systems with weak state coupling. The fact that linear systems may
contain exponentially hard classes has implications for broader classes of systems, such as nonlinear systems,
as well as control algorithms, such as the linear quadratic regulator [27] and reinforcement learning [28, 29].

By examining classes of linear systems that are statistically easy or hard, we quickly arrive at the
conclusion that system theoretic properties, such as controllability, fundamentally affect the hardness of
identification. In fact, as we show in the paper, structural properties like the controllability index can crucially
affect learnability, determining whether a problem is hard or not. In summary, our contributions are the
following:
–Learnability of dynamical systems. We define two novel notions of learnability for classes of dynamical
systems. A class of systems is easy to learn if it exhibits polynomial sample complexity with respect the
state dimension n. It is hard to learn if for any possible learning algorithm it has exponential worst-case
complexity.
–Exponential sample complexity is possible. We identify classes of under-actuated linear systems whose
worst-case sample complexity increases exponentially with the state dimension n regardless of learning
algorithm. These hardness results hold even for robustly controllable systems.
–Controllability index affects sample complexity. We prove that under the least squares algorithm, the
sample complexity is upper-bounded by an exponential function of the system’s controllability index. This
implies that if the controllability index is smallO(1) (with respect to the dimension n), the sample complexity
is guaranteed to be polynomial generalizing previous cases. If, however, the index grows linearly Ω(n), then
there exist non-trivial linear systems which are exponentially hard to identify.
–New controllability Gramian bound Our sample complexity upper bound is a consequence of a new
result that is of independent, system theoretic interest. We prove that for robustly controllable systems, the
least singular value of the controllability Gramian can grow at most exponentially with the controllability
index. Although it has been observed empirically that the Gramian might be affected by the curse of
dimensionality [30], to the best of our knowledge this theoretical bound is new and has implications beyond
system identification.

Notation: The transpose operation is denoted by (·)′ and the complex conjugate by ∗. By ei ∈ Rn we
denote the i−th canonical vector. By σmin we denote the least singular value. � denotes comparison in the
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positive semidefinite cone. The identity matrix of dimension n is denoted by In. The spectral norm of a
matrix A is denoted by ‖A‖2. The notion of controllability and other related concepts are reviewed in the
Appendix.

2 Learnability of System Classes

Consider system (1), where xk ∈ Rn is the state and uk ∈ Rp is the input. By wk ∈ Rr we denote the process
noise which is assumed to be Gaussian, i.i.d. with covariance Ir. Without loss of generality the initial state is
assumed to be zero x0 = 0.

Assumption 1. All state parameters are bounded: ‖A‖2, ‖B‖2, ‖H‖2 ≤ M , for some positive constant
M > 0. The noise has unknown dimension r and can be degenerate r ≤ n. All parameters A,B,H, r are
considered unknown. Matrices B,H have full column rank rank(B) = p ≤ n, rank(H) = r ≤ n. We also
assume that the system is non-explosive ρ(A) ≤ 1. Finally, we assume that the control inputs have bounded
energy Eu′tut ≤M .

This setting is rich enough to provide insights about the difficulty of the general learning problem. To
simplify the setting we assume that the system is non-explosive. The analysis of unstable systems is left for
future research.

A system identification (SI) algorithmA receives a finite numberN of input-state data (x0, u0), . . . , (xN , uN )
generated by system (1), and returns an estimate of the unknown system’s parameters ÂN , B̂N , ĤN . We
denote by N the number of collected input-state samples, which are generated during a single roll-out of the
system, that is a single trajectory of length N . For simplicity, we focus only on the estimation of matrix A in
this paper.

Our goal is to study when the problem of system identification is fundamentally easy or hard. The difficulty
is captured by the sample complexity, i.e. how many data N do we need to achieve small identification error
with high probability. Formally, let ε > 0, 0 < δ < 1 be the accuracy and confidence parameters respectively.
Then, the sample complexity is the smallest possible number of samples N such that with probability at least
1 − δ we can estimate A with small error ‖A − ÂN‖ ≤ ε. Naturally, the sample complexity increases as
the accuracy/confidence parameters ε, δ decrease. The sample complexity also increases in general with the
state-space dimension n and the bound M on the state space parameters.

Ideally, the sample complexity should grow slowly with n,M, ε−1, δ−1. Inspired by Provably Approx-
imately Correct (PAC) learning [31, 32], we classify an identification problem as easy when the sample
complexity depends polynomially on n,M, ε−1, δ−1. For brevity we will use the symbol S to denote the tuple
S = (A,B,H). Let PS denote the probability distribution of the input-state data when the true parameters
of the system are equal to S and we apply a control law ut ∈ Ft, where Ft , σ(x0, u0, . . . , ut−1, xt) is the
sigma algebra generated by the previous outputs and inputs. By Cn we will denote a class of systems with
dimension n.

Definition 1 (poly-learnable classes). Let Cn be a class of systems. Consider a trajectory of input-state
data (x0, u0), . . . ,(xN , uN ), which are generated by a system S in Cn under some control law ut ∈ Ft,
t ≤ N . We call the class Cn poly(n)−learnable if there exists an identification algorithm such that the
sample complexity is polynomial: for any confidence 0 ≤ δ < 1 and any tolerance ε > 0:

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ, (2)

for N ≥ poly(n, 1/ε, log 1/δ,M),
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Figure 1: The minimum number of samples N such that the (empirical) average error E‖A − ÂN‖2, for
identifying (3), is less than ε. The sample complexity appears to be increasing exponentially with the
dimension n under the least squares algorithm.

where poly(·) is some polynomial function.

Definition 1 provides an intuitive definition for a class Cn of linear systems whose system identification
problem is easy. To prove that a class of systems Cn is easy, it suffices to provide one algorithm that performs
well for any system S ∈ Cn in the sense that it requires at most a polynomial number of samples. This means
that we should obtain sample complexity upper bounds across all S ∈ Cn which is what the the supremum
over S ∈ Cn achieves in (2). Otherwise, we can construct trivial algorithms that perform well only on one
system and fail to identify the other.

In recent work [9, 11, 12], it was shown that under the least squares algorithm, the sample complexity of
learning linear systems is polynomial. As we review in Section III, these results hold for classes of linear
systems where the noise is isotropic and hence directly exciting all states.

However, if we relax the last assumption it turns out that the sample complexity might degrade dra-
matically. To raise this issue, consider the following example. Let Jn(1) be a Jordan block of size n
with eigenvalue 1 and let en be the n−th canonical vector. We simulate the performance of least squares
identification for the system

xk+1 = 0.5Jn(1)xk + en(uk + wk) (3)

Note that in system (3) the process noise is no longer isotropic. Figure 1 shows the minimum number of
samples N required to achieve (empirical) average error E‖A− ÂN‖ ≤ ε (the details of the simulation can
be found in Section 6). It seems that the sample complexity increases exponentially rather than polynomially.
Are the results in Figure 1 due to the choice of the algorithm or is there a fundamental limitation for all
system identification algorithms? We pose the following fundamental problem.

Question 1. Do there exist classes of linear systems which are hard to learn, meaning not poly-learnable by
any system identification algorithm? Furthermore, can the sample complexity for a class of linear systems be
exponential with state dimension n?

A class of linear systems Cn that is not poly-learnable will be viewed as hard. By negating Definition 1,
this notion of hardness means that given any system identification algorithm, there exist instances S ∈ Cn
that cannot have polynomial sample complexity. In other words, a system class Cn is classified as hard when
its impossible to find any system identification algorithm that achieve polynomial sample complexity for all
S ∈ Cn. This can be viewed as a fundamental statistical limitation for the chosen class of systems Cn.
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Motivated by Figure 1, we define an important subclass of hard problems, namely linear system classes that
have worst-case sample complexity that grows exponentially with the dimension n regardless of identification
algorithm choice.

Definition 2 (exp-hard classes). Let Cn be a class of systems of dimension n. Consider a trajectory of
input-output data (x0, u0), . . . ,(xN , uN ), which are generated by a system S in Cn under some control law
ut ∈ Ft, t ≤ N . We call a class Cn of systems exp(n)-hard if the sample complexity is at least exponential
with the dimension n: there exist confidence 0 ≤ δ < 1 and tolerance ε parameters such that for any
identification algorithm:

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ,

only if N ≥ exp(n),

where exp(n) denotes an exponential function of n.

System classes Cn that are exp-hard are an important subset of hard system classes as they are clearly not
poly-learnable. However, not all classes that are not poly-learnable are exp-hard.

In order to show that a class of systems Cn is exp-hard, one must show that for any system identification
algorithm the worst-case sample complexity is at least exponential in state dimension n. Contrary to
poly-learnable problems, for exponential hardness we should establish sample complexity lower bounds.

In this paper, we first address Question 1 and show that exp-hard classes of linear systems do indeed
exist. While this can be viewed as a fundamental statistical limitation for all system identification algorithms,
our results open a new direction of research that classifies when linear systems are easy to learn and when
they are hard to learn. This leads to the following important question addressing in this paper:.

Question 2. When is a class of linear systems Cn guaranteed to be poly-learnable?

Based on prior work, we already have partial answers to Question 2 as we know that linear systems with
isotropic noise are poly-learnable. In Section 5, we seek to broaden the classes of poly-learnable systems
and discover their relation to fundamental system theoretic properties such as controllability.

While Definitions 1, 2 are inspired by PAC learning, they have a different flavor. One of the differences
is that the guarantees in Definitions 1, 2 are stated in terms of recovering the state-space parameters, while
in PAC learning, they would be stated in terms of the prediction error of the learned model or informally∑N−1

k=0 E‖xk − Âxk−1 − B̂uk−1‖2.

3 Directly-excited systems are poly-learnable

In this section, we revisit state-of-the-art results in finite-sample complexity for fully-observed linear systems
and re-establish that they all lead to polynomial sample complexity. In prior work [9, 11, 12], the class of
linear systems considered assumes that the stochastic process noise is isotropic, i.e. HH ′ = σ2wIn. Since all
states are directly excited by the process noise, all modes of the system are captured sufficiently in the data.
To obtain polynomial complexity, it suffices to use the least squares identification algorithm

[
ÂN B̂N

]
= arg min

{F,G}

N−1∑
t=0

‖xt+1 − Fxt −Gut‖22 (4)
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with white noise inputs ut ∼ N (0, σ2uI). Based on the algorithm analysis from [9], let k be a fixed time
index which is much smaller than the horizon N (see Theorem 2.1 in [9] for details). Let 0 < δ < 1 and ε
be the confidence and accuracy parameters respectively. Then, with probability at least 1− δ, the error is
‖A− ÂN‖2 ≤ ε if:

N ≥ cσ2w
σmin(Γk)

1

ε2

(
n log

n

δ
+ log det(ΓNΓ−1k )

)
,

where c is a universal constant, and Γk = σ2uΓk(A,B) + σ2wΓk(A, In) is the (combined) controllability
Gramian. Uunder the isotropic noise assumption, the least singular value of the Gramian Γk is bounded away
from zero, σmin(Γk) ≥ σ2w.

In a slight departure from [9, 11, 12], we can show that the determinant of the Gramian det(ΓN ) can only
increase at most polynomially with the number of samples N and exponentially with state dimension n. This
is a direct consequence of the following lemma, which is a new result.

Lemma 1. Let A ∈ Rn×n have all eigenvalues inside or on the unit circle, with ‖A‖2 ≤ M . Then, the
powers of matrix A are bounded by: ∥∥∥Ak∥∥∥

2
≤ (ek)n−1 max {Mn, 1} (5)

Lemma 1 enables us to eliminate the dependence on the condition number of the Jordan form’s similarity
transformation, which exists in prior bounds and can be arbitrarily large. We avoid this dependence by using
the Schur form of A [33]. While this does not alter the already known sample complexity results, it allows us
to have sample complexity bounds that are uniform across all systems that satisfy Assumption 1.

As a result of Lemma 1, we obtain that the system identification problem for linear systems with isotropic
noise has polynomial sample complexity. The result can be broadened to the more general case of direct
excitation, where the covariance is lower bounded by HH ′ + BB′ � σ2wIn, for some σw > 0, as the
following theorem states.

Theorem 1 (Directly-excited). Consider the class Cn of directly-excited systems S = (A,B,H) ∈ Rn×(n+p+r)
such that Assumption 1 is satisfied with covariance HH ′ +BB′ � σ2wIn, for some σw > 0. The class Cn
is poly−learnable under the least squares system identification algorithm with white noise input signals
uk ∼ N (0, Ip).

Proof. It follows as a special case of Theorem 4 for controllability index κ = 1.

Directly excited systems includes fully-actuated systems (number of inputs equal to the number of states
p = n), or systems with isotropic noise as special cases. However, having direct excitation might not always
be the case. The combined noise and input matrices might be rank-deficient. For example, we might have
actuation noise as in:

xt+1 = Axt +B(ut + wt).

In general, the noise might be ill-conditioned (zero across certain directions), while it might be physically
impossible to actuate every state of the system. We call such systems underactuated or under-excited. It might
still be possible to identify underactuated systems, e.g. if the pair (A,

[
H B

]
) is controllable. However,

as we prove in the next section, the identification difficulty might increase dramatically.
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4 Exp-hard system classes

In this section, we show that there exist common classes of linear systems which are impossible or hard to
identify with a finite amount of samples. As we will see, this can happen when systems are under-actuated
and under-excited. When only a limited number of system states is directly driven by inputs (or excited by
noise) and the remaining states are only indirectly excited, then identification can be inhibited.

4.1 Controllable systems with infinite sample complexity

For presentation simplicity, let us assume that there are no exogenous inputs B = 0. Similar results also hold
when B 6= 0–see Remark 1. To fully identify the unknown matrix A, it is necessary that the pair (A,H) is
controllable. Furthermore, let’s assume that the noise is meaningful, that is σmin(H) ≥ σ for some σ > 0.
However, controllability of (A,H) and σmin(H) ≥ σ are not sufficient to ensure system identification from
a finite numer of samples. The following, perhaps unsurprising theorem, shows that for this class of linear
systems, the worst-case sample complexity is infinite.

Theorem 2 (Controllability is not sufficient for finite sample complexity). Consider the class Cn of systems
S = (A,H) ∈ Rn×(n+r) such that Assumption 1 is satisfied with (A,H) controllable, and σmin(H) ≥ σ for
some σ > 0. For any system identification algorithm the sample complexity is infinite: there exist a failure
probability 0 ≤ δ < 1 and a tolerance ε > 0 such that we cannot achieve

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ

with a finite number of samples N .

Theorem 2 clearly shows that we may need stronger notions of controllability, as done in Section 4.2, in
order to find classes of systems whose sample complexity is finite. The proof of Theorem 2 uses tools from
minimax theory [13]. Adapting these tools in our setting results in the following.

Lemma 2 (Minimax bounds). Let Cn be a class of systems. Consider a confidence 0 < δ < 1 and an
accuracy parameter ε > 0. Denote by S1, S2 ∈ Cn any pair of two systems with A1, H1, A2, H2 the
respective unknown matrices, such that ‖A1 − A2‖ ≥ 2ε. Let KL(PS1 ,PS2) be the Kullback-Leibler
divergence between the probability distributions of the data when generated under S1, S2 respectively. Then
for any identification algorithm

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ

holds only if

KL(PS1 ,PS2) ≥ log
1

3δ
, (6)

for all such pairs S1, S2 ∈ Cn.

Proof. Let S1, S2 be any pair satisfying the conditions. We trivially have that:

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ
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only if
sup

S∈{S1,S2}
PS(‖A− ÂN‖ ≥ ε) ≤ δ.

The remaining proof is identical to [13, Proposition 2], where we replaced constant 2.4 with 3 for simplicity
and we did not expand the expression for KL(PS1 ,PS2) explicitly (term EA(Lt) in [13]).

Intuitively, to find difficult learning instances we construct systems which are sufficiently separated
(2ε away). Meanwhile, the systems should be similar enough to generate data with as indistinguishable
distributions as possible (small KL divergence). If the system is hard to excite, then the distributions of the
states will look similar under many different matrices A, leading to smaller KL-divergence. Unless we bound
the pair (A,H) away from uncontrollability, it might be impossible to satisfy (6) for all pairs of systems with
a finite number of samples. For example consider:

A =

 0 α 0
0 0 β
0 0 0

 , H =

 1 0
0 0
0 1

 ,
It requires an arbitrarily large number of samples to learn α if the coupling β between xt,2 and xt,3 is
arbitrarily small. The distribution of xt,1 remains virtually the same as we perturb α, since the state xt,2 is
under-excited for small β.

4.2 Robustly controllable systems can be exp-hard

Theorem 2 implies that we need to bound the system away from uncontrollability in order to obtain non-trivial
sample complexity bounds. In order to formulate this, we review the notion of distance from uncontrollability,
which is the norm of the smallest perturbation that makes (A,H) uncontrollable.

Definition 3 (Distance from uncontrollability [34]). Let (A,H) ∈ Rn×(n+r) be controllable. Then, the
distance from uncontrollability is given by:

d(A,H) , inf
{
‖
[

∆A ∆H
]
‖2 :

(A+ ∆A,H + ∆H) uncontrollable} ,
(7)

where perturbations (∆A,∆H) ∈ Cn×(n+r) are complex.

Let us now consider linear systems that are robustly controllable. That is, classes of controllable linear
systems whose distance from uncontrollability is lower bounded. The lower bound is allowed to degrade
gracefully (polynomially) with the system dimension n.

Assumption 2 (Robust Controllability). Assume that system (A,H) is robustly controllable, that is (A,H) ∈
Rn×(n+m) is µ-away from uncontrollability:

d(A,H) ≥ µ, (8)

for some positive µ ≥ 0, with µ−1 ≤ poly(n).

Assumption 2 is not restrictive as long as we allow the bound to degrade with the dimension. Common
systems like the n−th order integrator have distance that degrades linearly with n–see Lemmas B.1, B.2
in the Appendix. However, even for system classes that satisfy Assumption 2, the next theorem shows that
system identification can be exp-hard.
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Theorem 3 (Exp(n)-hard classes). Consider the set Cn of systems S = (A,H) such that Assumptions 1, 2
are satisfied with d(A,H) ≥ µ = 8(n+ 1)−1. Then, for any system identification algorithm A the sample
complexity is exponential in the state dimension n. There exist a confidence 0 ≤ δ < 1 and a tolerance ε > 0
such that

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ

is satisfied only if

N ≥ 4n−3

3ε2
log

1

δ
.

Theorem 3 shows that even for robustly controllable classes of linear systems satisfying Assumptions 1, 2,
any system identification algorithm will have worst-case sample complexity that depends exponentially on
the system dimension n. The proof of Theorem 3 is based once more on minimax theory used in Lemma 2.

The reason for this learning difficulty is due to the need for indirect excitation. Consider, for example,
chained systems, where every state indirectly excites the next one. If the states are weakly-coupled, then
the exploratory signal (noise or input) attenuates exponentially fast along the chain. As a concrete example,
consider the following system for ρ < 0.5:

A =


ρ ρ 0 · · · 0 0
0 ρ ρ · · · 0 0

. . .
0 0 0 · · · ρ ρ
0 0 0 · · · 0 ρ

 , H =

 1 0
...

...
0 ρ

 (9)

which satisfies Assumptions 1, 2. Matrix A has a chained structure with weak coupling between the states.
Noise can only excite states xt,1, xt,n directly. Until the exploratory noise signal reaches xt,2 it decreases
exponentially fast with the dimension n. As a result, it is difficult to learn A12 due to lack of excitation.
In terms of Lemma 2, the distribution of xt,1 will remain virtually the same if we perturb A12 since xt,2 is
under-excited.

Remark 1 (Exogenous inputs). When B 6= 0 similar results hold but with an additional interpretation.
Consider system (9) but with H = e1, B = ρen. Then, if we apply white-noise input signals we have two
possibilities: i) the control inputs have bounded energy per Assumption 1 but we suffer from exponential
sample complexity or ii) we obtain polynomial sample complexity but we allow the energy of the inputs to
increase exponentially with the dimension. From this alternative viewpoint a system is hard to learn if it
requires exponentially large control inputs.

Remark 2. The constant 8 in 8(n+ 1)−1 in the statement of Theorem 3 is not important in our analysis. We
could modify Theorem 3 so that 8 can be replaced by any smaller constant. In particular, we can decrease
8 by considering systems with smaller chains, which still have exponential sample complexity. Instead of
system (9), we can consider for example the following. Let Jbn/mc(1) be the Jordan block of size bn/mc, for
some m, and eigenvalue 1 and define

A =

[
ρJbn/mc(1) 0

0 In−bn/mc

]
, H =

[
e1 ρebn/mc ebn/mc+1 · · · en

]
.

Notice that we reduced the size of the chain by 1/m and we added n − bn/mc directly excited states. By
increasing m, we can achieve a larger distance to uncontrollability (constant smaller than 8). However, we
will still have exponential sample complexity of the order of at least bn/mc, based on the length of the chain.
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5 Controllability index affects learnability

Structural system properties of an underactuated system, such as the chained structure in the dynamics, can
be critical in making system identification easy or hard. This poses novel questions about understanding how
system theoretic properties affect system learnability as defined in Definitions 1 and 2. We begin a new line
of inquiry by characterizing how the controllability index κ, a critical structural system property, affects the
statistical properties of system identification. A brief review of the concept of controllability index can be
found in the Appendix. It can be viewed as a structural measure of whether a system is directly actuated or
underactuated resulting in long chains. The following theorem, is the first result connecting the controllability
index with sample complexity bounds.

Theorem 4 (Controllability index-dependent upper bounds). Consider the set Cn of systems S = (A,B,H)
such that Assumption 1 is satisfied. Let Assumption 2 be satisfied for the all pairs (A,

[
H B

]
). Further-

more assume that the controllability index of all pairs (A,
[
H B

]
) in the class is upper bounded by κ.

Then, under the least squares system identification algorithm and white noise inputs uk ∼ N (0, Ip), we
obtain that

sup
S∈Cn

PS(‖A− ÂN‖ ≥ ε) ≤ δ

is satisfied for
N ≥ polyκ(n,M)poly(ε−1, log 1/δ).

Theorem 4 formalizes our intuition since the controllability index is the length of the chain from input
excitation towards the most distant state in the chain. Hence, systems with a large number of inputs (or noise)
and small controllability index (κ << n) are easy to identify. The directly excited case with isotropic noise,
presented in Theorem 1, is a special case corresponding to a controllability index κ = 1, recovering prior
polynomial bounds.

The implications of Theorems 3, 4 illustrate the impact controllability properties have on system
learnability–see Figure 4. Classes of systems with small controllability index O(1) have polynomial sample
complexity. Classes where the index grows linearly Ω(n) can be exponentially hard in the worst case in
general. There might still be subclasses of systems with large controllability indexes which nonetheless can
be identified with a polynomial number of samples. However, we cannot provide any guarantees without
further assumptions.

The proof of Theorem 4 crucially depends on the following system theoretic result that bounds the least
singular value of the controllability Gramian (a quantitative measure of controllability) with the controllability
index (a structural measure of controllability).

Theorem 5 (Controllability gramian bound). Consider a system (A,H) that satisfies Assumptions 1, 2. Let
κ be its controllability index. Then, the least singular value of the gramian Γκ is lower bounded by:

σ−1min(Γκ) ≤ polyκ(M/µ).

The above theorem is of independent interest, since it states that the controllability index rather than
the dimension n controls how fast the controllability Gramian degrades. While the above bound may be
loose in general, it gives us qualitative insights about how system structure affects the hardness of input
excitation and system identification. Our proof exploits the so-called “staircase” (or Hessenberg) canonical
representation (A.2) of state space systems [35]–see Appendix. The main idea is that if a system is robustly
controllable then the coupling between the states is bounded away from zero. Hence, we can avoid the
essentially uncontrollable systems of Theorem 2 which lead to infinite sample complexity.
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6 Simulations

We study three simulation scenarios to illustrate the qualitative implications of our results. In the first two
cases, we verify that the sample complexity of the least squares algorithm can indeed grow exponentially with
the dimension. In the third case, we investigate how the controllability index affects the sample complexity.
In all cases, we perform Monte Carlo simulations to compute the empirical mean error ‖A− ÂN‖2 and we
count the number of samples required to have error less than ε, for some ε > 0. For numerical stability in the
least squares estimator (4) we used a regularization term (ridge regression) with coefficient 0.001.

In the first example in Section 2, Figure 1, we used 1000 Monte Carlo iterations to approximate the
empirical average. We modeled the noise as gaussian with wk ∼ N (0, 0.5) and used white noise inputs
uk ∼ N (0, 10). The sample complexity of the least squares algorithm seems to be exponential with the
dimension. In Section 4, we showed that such systems exhibit exponential sample complexity due to the
weak coupling between the states.

In the second example, we study the behavior of Jordan blocks actuated from the last state. Let Jn(λ)
be a Jordan block of dimension n and eigenvalues all λ. We consider the system A = Jn(λ), H = 0.1en,
B = 5en, which means we excite directly only state xt,n. We repeat the same experiment as before for
1000 Monte Carlo simulations with wk, uk ∼ N (0, 1) and for ε = 0.005. In Figure 2, it seems that the
complexity of the least squares algorithm is also exponential when 0 < λ < 1. In this case the coupling
between the states is not weak. However, certain subspaces might still be hard to excite. As λ approaches the
unit circle eigenvalue 1 the complexity improves. For λ = 1, after n = 9 Matlab returned inaccurate results
as the condition number of the data becomes very large. Hence, we do not report any results beyond n = 9.
However, based on simulations for small n it might be possible that the system can be learned by only a
polynomial number of samples. The intuition might be that in this case instability helps with excitation [9]. It
is an open problem to prove or disprove exponential lower bounds for the Jordan block when 0 < λ < 1.
Similarly, we leave it as an open problem to prove or disprove polynomial upper bounds for the Jordan block
when λ = 1.

5 6 7 8 9 10 11 12 13101

102

103

dimension n

sa
m

pl
es
N

λ=0.5
λ=0.6
λ=0.7
λ=1

Figure 2: Sample complexity of identifying the Jordan block of size n and eigenvalues all λ, actuated from
the last state. The figure shows the minimum number of samples N such that the (empirical) average error
E‖A − ÂN‖2 is less than 0.005. The sample complexity appears to be increasing exponentially with the
dimension n for λ < 1. For λ = 1, Matlab returns inaccurate results for n ≥ 10 since the condition number
of the data is very large. However, in the regime 5 ≤ n ≤ 9, the complexity seems to be polynomial,
increasing in 5 sample increments.

In the third example, we consider the Jordan block A = Jn(0.5) with noise H = 0.1en. We start
from B = 5en and we gradually add more exogenous inputs to decrease the controllability index: we

11



5 7 9 11 13 15 17 19

102

103

dimension n
sa

m
pl

es
N

κ=n
κ = dn/2e
κ=2

Figure 3: Sample complexity of identifying the Jordan block Jn(0.5) of size n and eigenvalues all 0.5, for
different values of the controllability index. The figure shows the minimum number of samples N such
that the (empirical) average error E‖A − ÂN‖2 is less than 0.005. The sample complexity appears to be
increasing exponentially with the dimension n for κ = Θ(n). For κ = 2, the sample complexity is much
smaller and increases polynomially.

try B = 5
[
en edn/2e

]
and B = 5

[
en en−2 . . .

]
which correspond to indices κ = dn/2e and

κ = 2 respectively. We repeat the same experiment as before for 1000 Monte Carlo simulations with
wk, uk ∼ N (0, 1) and for ε = 0.005. In Figure 3, it seems that the sample complexity remains exponential
when κ = dn/2e. However, when κ = 2 there is a phase transition and the sample complexity becomes
polynomial with the dimension.

7 Conclusion

The results of this paper paint a broader and more diverse landscape about the statistical complexity of
learning linear systems, summarized in Figure 4 according to the controllability index κ of the considered
system class. While statistically easy cases that were previously known are captured by Theorem 1, we also
showed that hard system classes exist (Theorem 3). By exploiting structural system theoretic properties, such
as the controllability index, we broadened the class of easy to learn linear systems (Theorem 4).

Figure 4: Sample complexity classes for linear systems. according to their controllability index.

Our results pose numerous future questions for exploiting other system properties (e.g. observability)
for efficiently learning classes of partially-observed linear systems or nonlinear systems. It remains an
open problem to prove whether or not the n−th order integrator is poly-learnable as discussed in Section 6.
Similarly, it is an open problem to prove whether or not the Jordan block of size n and eigenvalues all

12



0 < λ < 1 has exponential complexity. Finally, the results of this paper might have ramifications for control,
for example learning the linear quadratic regulator, as well as reinforcement learning.
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[26] A. Carè, B. C. Csáji, M. C. Campi, and E. Weyer, “Finite-sample system identification: An overview
and a new correlation method,” IEEE Control Systems Letters, vol. 2, no. 1, pp. 61–66, 2018.

[27] B. Recht, “A tour of reinforcement learning: The view from continuous control,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp. 253–279, 2019.

[28] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang, “Is a good representation sufficient for sample
efficient reinforcement learning?” arXiv preprint arXiv:1910.03016, 2019.

[29] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire, “Contextual decision
processes with low Bellman rank are PAC-learnable,” in International Conference on Machine Learning.
PMLR, 2017, pp. 1704–1713.

[30] G. Baggio, V. Katewa, and F. Pasqualetti, “Data-driven minimum-energy controls for linear systems,”
IEEE Control Systems Letters, vol. 3, no. 3, pp. 589–594, 2019.

[31] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[32] C. Dann, T. Lattimore, and E. Brunskill, “Unifying PAC and regret: Uniform PAC bounds for episodic
reinforcement learning,” arXiv preprint arXiv:1703.07710, 2017.

[33] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge University Press, 2012.

14



[34] R. Eising, “Between controllable and uncontrollable,” Systems & Control Letters, vol. 4, no. 5, pp.
263–264, 1984.

[35] P. M. V. Dooren, “Numerical linear algebra for signals systems and control,” Draft notes prepared for
the Graduate School in Systems and Control, 2003.

[36] D. Kulkarni, D. Schmidt, and S.-K. Tsui, “Eigenvalues of tridiagonal pseudo-Toeplitz matrices,” Linear
Algebra and its Applications, vol. 297, no. 1, pp. 63–80, 1999.

A Controllability-related concepts

We briefly review the concept of controllability and other related concepts. We consider the pair (A,H), but
the same definitions hold also for (A,B). The controllability matrix of (A,H) is defined as

Ck(A,H) ,
[
H AH · · · Ak−1H

]
, k ≥ 1.

The pair (A,H) is controllable when the controllability matrix Cn(A,H) has full column rank n. The
controllability Gramian at time k is defined as :

Γk(A,H) , Ck(A,H)C′k(A,H) =

k−1∑
i=0

AiHH ′(A′)i.

If H is not a column matrix, the full column rank condition might be satisfied earlier for some k ≤ n.
The minimum time that we achieve controllability is the controllability index:

κ(A,H) , min {k ≥ 1 : rank(Ck(A,H)) = n} . (A.1)

It is the lag between the time the disturbance wt is applied and the time t+ κ by which we see the effect of
that disturbance in all states. This lag is non-trivial if the number of disturbances r < n is smaller than the
number of states; in this case we call the system underactuated.

Based on the fact that the rank of the controllability matrix at time κ is n, we can show that the pair
(A,H) admits the following canonical representation, under a unitary similarity transformation [35].

Proposition A.1 (Staircase form). Consider a controllable pair (A,H) with controllability index κ and
controllability matrix Ck, k ≥ 0. There exists a unitary similarity transformationU such thatU ′U = UU ′ = I
and:

U ′H =
[
H ′1 0 · · · 0

]′

U ′AU =



A1,1 A1,2 · · · A1,κ−1 A1,κ

A2,1 A2,2 · · · A3,κ−1 A2,κ

0 A3,2 · · · A3,κ−1 A3,κ

0 0 · · · A4,κ−1 A4,κ
...

...
0 0 · · · Aκ,κ−1 Aκ,κ


,

(A.2)

where Ai,j ∈ Rri×rj are block matrices, with ri = rank(Ci)− rank(Ci−1), r1 = r, H1 ∈ Rr×r. Moreover,
the matrices Ai+1,i have full row rank rank(Ai+1,i) = ri+1 and the sequence ri is decreasing.
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The above representation is useful as it captures the coupling between the several sub-states via the
matrices Ai+1,i. If one of these matrices Ai+1,i is close to zero then the system will be close to being
uncontrollable. On the other hand, if a system is robustly controllable then these matrices are bounded away
from being row-rank deficient. Since the similarity transformation is unitary it does not affect properties of
the system like the minimum singular value of the controllability Gramian. The proof of Theorem 5 exploits
the above ideas–see Section G for more details.

B Distance from uncontrollability properties

In this section we review properties of the distance from uncontrollability. The main focus is to prove that
standard systems, like the integrator, have distance to uncontrollability which degrades linearly with the
dimension n.

Lemma B.1. Let 0 < ρ < 1 and consider the perturbed n−th order integrator:

A = ρ


1 1 0 · · · 0 0
0 1 1 · · · 0 0

. . .
0 0 0 · · · 1 1
0 0 0 · · · 0 1

 , H = ρ

 0
...
1



The distance from uncontrollability is given by

d(A,H) = ρ sin

(
π

n+ 1

)
. (B.1)

As a result the distance degrades linearly:

ρ
2

n+ 1
≤ d(A,H) ≤ ρ π

n+ 1
, (B.2)

for n ≥ 1.

Proof. The proof follows from the fact that the distance form uncontrollability is equivalently given by the
formula [34]:

d(A,H) = inf
s∈C

σmin(
[
A− sI H

]
), (B.3)

and results about the eigenvalues of Toeplitz matrices [36].
In more detail, let ∗ denote the complex conjugate. We have:[

A− sI H
] [

A− sI H
]∗

= Ts,

where

Ts =


|ρ− s|2 + ρ2 ρ(ρ− s∗) 0 0

ρ(ρ+ s∗) |ρ− s|2 + ρ2 0 0
. . .

0 0 |ρ− s|2 + ρ2 ρ(ρ− s∗)
0 0 ρ(ρ+ s∗) |ρ− s|2 + ρ2

 (B.4)
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is a tri-diagonal Toeplitz matrix, with all diagonal elements equal to |ρ− s|2 + ρ2, all superdiagonal elements
equal to ρ(ρ−s∗) and subdiagonal elements equal to ρ(ρ+s∗). Based on [36, Th 2.2], the smallest eigenvalue
of T is equal to:

σmin(Ts) = |ρ− s|2 + ρ2 − 2 |ρ| |ρ− s| cos(π/(n+ 1)).

The above quantity is minimized for ŝ = ρ + |ρ| cos(π/(n + 1)). Hence, we can compute the distance to
uncontrollability:

d(A,H) =
√
σmin(Tŝ) = |ρ| sin(π/(n+ 1)).

Finally (B.2) follows from (B.1) using the elementary calculus inequality

2x

π
≤ sinx ≤ x, for 0 ≤ x ≤ π/2,

which completes the proof.

Lemma B.2. System (9) is µ-bounded away from uncontrollability with µ−1 ≤ ρ−1(n+ 1).

Proof. Let ∗ denote the complex conjugate. Then we have:[
A− sI H

] [
A− sI H

]∗
= Ts + e1e

′
1 � Ts

where Ts is a tridiagonal Toeplitz matrix defined above in (B.4). Now the proof is identical to the proof of
Lemma B.1 but we have inequality instead of equality:

d(A,H) ≥
√
σmin(Tŝ) = |ρ| sin(π/(n+ 1)) ≥ 2 |ρ| /(n+ 1) ≥ |ρ| /(n+ 1).

Lemma B.3 (Triangle inequality). Let d(A,H) be the distance to uncontrollability for some matrices
A ∈ Rn×n, H ∈ Rr×n and let ‖Â−A‖2 ≤ ε < d(A,H) for some matrix Â ∈ Rn×n. Then:

d(Â,H) ≥ d(A,H)− ε. (B.5)

Proof. Assume that d(Â,H) < d(A,H) − ε and let
[

∆Â ∆Ĥ
]

be the perturbation such that (Â +

∆Â,H + ∆Ĥ) is uncontrollable with d(Â,H) = ‖
[

∆Â ∆Ĥ
]
‖2. Then, we can define a perturbation

for the original pair (A,H) that contradicts the definition of d(A,H):

∆A = A− Â+ ∆Â, ∆H = ∆Ĥ.

The perturbation makes (A,H) uncontrollable and by the triangle inequality, it has norm ‖
[

∆A ∆H
]
‖2 ≤

d(Â,H) + ε < d(A,H). Since this is impossible (B.5) holds.

C Proof of Lemma 1

In this section, we establish upper bounds on the gramian matrices Γk. Contrary to previous approaches we
avoid using the Jordan form of matrix A. We do not want our bounds to depend on the condition number
of the Jordan transformation which can be ill-posed and badly conditioned. Instead, we should use stable
transformations like the Schur decomposition.
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Proof. When n = 1 the proof is immediate. So let n ≥ 2. Consider the Schur triangular form [33, Chapter
2.3] of A:

A = UDU∗,

where D is upper triangular, U is unitary, and ∗ denotes complex conjugate. Let Λ be the diagonal part of D,
which contains all eigenvalues of A as elements. Notice that D − Λ is upper triangular with zero diagonal
elements, while Λ is diagonal. Thus, any product of the form

Λt0(D − Λ)s1Λt1 · · · (D − Λ)skΛtk = 0, if s1 + · · ·+ sk ≥ n.

where s1, . . . , sk and t0, t1, . . . , tk are two collections of integers, for some k ≥ 1. Now we can simplify the
expression:

Dk = (Λ +D − Λ)k =
∑

d1,...,dk∈{0,1}k
Fd1 · · ·Fdk

=
∑

d1,...,dk∈{0,1}k
d1+···+dk≤n−1

Fd1 · · ·Fdk ,

where F1 = D − Λ, F0 = Λ. Notice that ‖D − Λ‖2 ≤ ‖D‖2 = ‖A‖2 ≤ M , where the first inequality
follows from the fact that D − Λ is a submatrix if D. Since the eigenvalues of A are inside or on the unit
circle, we have

∥∥Λt
∥∥
2
≤ 1, for all t ≥ 0. Hence, by a counting argument

∥∥∥Ak∥∥∥
2

=
∥∥∥Dk

∥∥∥ ≤ n−1∑
t=0

(
k

t

)
max

{
M t, 1

}
≤

n−1∑
t=0

(
k

t

)
max

{
Mn−1, 1

}
.

To conclude, we use the known bound [6, Exercise 0.0.5]:

n−1∑
t=0

(
k

t

)
≤
(

ek

n− 1

)n−1

Since we obtained a bound on the powers of matrix A, we can immediately obtain an upper bound on the
Gramian as a corollary.

Corollary C.1. Let A ∈ Rn×n have all eigenvalues inside or on the unit circle, with ‖A‖2 ≤ M . Let
H ∈ Rn×r, r ≤ n with ‖H‖2 ≤M . Then, the gramian Γk(A,H) is upper bounded by:

‖Γk(A,H)‖2 ≤ e
2n−2k2n−1 max

{
M2n, 1

}
(C.1)
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D Proof of Theorem 2

Let β be any non-zero number. Fix an accuracy parameter ε > 0 and a confidence 0 < δ < 1. Consider the
systems:

A1 =

 0 0 0
0 0 β
0 0 0

 , A2 =

 0 2ε 0
0 0 β
0 0 0

 ,
H1 = H2 =

[
e1 e3

]
.

Both systems are controllable and belong to the class Cn for any non-zero β 6= 0. However, they are arbitrarily
close to uncontrollability for small β. Let fSi(x0, . . . , xN ) denote the probability density function of the
distribution of the data under system Si, i = 1, 2. Then the log-likelihood ratio under S1, S2 is:

LN = log
fS1(x0, . . . , xN )

fS2(x0, . . . , xN )
.

Due to the Markovian structure of the linear system, we can write fSi(x0, . . . , xN ) =
∏N
k=1 fSi(xk|xk−1),

for i = 1, 2. Moreover, due to the structure of the dynamical systems:

fSi(xk|xk−1) = fSi(xk,1|xk−1,2)fSi(xk,2, xk,3|xk−1,2xk−1,3).

However, systems A1, A2 have identical distributions for xk,2 and xk,3. As a result, the log-likelihood ratio
becomes:

LN =
N∑
k=1

log
fS1(xk,1|xk−1,2)
fS2(xk,1|xk−1,2)

.

The KL divergence can now be computed:

KL(PS1 ,PS2) = ES1LN

= ES1

N∑
k=1

ES1

(
log

fS1(xk,1|xk−1,2)
fS2(xk,1|xk−1,2)

|Fk−1
)

= ES1

N∑
k=1

KL(N (0, 1),N (2εxk−1,2, 1))

= ES1

N∑
k=1

(2εxk−1,2)
2/2 ≤ 2ε2NΓN,22(A,H),

where we used ES1x
2
k−1,2 = Γk−1,22 ≤ ΓN,22 along with the fact that the KL-divergence between two scalar

Gaussians is:
KL(N (µ1, 1),N (µ2, 1)) = (µ1 − µ2)2/2

A simple computation shows that Γk,22 = b2, for all k ≥ 1. Then, it follows from Lemma 2 that (2) holds
only if:

N ≥ 1

β22ε2
log

1

3δ
.

However β is arbitrary, which implies that (2) holds only if:

N ≥ sup
β 6=0

1

β24ε2
log

1

3δ
=∞.
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E Proof of Theorem 3

Consider system (9) with ρ = 1/4 and the perturbed system Ã = A+ 2εe1e
′
2, H̃ = H , where we modify

A12 by 2ε. Both pairs (A,H), (Â, Ĥ) are controllable. From Lemma B.2, we obtain that d(A,H) ≥
(4(n + 1))−1 ≥ (8(n + 1))−1. Fix an ε ≤ (16(n + 1))−1. Then, from Lemma B.3, we also get that
d(Â, Ĥ) ≥ d(A,H)− 2ε ≥ (8(n+ 1))−1. Hence, both systems belong to the class Cn.

Define S1 = (A,H), S2 = (Â, Ĥ). Following the same arguments as in the proof of Theorem 2, the KL
divergence of the distribution of the data under A and Â is equal to

KL(PS1 ,PS2) = ES1LN

= ES1

N∑
k=1

ES1

(
log

fS1(xk,1|xk−1,2)
fS2(xk,1|xk−1,2)

|Fk−1
)

= ES1

N∑
k=1

KL(N (ρxk−1,2, 1),N ((ρ+ 2ε)xk−1,2, 1))

= ES1

N∑
k=1

(2εxk−1,2)
2/2 ≤ 2ε2NΓN,22(A,H).

From Lemma E.1, we obtain the exponential decay bound:

ΓN,22(A,H) ≤ 4−n+2/3.

Finally, from Lemma 2, equation (2) holds only if:

N ≥ 1

2ε2ΓN,22(A,H)
log

1

3δ
≥ 4n−2

6ε2
log

1

3δ
.

Lemma E.1. Consider system (9) with ρ < 1/2. Then

Γk,22(A,H) ≤ (2ρ)2n−2/(1− 4ρ2).

Proof. Notice that e′2A
sH = 0 for all s ≤ n− 2 and ‖A‖ ≤ 2ρ < 1. Hence,

e′2Γk(A,H)e2 ≤
k∑

s=n−1
e2A

sQA
′se′2

≤
∞∑

s=n−1
(2ρ)2s = (2ρ)2n−2/(1− 4ρ2).

F Proof of Theorem 4

By Γk = Γk(A,H) + Γk(A,B) we denote the Gramian under both H,B. Define also the sigma-algebra:

F̄k = σ(w0, u0, . . . , wk, uk).

We will apply Theorem 2.4 in [9] to the combined state-input vectors with three modifications since the noise
is not isotropic. First, we compute the sub-Gaussian parameter of the noise.
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Definition 4. A zero mean random vector w ∈ Rr×1 is called σ2−sub-Gaussian with respect to a sigma
algebra F if for every unit vector u ∈ Rr×:

E
(
esu
′w|F

)
≤ es2σ2/2.

From the definition, it follows that the non-isotropic Gaussian vectorHwk is sub-Gaussian with parameter
‖H‖22.

Lemma F.1. Let wk ∈ Rr×1 be 1-sub-Gaussian with respect to F̄k−1. Then Hwk is ‖H‖22−sub-Gaussian
with respect to F̄k−1.

Proof. Let u ∈ Rr×1 be a unit vector. Then:

E
(
esu
′Hwk |F̄k−1

)
= E

(
e
s‖u′H‖ u′H

‖u′H‖wk |F̄k−1
)

≤ es2‖u′H‖
2
2/2 ≤ es2‖H‖

2
2/2

Second, define yk =
[
x′k u′k

]′. It follows that for all j ≥ 0 and all unit vectors v ∈ R(n+p)×1, the
following small-ball condition is satisfied:

1

2κ

2κ∑
t=0

P(
∣∣v′yt+j∣∣ ≥√v′Γsbv|F̄j) ≥

3

20
, (F.1)

where

Γsb =

[
Γκ 0
0 Ip

]
. (F.2)

Equation (F.1) follows from the same steps as in Proposition 3.1 in [9] with the choice k = 2κ.
Finally, we determine an upper bound Γ̄ for the gram matrix

∑N−1
t=0 yty

′
t. Using a Markov inequality

argument as in [9, proof of Th 2.1], we obtain that

P(

N−1∑
t=0

yty
′
t � Γ̄) ≥ 1− δ,

where

Γ̄ =
n+ p

δ
N

[
ΓN 0
0 Ip

]
Now we can apply Theorem 4.2 of [9]. With probability at least 1− 3δ we have ‖A− ÂN‖ ≤ ε if:

N ≥ poly(n, log 1/δ,M)

ε2σmin(Γκ)
log det(Γ̄Γ−1κ ),

where we have simplified the expression by including terms in the polynomial term. Based on Lemma 1 and
Theorem 5, we can bound the right-hand side:

poly(n, log 1/δ,M)

ε2σmin(Γκ)
log det(Γ̄Γ−1κ ) ≤ poly(n, ε−1, log 1/δ,M)poly

(
M

µ

)κ
logN

≤ poly(n, ε−1, log 1/δ,M)poly (M,n)κ logN,
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where we used the fact that µ−1 ≤ poly(n). Hence, it is sufficient to have:

N ≥ poly
(
n, ε−1, log 1/δ,M

)
poly (M,n)κ logN.

To obtain the final polynomial bound, we need to remove the logarithm of N . It is sufficient to apply the
inequality:

N ≥ c logN if N ≥ 2c log 2c,

for c > 0 which follows from elementary calculus.

G Proof of Theorem 5

Our goal is to upper bound the norm of the Moore-Penrose pseudo-inverse ‖C†κ‖ =
√
σmin(Γκ), where the

equality follows from the SVD decomposition and the definition of the gramian. Towards proving the result,
we will work with the staircase form (A.2). First, we show that if the system is µ-away from uncontrollability,
then the subdiagonal matrices in the staircase form are bounded away from zero.

Lemma G.1 (Staircase form lower bound). Let (A,H) ∈ Rn×(n+r) be controllable and let Assumption 2
hold. Consider the staircase form of (A,H), with Ai+1,i the subdiagonal matrices, for i = 1, . . . , κ − 1,
where κ is the controllability index. Then, we haveAi+1,iA

′
i+1,i � µ2Iri+1 for all i = 1, . . . , κ−1. Moreover,

H1H
′
1 � µ2Ir.

Proof. Let (Â, Ĥ) be the staircase form of (A,H) under the unitary similarity transformation U . First,
we show that the controllability metric is invariant to unitary transformations. Denote ∆Â = U∗∆AU ,
∆Ĥ = U∗∆H . Then:

min
{
‖
[

∆A ∆H
]
‖2 : (A+ ∆A,H + ∆H) unc.

}
= min

{
‖
[

∆Â ∆Ĥ
]
‖2 : (A+ ∆A,H + ∆H) unc.

}
= min

{
‖
[

∆Â ∆Ĥ
]
‖2 : (Â+ ∆Â, Ĥ + ∆Ĥ) unc.

}
where the first equality follows from ‖

[
∆A ∆H

]
‖2 = ‖

[
U∗∆AU U∗∆H

]
‖2. The second equality

follows from the fact that controllability is preserved under similarity transformations As a result, d(Â, Ĥ) =
d(A,H) ≥ µ.

Note that Ai+1,i ∈ Rri+1×ri . Hence, it is sufficient to show that σri+1(Ai+1,i) ≥ µ, where σri+1 denotes
the ri+1 smallest singular value. Assume that the opposite is true σri+1(Ai+1,i) < µ. We will show that this
contradicts the fact that (Â, Ĥ) is away from uncontrollability: d(Â, Ĥ) = d(A,H) ≥ µ. Let u and v be
the singular vectors in the Singular Value Decomposition of Ai+1,i corresponding to σri+1 . Let ∆Ai+1,i ,

−σri+1(Ai+1,i)uv
′. Then Ai+1,i + ∆Ai+1,i is rank deficient. Now let ∆Â be zero everywhere apart from

the block ∆Ai+1,i. Then, we have that (Â+ ∆Â, Ĥ) is uncontrollable, with ‖∆Â‖2 < µ ≤ d(Â, Ĥ), which
is impossible. The proof for H1 is similar.

The above result allows us to work with the staircase form (A.2), which has a nice triangular structure.
In fact the controllability matrix is block-triangular and we can upper-bound its least singular value using a
simple recursive bound. Since the least singular value of the Gramian is invariant to similarity transformations,
we will now assume that the system (A,H) is now already in form (A.2) with U = I . Let us define some
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auxiliary matrices that will help us prove Theorem 5. With Ãk, for k ≤ κ we denote the submatrix of A
when we keep the k-upper left block matrices in (A.2) and we delete the remaining columns and rows, e.g.:

Ã2 =

[
A1,1 A1,2

A2,1 A2,2

]
, Ã3 =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

0 A3,2 A3,3

 , . . .
Similarly, we define the submatrices H̃k where we keep only the upper k blocks of the matrix H:

H̃1 = H1, H̃2 =
[
H ′1 0

]′
, . . . .

Finally, define the upper-left controllability submatrices C̃k:

C̃k =
[
H̃k ÃkH̃k . . . Ãk−1k H̃k

]
∈ R

∑k
i=1 ri×(kr). (G.1)

The benefit of working with the above matrices is that they are block upper-triangular. For example:

C̃1 = H1, C̃2 =

[
H1 A1,1H1

0 A2,1H1

]
, . . .

By definition Ãκ = A, H̃κ = H , and C̃κ = Cκ.

Lemma G.2 (Recursive definition of right-inverse). Assume the pair (A,K) is in the canonical represen-
tation (A.2) with U = I . Let C̃k be the upper-left part of the controllability matrix as defined in (G.1),
with k ≤ κ, where κ is the controllability index. Let Πk = H−11 A†2,1A

†
3,2 · · ·A

†
k,k−1, where † denotes the

Moore-Penrose pseudo-inverse. Then, the following inequality holds recursively:

‖C̃†k‖2 ≤ ‖C̃
†
k−1‖2 + ‖Πk‖2 + ‖C̃†k−1Ã

k−1
k−1H̃k−1Πk‖2. (G.2)

Proof. The upper-left controllability matrix C̃k, k ≤ κ has the following block triangular structure:

C̃k =
[
H̃k . . . Ãk−1k H̃k Ãk−1k H̃k

]
=

[
C̃k−1 Ãk−1k−1H̃k−1

0 Ak,k−1Ak−1,k−2 . . . H1

]
. (G.3)

Based on the above form, we can construct a right-inverse of matrix C̃k:

C̃]k ,
[
C̃†k−1 −C̃†k−1Ã

k−1
k−1H̃k−1Πk

0 Πk

]
,

which satisfies C̃kC̃]k = I . By the definition of C̃]k:

‖C̃]k‖2 ≤ ‖C̃
†
k−1‖2 + ‖Πk‖2 + ‖C̃†k−1Ã

k−1
k−1H̃k−1Πk‖2.

To conclude the proof, we invoke Lemma G.3.

Lemma G.3. Let M ∈ Rs×t be any matrix with full column rank s ≤ t. Let M ] be any right inverse of M ,
i.e. MM ] = Is. Then the following inequality is true:

‖M †‖2 ≤ ‖M ]‖2,

where M † is the Moore Penrose pseudo-inverse.

23



Proof. Notice that M(M † −M ]) = 0. As a result, we can write M ] = M † + Mnull, where Mnull is any
matrix in the null space MMnull = 0. However, the Moorse-Penrose pseudoinverse and Mnull are orthogonal

(M †)′Mnull = 0.

By orthogonality, for every x ∈ Rt×1 we have ‖M ]x‖2 =
√
‖M †x‖2 + ‖Mnullx‖2 ≥ ‖M †x‖2.

Since all coupling matrices Ak,k−1, . . . , A2,1, H1 have least singular value lower bounded by µ, the
product of their pseudo-inverses is upper bounded by:

‖Πk‖ ≤ µ−k.

So, we should expect (G.2) to grow no faster than exponentially with κ. However, the main challenge is to
control the last term in (G.2). Unless we follow a careful analysis, if we just apply the submultiplicative
property of the norm we will get bounds which are exponential with κ2 instead of κ. The idea is the following.
Since by definition C̃k−1 has full rank, then there exists an appropriate matrix Λk−1 ∈ R(k−1)r×rk such that

Ãk−1k−1H̃k−1Πk = C̃k−1Λk−1.

Then the above bound becomes:

‖C̃†k‖ ≤ ‖C̃
†
k−1‖+ µ−k + ‖Λk−1‖, (G.4)

where we used the fact that ‖C̃†k−1C̃k−1‖ ≤ 1. For the remaining proof, we need to construct such a matrix
Λk−1 and upper bound it.

Lemma G.4. Let Λk−2 ∈ R(k−2)r×rk−1 be any matrix such that:

Ãk−2k−2H̃k−2Πk−1 = C̃k−2Λk−2

There exists a matrix Λk−1 ∈ R(k−1)r×rk such that:

Ãk−1k−1H̃k−1Πk = C̃k−1Λk−1

with
‖Λk−1‖2 ≤

2 +M

µ
‖Λk−2‖2 +

M

µ
‖C̃†k−2‖2 + µ−kM. (G.5)

Proof. Part A: algebraic expression for Ãk−1k−1H̃k−1Πk. Observe that every matrix Ãk−1 includes the
previous as an upper-left submatrix:

Ãk−1 =

[
Ãk−2 A1:k−2,k−1

Ak−1,1:k−2 Ak−1,k−1

]
,

with

A1:k−1,k−1 =

 A1,k−1
...

Ak−2,k−1

 , Ak−1,1:k−2 =
[

0 · · · 0 Ak−1,k−2
]

Let also:
Qk = Ak,k−1Ak−1,k−2 · · ·H1.
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A direct computation gives:

C̃k =

 C̃k−2 Ãk−2k−2H̃k−2 Ãk−1k−2H̃k−2 +A1:k−2,k−1Qk−1
0 Qk−1 Ak−1,1:k−2Ã

k−2
k−2H̃k−2 +Ak−1,k−1Qk−1

0 0 Qk

 . (G.6)

As a result of (G.3) and (G.6),

Ãk−1k−1H̃k−1Πk =

[
Ãk−1k−2H̃k−2 +A1:k−2,k−1Qk−1

Ak−1,1:k−2Ã
k−2
k−2H̃k−2 +Ak−1,k−1Qk−1

]
Πk.

We can simplify the above expression using Qk−1Πk−1 = I and Ãk−2k−2H̃k−2Πk−1 = C̃k−2Λk−2:

Ãk−1k−1H̃k−1Πk =

[
Ãk−2C̃k−2Λk−2 +A1:k−2,k−1

Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1

]
Ã†k,k−1. (G.7)

Part B: last rows as linear combination.
Our goal is to express (G.7) as a linear combination of the columns of:

C̃k−1 =

[
C̃k−2 Ãk−2k−2H̃k−2

0 Qk−1

]
.

Since C̃k−1 has a triangular structure, we start from the last rk−1 rows of Ãk−1k−1H̃k−1Πk Exploiting the
structure of Ak−1,1:k−2, which includes many zeros we can write:

Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1

=
[

0 · · · 0 Ak−1,k−2
] [ C̃k−3 Ãk−3k−3H̃k−1

0 Ak−2,k−3Ak−3,k−4 . . . H1

]
Λk−2 +Ak−1,k−1

= Ak−1,k−2Qk−2Λk−2,k−2 +Ak−1,k−1

= Qk−1Λk−2,k−2 +Ak−1,k−1,

where Λk−2,k−2 ∈ Rr×rk−1 are the last r rows of matrix Λk−2:

Λk−2 =

 Λk−2,1
...

Λk−2,k−2

 .
Finally, we car rewrite the last rk−1 rows of Ãk−1k−1H̃k−1Πk as:

(Ak−1,1:k−2C̃k−2Λk−2 +Ak−1,k−1)Ã
†
k,k−1 = Qk−1(Λk−2,k−2 + Πk−1Ak−1,k−1)Ã

†
k,k−1 (G.8)

Part c: remaining rows.
From (G.8), we can eliminate the last rows:

Ãk−1k−1H̃k−1Πk −
[
Ãk−2k−2H̃k−2
Qk−1

]
(Λk−2,k−2 + Πk−1Ak−1,k−1)Ã

†
k,k−1

=

[
Ãk−2C̃k−2Λk−2 +A1:k−2,k−1 − Ãk−2k−2H̃k−2Λk−2,k−2 − Ãk−2k−2H̃k−2Πk−1Ak−1,k−1

0

]
Ã†k,k−1

=

[
Ãk−2C̃k−2Λk−2 +A1:k−2,k−1 − Ãk−2k−2H̃k−2Λk−2,k−2 − C̃k−2Λk−2Ak−1,k−1

0

]
Ã†k,k−1
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Notice that by the shift structure of the controllability matrix:

Ãk−2C̃k−2Λk−2 − Ãk−2k−2H̃k−2Λk−2,k−2 =
[
Ãk−2H̃k−2 . . . Ãk−2k−2H̃k−2

]
Λk−2 − Ãk−2k−2H̃k−2Λk−2,k−2

=
[
Ãk−2H̃k−2 . . . Ãk−3k−2H̃k−2 0

]
Λk−2

=
[
H̃k−2 Ãk−2H̃k−2 . . . Ãk−3k−2H̃k−2

]
Λshift
k−2

= C̃k−2Λshift
k−2 .

where

Λshift
k−2 =


0

Λk−2,1
...

Λk−2,k−3

 .
Moreover, we can write A1:k−2,k−1 = C̃k−2C̃†k−2A1:k−2,k−1
Part d: construction of Λk−1.
Combining the above equalities:

Ãk−1k−1H̃k−1Πk =

[
Ãk−2k−2H̃k−2
Qk−1

]
(Λk−2,k−2 + Πk−1Ak−1,k−1)Ã

†
k,k−1

+

[
C̃k−2

0

]
(Λshift

k−2 + C̃†k−2A1:k−2,k−1 − Λk−2Ak−1,k−1)Ã
†
k,k−1.

Hence we can select:

Λk−1 =

[ (
Λshift
k−2 + C̃†k−2A1:k−2,k−1 − Λk−2Ak−1,k−1

)
Ã†k,k−1

(Λk−2,k−2 + Πk−1Ak−1,k−1) Ã
†
k,k−1

]
,

with
‖Λk−1‖ ≤ (2 +M)µ−1 ‖Λk−2‖+Mµ−1‖C̃†k−2‖+ µ−kM

Now we can complete the proof of Theorem 5. It is sufficient to select Λ1:

A1,1H1Π2 = H1H
−1
1 A1,1A

†
2,1 = C̃1Λ1,

with ‖Λ1‖2 ≤ Mµ−2. Let αk =
[
‖C̃†k‖ ‖Λk‖ µ−k

]′
. From (G.4), (G.5) we obtain the following

recursion:

αk ≤

 1 1 µ−1
M
µ

2+M
µ

M
µ

0 0 µ−1

αk−1,
where the inequality is interpreted coordinate-wise. Let Ξ be the matrix of the above recursion. We have the
crude bound:

‖C†κ‖2 = ‖C̃†κ‖2 ≤ ‖Ξκ−1‖2‖α1‖2,

where ‖Ξκ‖2‖α1‖2 ≤ polyκ(M/µ). This completes the proof.
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