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Serial interconnections of 1-contracting and 2-contracting systems

Ron Ofir, Michael Margaliot, Yoash Levron, and Jean-Jacques Slotine

Abstract— The flow of contracting systems contracts 1-
dimensional polygons (i.e. lines) at an exponential rate. One
reason for the usefulness of contracting systems is that many
interconnections of contracting sub-systems yield an overall
contracting system. A recent generalization of contracting
systems is called k-contracting systems, where k ∈ {1, . . . , n}.
The flow of such systems contracts k-dimensional polygons
at an exponential rate, and in particular they reduce to
contracting systems when k = 1. Here, we analyze serial
interconnections of 1-contracting and 2-contracting systems.
We provide conditions guaranteeing that such interconnections
have a well-ordered asymptotic behaviour, and demonstrate the
theoretical results using several examples.

I. INTRODUCTION

Contracting systems have found numerous applications in

systems and control theory. This is due to several reasons.

First, contracting systems have a well-ordered behaviour:

any two trajectories approach one another at an exponential

rate [1]. In particular, if an equilibrium point exists then

it is unique and globally exponentially stable. If the vector

field is T -periodic then the system entrains, i.e. all solutions

converge exponentially to a unique T -periodic trajectory [1],

[2]. In fact, contracting systems have a well-defined fre-

quency response, as shown in [3] in the context of convergent

systems [4]. Second, there exist simple sufficient conditions

for contraction based on matrix measures [1], [5]. Third,

various interconnections of contracting systems, including

parallel, serial, and feedback connections, yield an overall

contracting system [1], [6].

Ref. [7] studied a generalization called k-contraction (see

also the note [8]), with k ∈ {1, . . . , n}. The flow of such

systems contracts k-dimensional polygons at an exponen-

tial rate. In particular, for k = 1 these are just standard

contracting systems. This generalization is motivated in part

by the seminal work by Muldowney and his colleagues [9],

[10], on systems that, using the new terminology, are 2-

contracting in a constant metric. Roughly speaking, every

bounded solution of a time-invariant 2-contracting system

converges to an equilibrium point. This is different from the

case of 1-contracting systems, as the equilibrium point is not

necessarily unique.

This research was partially supported by a research grant from the Israel
Science Foundation (ISF).

RO and YL are with the Andrew and Erna Viterbi Faculty of Electrical
Eng., Technion—Israel Institute of Technology, Haifa 3200003, Israel.

MM (Corresponding Author) is with the School of Electrical Eng., and
the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978,
Israel. E-mail: michaelm@tauex.tau.ac.il

JJS is with the Department of Mechanical Eng. and the Department
of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA.

Contraction theory is an active area of research. Re-

cent contributions include contraction on Riemannian man-

ifolds [11], various notions of “weak contraction” (see,

e.g. [12], [13]), contraction of piecewise-smooth dynamical

systems [14], analysis of learning algorithms using con-

traction theory [15], and the introduction of α-contracting

systems, with α ≥ 1 real, which is motivated in part by

the seminal works of Douady and Oesterlé [16], and Leonov

and his colleagues (see the recent monograph by Kuznetsov

and Reitmann [17]) on bounding the Hausdorff dimension

of complex attractors.

Since many interconnections of contracting systems yield

an overall contracting system, it is natural to ask if the

same holds for k-contracting systems as well [8]. Here, we

address this question in some detail for k-contracting systems

with k ∈ {1, 2}. This problem is more delicate than in

the case of 1-contracting systems because the well-ordered

behaviour of 2-contracting systems only holds in the time-

invariant case, while connecting two systems implies that at

least one system has an input from the other system and thus

is time-varying.

Our main contribution is a proof that various serial con-

nections of k-contracting systems, with k ∈ {1, 2}, have

a “well-ordered” asymptotic behaviour: they have no non-

trivial periodic solutions, and, under stronger assumptions,

all solutions converge to an equilibrium point (which is not

necessarily unique). We also show that such connections are

in general neither 1-contracting nor 2-contracting, and thus

our results may be used to analyze systems that cannot be

studied using only the theory of 2-contracting systems. To

apply our results to wider set of systems, we also provide

sufficient conditions guaranteeing that a given system can be

decomposed as the serial connection of two systems.

The next section reviews known definitions and results

that are used later on. Section III includes the main results,

and the final section concludes. Due to space limitations,

we focus on theoretical results and provide only a few

applications in Section IV. More applications will appear in

an extended version of this note that is now in preparation.

We use standard notation. Small [capital] letters denote

column vectors [matrices]. In is the n × n identity matrix.

For a matrix A, AT is the transpose of A. If A is square,

then |A| [trace(A)] is the determinant [trace] of A.

II. PRELIMINARIES

The sufficient condition for k-contraction in [7] is based

on the kth additive compound of the Jacobian of the vector

field. To make this note more accessible, we briefly review

these topics. For more details, see also [9]. For more recent

http://arxiv.org/abs/2104.00928v2


applications of these compounds in systems and control

theory, see [18], [19], [20], [21], [22].

Let C ∈ R
n×m. For k ∈ {1, . . . ,min{n,m}}, the kth

multiplicative compound of C, denoted C(k), is the
(

n
k

)

×
(

m
k

)

matrix that contains all the k×k minors of C in lexicographic

order [9]. For example, for n = m = 3 and k = 2, C(2) is

the 3× 3 matrix:




| c11 c12
c21 c22 | | c11 c13

c21 c23 | | c12 c13
c22 c23 |

| c11 c12
c31 c32 | | c11 c13

c31 c33 | | c12 c13
c32 c33 |

| c21 c22
c31 c32 | | c21 c23

c31 c33 | | c22 c23
c32 c33 |



 ,

where |B| denotes the determinant of B. In particular,

C(1) = C and if n = m then C(n) = |C|. The Cauchy–Binet

formula [23, Chapter 0], asserts that for any B ∈ R
n×m, C ∈

R
m×p and any k ∈ {1, . . . ,min{n,m, p}}, we have

(BC)(k) = B(k)C(k). (1)

This justifies the term multiplicative compound. In particu-

lar, (1) implies that if n = m = p then |BC| = |B||C|, and

that if A ∈ R
n×n is non-singular then (A(k))−1 = (A−1)(k).

Let A ∈ R
n×n with eigenvalues λi, i ∈ {1, . . . , n}. The

eigenvalues of A(k) are λi1λi2 . . . λik , with 1 ≤ i1 < i2 <
· · · < ik ≤ n.

For k ∈ {1, . . . , n}, the kth additive compound of A is

the
(

n
k

)

×
(

n
k

)

matrix defined by

A[k] :=
d

dε
(I + εA)(k)|ε=0.

In other words, (I+εA)(k) = I+εA[k]+o(ε). In particular,

A[1] = A, and A[n] = trace(A). The eigenvalues of A[k] are

λi1 + λi2 + · · ·+ λik , with 1 ≤ i1 < i2 < · · · < ik ≤ n.

It is useful to know how these compounds are affected by

a coordinate transformation. Let V ∈ R
m×n,W ∈ R

n×p.

Then (1) yields

(V AW )(k) = V (k)A(k)W (k).

If, in addition, m = p and VW = Im then

(V AW )[k] =
d

dε
(Im + εV AW )

(k) |ε=0

=
d

dε
(V (In + εA)W )(k)|ε=0

= V (k)A[k]W (k). (2)

In the context of dynamical systems, the importance of

these compounds is due to following fact. If Φ : R+ → R
n×n

is the solution of the matrix differential equation

d

dt
Φ(t) = A(t)Φ(t), Φ(0) = I,

where t → A(t) is continuous, then

d

dt
(Φ(t))(k) = (A(t))[k](Φ(t))(k). (3)

In other words, (Φ(t))(k) also evolves according to a linear

dynamics with the matrix (A(t))[k] . Roughly speaking, Φ(k)

determines the evolution of k-dimensional polygons under

the dynamics ẋ = Ax [24].

Recall that a vector norm | · | : Rn → R+ induces a matrix

norm ||A|| := max|x|=1 |Ax|, and a matrix measure µ(A) :=
limε→0+(||I + εA|| − 1)/ε. If µ((A(t))[k]) ≤ −η < 0
all t ≥ 0 then applying Coppel’s inequality [25] to (3) yields

||(Φ(t))(k)|| ≤ exp(−ηt)||(Φ(0))(k)|| for all t ≥ 0. This

leads to the following.

Definition 1. [7] Consider the nonlinear system ẋ(t) =
f(t, x(t)), with f a C1 mapping, and suppose that its

trajectories evolve on a convex set Ω ⊆ R
n. Let J(t, x) :=

∂
∂x

f(t, x) denote the Jacobian of f with respect to x. The

system is called k-contracting if

µ
(

(J(t, z))[k]
)

≤ −η < 0, for all t ≥ 0, z ∈ Ω. (4)

Note that for k = 1 this reduces to the standard infinites-

imal contraction condition [5], as J [1] = J . Note also that

condition (4) is robust in the sense that if it holds for f it

also holds for small perturbations of f (but perhaps with a

different η).

For p ∈ {1, 2,∞}, let µp denote the matrix measure in-

duced by the Lp vector norm |·|p. An important advantage of

contraction theory is that there exist easy to verify sufficient

conditions for contraction in terms of matrix measures. For

our purposes, it is useful to provide similar conditions for 2-

contraction. These can be easily derived using the following

result.

Proposition 1. (see, e.g. [9]) Let A ∈ R
n×n. Then

µ∞(A[2]) = max
1≤i<j≤n

{aii + ajj +
∑

k 6=i,j

|aik|+ |ajk|},

µ1(A
[2]) = max

1≤i<j≤n
{aii + ajj +

∑

k 6=i,j

|aki|+ |akj |},

and µ2(A
[2]) = λ1+λ2, where λ1 ≥ λ2 ≥ · · · ≥ λn are the

eigenvalues of (A+ AT )/2.

We say that a dynamical systems has a non-oscillatory

behaviour (NOB) if it has no non-trivial periodic solutions.

In other words, the only possible periodic solutions are

equilibrium points. For example, a time-invariant contracting

system is NOB. The same is true for time-invariant 2-

contracting systems [9], [10]. To illustrate this, consider the

LTI ẋ = Ax. If A is 2-contracting then in particular A[2]

is Hurwitz. Since the eigenvalues of A[2] are λi + λj ,

1 ≤ i < j ≤ n, this implies that A has no purely imaginary

eigenvalues, and thus the LTI is NOB.

Note that the NOB of 2-contracting systems only holds

for time-invariant systems. For example, consider the time-

varying system:

ẋ1 = sin(t),

ẋ2 = −x2. (5)

The Jacobian of this system is J(t, x) =

[

0 0
0 −1

]

and

since J [2](t, x) = trace(J(t, x)) ≡ −1, the system is 2-

contracting. However, it admits a non-trivial periodic solu-



ẋ1 = f1(x1)

y = h(x1)

2-contracting

ẋ2 = f2(x2, u)

1-contracting

y u

ẋ1 = f1(x1)

y = h(x1)

1-contracting

ẋ2 = f2(x2, u)

2-contracting

y u

ẋ1 = f1(x1)

y = h(x1)

2-contracting

ẋ2 = f2(x2, u)

2-contracting

y u

Fig. 1: Serial connections of k-contracting systems studied

in this note.

tion, namely,
[

x1(t)
x2(t)

]

=

[

1 + x1(0)− cos(t)
0

]

,

so it is not NOB. The dynamics of (5) contracts 2D polygons

to lines, yet since the system is time-varying, it has a periodic

solution along a 1D line.

Establishing NOB of a dynamical system is important

for several reasons. First, certain systems admit a strong

Poincaré-Bendixson property: any omega limit set that does

not include an equilibrium is a periodic solution. This holds

for example for systems that are monotone with respect to

a cone of rank 2 [26] and in particular for 3-dimensional

competitive systems [27] and for 2-cooperative systems [28].

If such a system is also NOB then every omega limit set

must contain an equilibrium, and local stability analysis

near each equilibrium can often lead to a global picture of

the dynamics. This idea has been used to provide a global

analysis of many models in epidemiology, see e.g. [29].

These models are not 1-contracting, as they typically include

two equilibrium points corresponding to the disease-free and

the endemic steady states. Second, NOB can sometimes

be combined with the closing lemma [30] to show that

every α or ω limit set of the dynamics consists entirely of

equilibria [10].

Here, we analyze the serial interconnections of k-

contracting systems, with k ∈ {1, 2}, and provide sufficient

conditions guaranteeing that the overall system is NOB

or, moreover, that every bounded solution converges to an

equilibrium.

III. MAIN RESULTS

We begin by studying a serial connection of two sub-

systems in the configurations shown in Fig. 1. We then

turn to consider a more general question, namely, when

can ẋ = f(t, x) be decomposed as the serial connection

of two systems? We provide a sufficient condition stated as

a uniform “reducibility condition” on the Jacobian of f . We

then combine these ideas to provide sufficient conditions for

well-ordered behaviour of the dynamical system.

A. Serial connections of two k-contracting systems, with k ∈
{1, 2}

Consider the serial interconnection of two nonlinear sub-

systems. The first is the time-invariant sub-system

ẋ1 = f1(x1),

y = h(x1), (6)

with state x1 and output y. We assume that the trajectories of

this sub-system evolve on a compact and convex set Ω1, and

that the output map h is continuous. The second sub-system

is

ẋ2 = f2(x2, u), (7)

with state x2 and input u. We assume that for any admis-

sible control the trajectories of this sub-system evolve on a

compact and convex set Ω2.

The interconnection of the two sub-systems is via u = y
(we assume that u, y have the same dimension and the same

range of admissible values). The overall system is thus

ẋ1 = f1(x1),

ẋ2 = f2(x2, h(x1)). (8)

The next two results guarantee the well-ordered asymp-

totic behaviour of the serial connection (8). The first result

guarantees convergence to an equilibrium (that is not neces-

sarily unique).

Proposition 2. Suppose that (6) is 2-contracting and that (7)

is 1-contracting. Then any solution of (8) converges to an

equilibrium.

Proof. Fix xi(0) ∈ Ωi, i = 1, 2. Since (6) is 2-contracting,

time-invariant, and its trajectories evolve on a compact and

convex set, every solution converges to an equilibrium. Thus,

the limit a := limt→∞ h(x1(t, x1(0))) exists. Let ua denote

the constant control u(t) ≡ a. Since (7) is contracting and

its trajectories evolve on a compact and convex set, every

solution of the system ẋ2 = f2(x2, ua) converges to a GAS

equilibrium e(a). This implies that the x2 system satisfies

the converging-input converging-state (CICS) property (see,

e.g., [31]), so limt→∞ x2(t, x2(0), h(x1(t, x1(0)))) exists,

and this completes the proof. �

The next result guarantees the non-existence of non-trivial

periodic solutions in the serial connection (8).

Proposition 3. Suppose that (6) is NOB, and that for any

constant input u system (7) is NOB. Then (8) is NOB.

Proof. Suppose that (8) admits a T -periodic solution γ(t) =
[

γ1(t)
γ2(t)

]

, with γ(T ) = γ(0). Since (6) has no non-

trivial periodic solutions, γ1(t) ≡ γ1(0), so h(γ1(t)) ≡
h(γ1(0)). Thus, along γ(t) the x2 system has a constant

input u(t) ≡ h(γ1(0)) and therefore γ2(t) ≡ γ2(0). We

conclude that γ(t) ≡ γ(0), i.e. γ(t) is a trivial periodic

solution. �

It is straightforward to provide conditions guaranteeing
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Fig. 2: Trajectory of the Duffing oscillator with a sinusoidal

forcing.

that the sub-systems (6) and (7) satisfy the requirements in

Prop. 3. For example, this will be the case if the x1 system

is 2-contracting, and the x2 system is 2-contracting for any

constant input. Note that the x2 system in (8) has a time-

varying vector field, as x1 depends on time. Still, we can

rule out nontrivial periodic solutions γ, because we assume

that along any such solution the component γ1(t) is constant.

Note, however, that even if a time-varying system is NOB

for any constant input it may still display a complicated be-

haviour for a non-constant input. The next example illustrates

this.

Example 1. Consider the forced Duffing oscillator

ẍ+ δẋ+ βx3 − αx = γ cos(ωt). (9)

with α, β, γ, ω ≥ 0 and δ > 0. Here the term δẋ represents

a damping term, and βx3 is a nonlinear restoring force.

Write (9) as

ẋ1 = x2,

ẋ2 = −βx3
1 + αx1 − δx2 + γ cos(ωt). (10)

The trace of the Jacobian of (10) is −δ < 0, so this system

is 2-contracting and thus NOB for any constant forcing.

Fig. 2 depicts the trajectory of (10) for the parameters α =
0, β = 0.1, δ = 0.1, ω = 1, γ = 5 and the initial

condition x1(0) = x2(0) = 0. It may be seen that the

trajectory converges to a strange attractor. �

Props. 2 and 3 can also be applied to a hierarchical

combination of more than two sub-systems. For Prop. 2, note

that the serial connection of any number of 1-contracting sub-

systems yields a 1-contracting system, so Prop. 2 may be

applied to system where a 2-contracting sub-system feeds a

serial connection of multiple 1-contracting sub-systems. For

Prop. 3, it is clear from the proof that any number of sub-

systems may be used, as long as each sub-system is NOB

for any constant input.

Often we are given a dynamical system in the form

ẋ(t) = f(t, x), (11)

and not necessarily the interconnection of two sub-systems.

We may still be able to apply Props. 2 and 3 above if we can

first decompose the given system as the serial connection of

two sub-systems.

B. Decomposing a given system as a serial connection of

two sub-systems

An interesting and nontrivial problem is, given an n-

dimensional dynamical system in the form (11), can the

system be decomposed as the serial connection of two sub-

systems? We address this question using a decomposition

of Rn into two orthogonal subspaces, and a “uniform redu-

cability” condition on the Jacobian of f .

We assume throughout that f is C1, that the solutions

of (11) evolve on a convex state-space Ω ⊆ R
n, and that

for any initial condition a ∈ Ω, and time t0 ≥ 0 a unique

solution x(t, t0, a) exists and satisfies x(t, t0, a) ∈ Ω for

all t ≥ t0. Let J(t, x) := ∂
∂x

f(t, x).
Consider an orthogonal decomposition of R

n into two

linear subspaces U and V of dimensions p and q, respectively,

with p, q ≥ 1 and p + q = n. Similar decompositions have

been used in the context of contraction to subspaces [32] or

manifolds [33]. The subspaces U and V are spanned by the

columns of U ∈ R
n×p and V ∈ R

n×q , respectively, which

in turn are chosen such that

UTU = Ip, V
TV = Iq, U

TV = 0p×q, UUT +V V T = In.
(12)

The next result provides a sufficient condition guarantee-

ing that (11) can be decomposed as the serial connection of

two sub-systems.

Proposition 4. Assume that any one of the following four

equivalent conditions holds:

(a) V T f(t, x) = V T f(t, V V Tx) for all t ∈ R+, x ∈ Ω;

(b) V TJ(t, x)U = 0 for all t ∈ R+, x ∈ Ω;

(c) J(t, x)U ⊆ U for all t ∈ R+, x ∈ Ω;

(d) JT (t, x)V ⊆ V for all t ∈ R+, x ∈ Ω.

Let y1 := V Tx and y2 := UTx. Then

ẏ1 = V T f(t, V y1),

ẏ2 = UT f(t, Uy2 + V y1). (13)

Thus, any one of the four equivalent conditions guarantees

that (11) can be decomposed as the serial interconnection

of the two sub-systems in (13), where the output V y1 of

the q-dimensional y1 system is fed into the p-dimensional y2

system. Note that conditions (c) and (d) are a form of

“uniform reducibility” assumption on the Jacobian of the

vector field or its transpose.

A typical case where the reducibility condition holds is

when the dynamics is time-invariant and admits a first inte-

gral H(x) = cTx, with c ∈ R
n \ {0}. Then along solutions

of the system, we have 0 = d
dt
H(x(t)) = cT f(x(t)), so

condition (a) holds for V = c/|c|.
Note also that V y1 = V V Tx = x − UUTx, that is, the

difference between x and the (Euclidean norm) projection

of x on U .



Proof. We first show that the four conditions are equiv-

alent. Suppose that condition (a) holds. Differentiating

this condition with respect to x gives V T J(t, x) =
V TJ(t, V V Tx)V V T , and multiplying by U on the right

gives (b). To prove the converse implication, assume that (b)

holds. Then

0 =

∫ 1

0

V TJ(t, V V Tx+ rUUTx)UUTxdr

=

∫ 1

0

V T ∂

∂r
f(t, V V Tx+ rUUTx)dr

= V T f(t, x)− V T f(t, V V Tx),

(14)

where in the last equation we used (12). Thus, (b) implies (a).

The equivalence of (b), (c), and (d) follows from (12).

Now suppose that condition (a) holds. Let y(t) :=

[

y1(t)
y2(t)

]

,

with y1 := V Tx and y2 := UTx. Then

ẏ1 = V T f(t, x)

= V T f(t, V V Tx)

= V T f(t, V y1), (15)

and

ẏ2 = UT f(t, x)

= UT f(t, UUTx+ V V Tx)

= UT f(t, Uy2 + V y1),

and this completes the proof. �

Example 2. Consider the nonlinear system

ẋ = f(Lx),

where L is the Laplacian of a weighted digraph. For example,

if f(y) = −y we get the linear consensus protocol, whereas

if f(y) =
[

− tanh(y1) . . . − tanh(yn)
]

we get a form of

a “bounded derivatives” consensus protocol.

Since L1n = 0, we can take U := 1√
n
1n, and let V be as

in (12). Then for y1 := V Tx, y2 := UTx, we have

ẏ1 = V T f(Lx) = V T f(L(UUT+V V T )x) = V T f(LV y1),

and

ẏ2 = (1/
√
n)1Tnf(Lx) = (1/

√
n)1Tnf(LV y1).

The (n−1)-dimensional y1 system describes the dynamics on

the subspace orthogonal to the “consensus subspace” U =
span(1n). The dynamics of the 1-dimensional y2 system

depends on V y1, that is, the difference between x and its

(Euclidean norm) projection on U . �

Remark 1. Prop. 4 implies the well-known result that any

LTI system ẋ = Ax, A ∈ R
n×n, with n ≥ 3, may

be decomposed into a serial interconnection of two sub-

systems. If A has a real eigenvalue λ, with a corresponding

real eigenvector u, then U may be chosen as the subspace

spanned by u. Otherwise, A has a pair of complex conjugate

eigenvalues α±jβ and corresponding eigenvectors u1±ju2,

where α ∈ R, β ∈ R \ {0}, u1 ∈ R
n, u2 ∈ R

n \ {0},

and j =
√
−1. Let U := span(u1, u2). Then for any z ∈ U ,

Az = A(ru1 + su2) = (rα + sβ)u1 + (sα− rβ)u2,

so A maps U to U .

Remark 2. The conditions in Prop. 4 are related to the

existence of invariant sets of the dynamics (11) or of its

corresponding variational equation. Indeed, pick two initial

conditions a, b ∈ Ω, an initial time t0 := 0, and let z(t) :=
x(t, a)− x(t, b). Then

ż(t) = f(t, x(t, a)) − f(t, x(t, b))

=

∫ 1

0

∂

∂r
f(t, rx(t, a) + (1− r)x(t, b)) dr

=

∫ 1

0

J(t, rx(t, a) + (1− r)x(t, b)) dr z(t).

Combining this variational equation with condition (c) im-

plies that if a−b ∈ U then x(t, a)−x(t, b) ∈ U for all t ≥ 0.

If we assume, in addition, that V T f(t, 0) = 0 for all t ≥ 0
(this holds, for example, if 0 is an equilibrium of (11) for

all t ≥ 0) then condition (a) gives

V T f(t, UUTx) = V T f(t, V V TUUTx) = V T f(t, 0) ≡ 0,

and this implies that f(t,U) ⊆ U , i.e. U is an invariant set

of the dynamics.

The next result demonstrates an application of Prop. 4 to

a system with a feedback form.

Corollary 1. Consider an (n+m)-dimensional system:

ẋ = g(z),

ż = h(Mx, z),
(16)

where x ∈ R
n, z ∈ R

m, and M ∈ R
k×n. Suppose that there

exist U ∈ R
n×p and V ∈ R

n×(n−p) as in (12) such that

MU = 0. (17)

Define y1 := V Tx, y2 := z, and y3 := UTx. Then

ẏ1 = V T g(y2),

ẏ2 = h(MV y1, y2),

ẏ3 = UT g(y2). (18)

Note that this implies a decomposition into an (n+m−p)-

dimensional sub-system with state

[

y1

y2

]

, whose output g(y2)

is fed into the p-dimensional y3 sub-system. Note also that

if rank(M) < n then we can always find U, V satisfying

condition (17).

Proof. Define matrices Ũ ∈ R
(n+m)×p and Ṽ ∈

R
(n+m)×(n+m−p) by Ũ :=

[

U
0

]

, Ṽ :=

[

V 0
0 I

]

. The

Jacobian of (16) is

J(x, z) =

[

0 ∂
∂z
g(z)

∂
∂x

h(Mx, z)M ∂
∂z
h(Mx, z)

]

, (19)



so J(x, z)

[

U
0

]

= 0 for all x, z. Thus, J maps the subspace Ũ
corresponding to Ũ to itself. By Prop. 4, the system can be

decomposed as the serial connection of two sub-systems by

defining ỹ1 := Ṽ T

[

x
z

]

and ỹ2 := ŨT

[

x
z

]

, that is, ỹ1 =
[

V Tx
z

]

and ỹ2 := UTx. Computing the dynamics of y1 and

y2 yields (18). �

Example 3. Consider the second-order consensus sys-

tem [34]:

ẋ = v,

v̇ = u, (20)

with

u = f(βLx+ αLv).

Here x ∈ R
n, xi describes the (scalar) location of agent i, vi

is the velocity of agent i, L is the Laplacian of a weighted

digraph, and α, β > 0. The goal is to drive both the xis

and the vis to consensus, that is, x(t) → c11n, v(t) → c21n
for some constants c1, c2. The nonlinear function can be for

example f(y) = −y or f(y) = − tanh(y).
This system has the form described in Corollary 1 with z =

v, m = n, g(z) = z, M = βL, and h(Mx, z) = f(Mx +
αLz). We can thus take U = 1√

n
1n, and a V ∈ R

n×(n−1)

such that (12) holds. Then for y1 := V Tx, y2 := v,

and y3 := 1√
n
1Tnx, we get

ẏ1 = V T y2,

ẏ2 = f(βLV y1 + αLv),

ẏ3 = UT y2.

The first two equations form a (2n− 1) dimensional system,

and the third describes the dynamics of 1Tnx. �

In the next subsection, we combine Props. 2 and 3

with the reducibility condition to guarantee the well-ordered

behaviour of the time-invariant system

ẋ = f(x). (21)

We assume throughout that f is C1 and that the trajectories

evolve on a convex set Ω ⊆ R
n. Let J(x) := ∂

∂x
f(x).

C. Conditions for well-ordered behaviour of ẋ = f(x)

The next result provides a sufficient condition for NOB

that is based on 2-contraction on a certain subspace. As

shown in Example 4 below, this is weaker than requiring

2-contraction on the entire state-space.

Proposition 5. Suppose that the decomposition condition in

Prop. 4 holds for (21) with U a one-dimensional subspace,

i.e. p = 1, and that there exists a matrix measure µ such

that

µ
(

(V T )(2)J [2](x)V (2)
)

≤ −η < 0, for all x ∈ Ω. (22)

Then (21) is NOB.

Proof. We know that for y1 := V Tx and y2 := UTx, we

have ẏ1 = V T f(V y1), and ẏ2 = UT f(Uy2 + V y1). The

Jacobian of the y1 system is V TJ(V y1)V , and combining

this with (2) and (22) implies that the y1 system is 2-

contracting and thus NOB. The y2 system is one-dimensional

and thus NOB for any constant input. Applying Prop. 3

completes the proof. �

Note that the existence of a one-dimensional invariant

subspace is quite common in various systems, e.g. in models

for synchronization, where the synchronized state (i.e., x1 =
· · · = xn) is invariant, see also the examples in Section IV.

It is instructive to demonstrate Prop. 5 in the case of an

LTI system.

Example 4. Consider the LTI system

ẋ(t) = Ax(t). (23)

In this case, the decomposition condition is AU ⊆ U . Let T
be the n× n matrix

T :=

[

V T

UT

]

. (24)

Then T−1 =
[

V U
]

, and

TAT−1 =

[

UTAU UTAV
0 V TAV

]

. (25)

Thus, TAT−1 is reducible. The spectrum of A is the union

of the real scalar UTAU and the spectrum of V TAV .

Since V TAV is 2-contracting, it has no pure imaginary

eigenvalues, so A has no pure imaginary eigenvalues.

Thus, (23) has no non-trivial periodic trajectories.

It is important to note that the eigenvalue UTAU
of TAT−1, and thus of A, can be arbitrarily large, so A is

not necessarily 2-contracting in the entire state-space. �

Roughly speaking, Prop. 5 requires that U is one-

dimensional and that the system is 2-contracting on V , and

proves that such a configuration is NOB. By requiring that

the system is instead 1-contracting on U (no longer nec-

essarily one-dimensional), we now derive a stronger result,

namely that every bounded trajectory of the overall system

converges to an equilibrium point. Example 5 below shows

that these conditions do not imply that the system is 2-

contracting on the entire state-space.

Proposition 6. Suppose that the decomposition condition in

Prop. 4 holds, and that there exists a matrix measure µ such

that

µ((V T )(2)J [2](x)V (2)) ≤ −η < 0 (26)

and

µ(UT J(x)U) ≤ −β < 0 (27)

for all x ∈ Ω. Then every bounded trajectory of (21)

converges to an equilibrium point.

Proof. For y1 := V Tx and y2 := UTx, we have ẏ1 =
V T f(V y1), and ẏ2 = UT f(Uy2 + V y1). The Jacobian of

the y1 system is V T J(V y1)V , and combining this with (2)



and (26) implies that the y1 system is 2-contracting. The

Jacobian of the y2 system is UTJ(V y1 + Uy2)U , so (27)

implies that the y2 system is 1-contracting. Applying Prop. 2

completes the proof. �

Again, it is instructive to demonstrate Prop. 6 in the case

of an LTI system.

Example 5. Consider the LTI system (23). The decompo-

sition condition implies that V TAU = 0, so (25) holds.

Eq. (27) implies that all the eigenvalues of UTAU have

a negative real part. Eq. (26) implies that V TAV has no

pure imaginary eigenvalue. We conclude that the spectrum

of A has no pure imaginary eigenvalues. Thus, any bounded

trajectory of the LTI converges to an equilibrium point.

Note that the conditions do not imply that the overall sys-

tem is 2-contracting on the entire state-space. Consider for

example the LTI system (23) with A = diag(2,−3,−1,−1).

Let U :=

[

0
I2

]

, V :=

[

I2
0

]

. Then, for any monotonic

norm µ(UTAU) ≤ −1 and µ((V T )(2)A[2]V (2)) = −1. The

decomposition condition also holds. However, the maximal

eigenvalue of A[2] is one, so the system is not 2-contracting

on the entire state-space for any norm. �

IV. APPLICATIONS

We describe two simple applications of the theoretical re-

sults. We will make use of the following fact (see, e.g. [35]).

If A ∈ R
3×3 then

A[2] =





a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33



 . (28)

Our first application is a 3D system with two agents.

Corollary 2. Consider the system

ẋ1 = f(x1, x2),

ẋ2 = x3 − x1, (29)

ẋ3 = g(x3, x2).

Assume that

∂

∂x1
f(x1, x2) =

∂

∂x3
g(x3, x2) ≤ −δ < 0 for all x, (30)

and that the trajectories evolve on a convex and compact set.

Then every trajectory of (29) converges to an equilibrium

point.

Here x1 and x3 may represent the state of two “agents”,

and x2 evolves according to the difference between the

agent states. A typical example is a system describing the

interconnection of two synchronous generators, that interact

via an integral of the difference between their frequencies

(i.e. the relative phase angle) [36]. In the control theory

community, such models are often called network reduced

power systems.

Proof. The Jacobian of (29) is J =





∂
∂x1

f ∂
∂x2

f 0

−1 0 1
0 ∂

∂x2
g ∂

∂x3
g



 . Consider the orthogonal

decomposition generated by the matrices

U :=
1√
2





1
0
1



 , V :=
1√
2





0 1√
2 0
0 −1



 .

Then V TJU = (1/2)

[

0
∂

∂x1
f − ∂

∂x3
g

]

, and (30)

gives V TJU = 0. Additionally, V (2) =
[

−1 0 −1
]T

,

and

J [2] =





∂
∂x1

f 1 0
∂

∂x2
g ∂

∂x1
f + ∂

∂x3
g ∂

∂x2
f

0 −1 ∂
∂x3

g



 ,

so (30) yields (V T )(2)J [2]V (2) = ∂
∂x1

f + ∂
∂x3

g ≤ −2δ < 0,

and the 2D sub-system is 2-contracting. Similarly, UTJU ≤
−2δ < 0 and the scalar sub-system is 1-contracting. Apply-

ing Prop. 6 completes the proof of Corollary 2. �

Our second application describes a system of three “syn-

chronizing agents”.

Corollary 3. Consider the system:

ẋ1 = f(x1 − x2) + f(x1 − x3),

ẋ2 = g(x2 − x1) + g(x2 − x3), (31)

ẋ3 = h(x3 − x2) + h(x3 − x1),

where f, g, h : R → R are C1. Suppose that the trajectories

evolve on a compact and convex set Ω and that

f ′(p)+g′(−p)+f ′(q)+h′(−q)+g′(q−p)+h′(p−q) ≤ −η < 0
(32)

for any p, q ∈ R. Then (31) is NOB.

Proof. Let xij := xi − xj . The Jacobian J(x) of (31) is




f ′(x12) + f ′(x13) −f ′(x12) −f ′(x13)
−g′(x21) g′(x21) + g′(x23) −g′(x23)
−h′(x31) −h′(x32) h′(x32) + h′(x31)



 ,

and using (28) implies that

J [2](x) =

[

J11(x)+J22(x) −g′(x23) f ′(x13)

−h′(x32) J11(x)+J33(x) −f ′(x12)

h′(x31) −g′(x21) J22(x)+J33(x)

]

.

Let U := 1√
3





1
1
1



, V := 1√
6





2 0

−1 −
√
3

−1
√
3



. Then J(x)U =

0 for all x, so the reducibility condition holds. A calculation

gives V (2) = 1√
3

[

−1 1 −1
]T

, and

(V T )(2)J [2])(x)V (2) = f ′(x12) + f ′(x13)

+ g′(x21) + g′(x23) + h′(x31) + h′(x32).

Combining this with (32) implies that all the conditions in

Prop. 5 hold. This completes the proof of Corollary 3. �



V. CONCLUSION

An important topic in systems theory is analyzing an

interconnected system based on the properties of the sub-

systems and the interconnection network. In this context, an

important advantage of contracting systems is that various

interconnections of such systems yield a contracting system.

We analyzed the serial interconnection of k-contracting

systems, with k ∈ {1, 2}. Our results guarantee NOB and,

under stronger assumptions, that every bounded solution

converges to an equilibrium (that is not necessarily unique).

To apply these results to a wider set of systems, we also

derived a reducibility condition guaranteeing that a given

system can be decomposed as the serial connection of two

systems.

Prop. 4 provides a sufficient condition for decomposing

a system as the serial connection of two sub-systems based

on a decomposition of Rn into two subspaces. It may be of

interest to extend this result using more general decomposi-

tions of Rn.

Our reducibility condition is restrictive and not robust

to small perturbations in the dynamics. Another topic for

further research is to apply our results to a system ẋ = f(x)
that does not satisfy the reducibility condition using the

following scheme: (1) approximate f using a vector field g
that does satisfy the reducibility condition; (2) analyze the

dynamics ẏ = g(y) using the tools developed here; and (3)

use comparison principles for ODEs [37] to show that the

results for the y-system also hold for the original x-system.

These topics are currently under study.
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