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Abstract— In this paper, we propose a game between an
exogenous adversary and a network of agents connected via
a multigraph. The multigraph is composed of (1) a global
graph structure, capturing the virtual interactions among the
agents, and (2) a local graph structure, capturing physical/local
interactions among the agents. The aim of each agent is to
achieve consensus with the other agents in a decentralized
manner by minimizing a local cost associated with its local
graph and a global cost associated with the global graph. The
exogenous adversary, on the other hand, aims to maximize
the average cost incurred by all agents in the multigraph.
We derive Nash equilibrium policies for the agents and the
adversary in the Mean-Field Game setting, when the agent
population in the global graph is arbitrarily large and the
“homogeneous mixing” hypothesis holds on local graphs. This
equilibrium is shown to be unique and the equilibrium Markov
policies for each agent depend on the local state of the agent,
as well as the influences on the agent by the local and global
mean fields.

I. INTRODUCTION

Mean-field games (MFGs) model large scale strategic
interactions in a network of individual rational entities (a.k.a
agents), where each agent tries to optimize its individual
objective function. Because of the presence of a very large
number of agents in a MFG setting, the strategic interaction
is such that the impact of any one agent on the other agents
is negligible; however, the overall effect of the network
on each agent cannot be ignored. There is rich literature
on MFGs in both continuous time and discrete-time ([1],
[2], [3]), with applications in diverse fields, ranging from
cybersecurity to inter-bank borrowing/lending ([4], [5]).

In this paper, we introduce Adversarial MFGs (A-MFGs)
as a class of MFGs where an exogenous adversary and
a network of agents strategically interact to realize self-
objectives. The objective of each agent is to achieve con-
sensus with other agents in a decentralized manner, while
the objective of the exogenous adversary is to adversely
affect the cumulative objectives of the agents in the network.
One area of application of A-MFGs is social networks, and
particularly study of evolution of opinions in adversarial
settings.

Heretofore, the influence of the structure of the network
on the mean-field interactions has not been extensively
studied in the literature. In this paper, we consider MFGs
on multigraphs with an exogenous adversary, where we ex-
plicitly include the effect of the network on the multi-agent
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interactions. Multigraphs ([6], [7]) are graphs representing
networks where multiple edges standing for distinct relation-
ships between the agents are permitted. As a representative
example, see Fig. 1 where the dark edges represent physi-
cal/local interactions and light edges represent virtual/social
interactions.

Specifically, we consider linear dynamics for the agents
and incorporate the effect of interaction over the multigraph
edges via a local cost associated with its local neighborhood
and the global cost associated with the collective behavior
of the network. The exogenous adversary is able to in-
fluence the agents through the agents’ dynamics and cost
functions, and aims to maximize the average cost over all
agents. By considering the MFG (limiting case where the
number of agents tends to infinity), it is possible to propose
approximate-Nash equilibrium strategies for the agents and
the adversary in the finite population game.

Fig. 1: The multigraph is composed of two underlying graphs.
The global graph (light edges) represents the social/virtual inter-
actions among agents and strongly connects all the agents in the
multigraph. The local graph (dark edges) represents physical/inter-
personal interactions and connects an agent to its neighborhood.

A. Motivating example of adversarial MFGs on multigraphs

The framework and results of this paper can be used to
analyze the evolution of opinion dynamics on multigraphs.
Consider a multigraph in which the dark edges in Fig. 1
provide a backbone for the opinion evolution via word-
of-mouth and the light edges act as a backbone for the
opinion evolution via virtual/social media. While with global
interactions (light edges) consensus can be reached, with
local interactions (dark edges) only clusters of consensus
opinions may emerge [8]. However, we would be remiss
not to consider the role of exogenous media houses acting
to manipulate the opinion evolution [9].

B. Main results & organization

The contributions of this paper are as follows:
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1) We formalize the Adversarial MFG (A-MFG) over
multigraphs to model the evolution of opinion dy-
namics over a network of agents connected through
virtual/global and physical/local networks

2) We establish the existence and uniqueness of the
mean-field equilibrium for Linear Quadratic Mean
Field Games (LQ-MFGs) on multigraphs. Further-
more, we show that the local and global effects
display some useful linearity properties, which can be
leveraged to obtain equilibrium control policies for
the agents and the adversary. This extends the results
available in the literature by explicitly considering the
network structure in the MFG framework.

3) We show that, for an A-MFG on a multigraph, the
equilibrium strategy for a generic agent depends lin-
early on the local state of the agent, the local effect
(effect of the neighborhood on the agent) and the
global effect (aggregate effect of all the agents).

C. Related literature

Mean-field games (MFGs) were introduced in the seminal
works of [1], [10] and, independently, [2], to address the
issue of scalability in dynamic games. Rooted in the original
MFG formulation, LQ-MFGs have been studied in the
continuous-time setting ([11], [12], [13], [14]) as well as the
discrete-time setting ([3], [15], [16]). There is also growing
interest in using Reinforcement Learning for MFGs in the
setting where model parameters are unknown to the agents
([17], [16], [18]).

MFGs with a network structure were first considered in
[19], where the underlying graph was of the Erdös–Rényi
type. Recently there has been a number of papers on
Graphon MFGs ([20], [21], [22]) which utilizes graphon
theory to model infinite limits of large networks. Our work
here appears to be the first to investigate the local/physical
vs global/virtual graph dichotomy which emerges in social
networks. Similar to our setting, literature on MFGs with
dominating [23] or major agents ([24], [25], [26]) consid-
ers one agent which has a significant effect on the other
players. On the contrary the significant player (adversary)
explicitly aims is to minimize the average objective of the
other agents and has no idiosyncratic noise in this work.
Works on risk-sensitive and robust MFGs ([27], [28], [29],
[30]) bear semblance to this work as they consider the
presence of an adversarial player through risk-sensitivity
or robustness considerations but differ on account of the
multigraph network structure of this work.

The paper is organized as follows. Section II formulates
the A-MFG over multigraphs, and discusses the relevant
solution concepts in finite population and infinite popula-
tion settings. Section III deals with characterization of the
equilibrium of the game in the infinite population setting.
Section IV provides concluding remarks and describes fu-
ture directions of research. The proofs are included in the
appendix.

II. PROBLEM FORMULATION

In this section we first introduce the N -agent adversarial
game over multigraphs. The game is composed of an ex-
ogenous adversary strategically interacting with N rational
agents connected with each other through a multigraph. Due
to the decentralized information structure solving the finite
population game becomes difficult. So we formulate the
A-MFG over multigraphs, where the exogenous adversary
interacts with infinitely many players connected via a multi-
graph.

A. Adversarial LQ game over multigraphs

We propose a nonzero-sum Linear Quadratic game, where
an exogenous adversary interacts with N agents and all
the agents are connected through an underlying multigraph
structure. The agents are connected with each other through
two distinct graphs (global and local), hence the name
multigraph. The global graph structure represents strategic
interactions of a global nature, like virtual/social media
interactions, as shown by the gray edged graph in Fig. 1.
The local graph structure represents the physical/real-world
interactions among subsets of agents, like neighborhoods or
friendships as shown by the dark edged graphs in Fig. 1. A
set of agents connected by the local graph (dark) is called
a neighborhood. In our formulation, neighborhoods do not
overlap, and hence each agent i belongs to one and only
one neighborhood, which is denoted by N (i).

The state of each agent i at time t is denoted by Zit ∈
Rz and its control effort by U it ∈ Ru. The adversary’s
control is denoted by Vt ∈ Rv , through which it can affect
the dynamics and the cost functions of the agents in the
multigraph. Each agent (say i) has linear dynamics, where
the agent’s control U it and the adversary’s control Vt enter
linearly, as given below.

Zit+1 = AZit +BU it + CVt +W i
t , t ∈ (0, . . . , T − 1) (1)

where W i
t ∼ G(0,Σw) denotes an i.i.d. Gaussian process

noise of agent i and Zi0 ∼ G(µ0,Σ0) is the Gaussian
distributed initial state of agent i. The initial states Zi0
and the noise processes W i

t of all the agents are assumed
to be independent of each other. The aggregate state of a
neighborhood N (i) at time t is the denoted by Y it where

Y it =
∑

j∈N (i)

Zjt /|N (i)| (2)

In this work, we assume homogeneous mixing [31] of the
local graph, which says that the neighbors of an agent i can
be chosen independently from the set of all N agents. This
will be expressed precisely for the mean-field setting where
the number of agents is assumed to be large. The individual



cost function each agent wants to minimize is:

J iN (πi, π−i, V ) =

T−1∑
t=0

E
[∥∥Zit∥∥2

Qt
+

∥∥∥∥Zit − 1

N

N∑
j=1

Zjt

∥∥∥∥2

Q̄t

+
∥∥Zit − Y it ∥∥2

Q̃t
+
∥∥U it∥∥2

Rt
−
∥∥Vt∥∥2

St

]
+ E

[∥∥ZiT∥∥2

QT

+

∥∥∥∥ZiT − 1

N

N∑
j=1

ZjT

∥∥∥∥2

Q̄T

+
∥∥ZiT − Y iT∥∥2

Q̃T

]
. (3)

Each agent i at time t is assumed to have access to only its
local history Zi[0,t] = (Zi0, . . . , Z

i
t). For agent i, the set of all

such policies πi := (πi0, . . . , π
i
T−1) is denoted by Πi. The

agent aims to find the control policy πi which minimizes
its cost (3).

Note that the agent’s cost function, as in (3), is composed
of a local term

∥∥Zit − Y it
∥∥2

Q̃t
due to the interaction in

the local graph and a global term
∥∥Zit − 1

N

∑N
j=1 Z

j
t

∥∥2

Q̄t

due to the interaction in the global graph. These terms are
consensus type terms and penalize the deviation of agent
i from the local behavior and global aggregate behavior,
respectively. Hence, the agent aims to align itself with local
as well as global consensus. The cost function also includes
terms that penalize large values of the state of the agent
and its control over the horizon, as well as (negatively)
the control effort of the adversary. The weighting matrices
Qt, Q̄t, Q̃t, St and Rt in (3) are symmetric matrices such
that Qt, Q̄t, Q̃t ≥ 0, St, Rt > 0 for t ∈ [T ].

The adversary is exogenous to the multigraph and can
affect all the agents through their dynamics (1) and cost
functions (3). The adversary uses its influence over the
multigraph to disrupt consensus between agents by maxi-
mizing the average cost of all the agents, that is minimize

J0
N (V, π(N)) = − 1

N

N∑
i=1

J iN (πi, π−i, V ) (4)

where π(N) = (π1, . . . , πN ) is the joint policy. The adver-
sary at time t, is assumed to have access to the history of
states of all the agents up to time t, Z[0,t]. The set of all
possible adversary policies under this information structure,
is denoted by V .

The solution concept used for this non-cooperative setting
is that of Nash equilibrium which is the set of policies
such that if all the agents and the adversary follow these
policies, then none of the agents or the adversary have any
incentive to unilaterally deviate. This is formally introduced
as follows.

Definition 1. The set of agent policies π∗ = (π1∗, . . . , π∗N )
and adversary policy V ∗ = (V ∗0 , . . . , V

∗
T−1) constitute a

Nash equilibrium if, for i = 1, . . . , N ,

J iN (πi∗, π−i∗, V ∗) ≤ J iN (πi, π−i∗, V ∗), πi ∈ Πi,

J0
N (π∗, V ∗) ≤ J0

N (π∗, V ), V ∈ V

Due to the local decentralized information structure,
computing Nash equilibria in the finite population setting

might prove to be difficult [32], so we turn to use of the
MFG setting where N → ∞. We call this the Adversarial
Mean-Field Game (A-MFG) over a multigraph, which is
different from the standard LQ-MFGs in two distinct ways:
1) there is an adversary which aims to manipulate the
agents to maximize their average cost, and 2) each agent
is also affected by a local interaction term, in addition to
the global interaction term, due to the presence of local and
global graphs in the multigraph. We assume the local effect
follows the homogeneous mixing hypothesis, as to be further
clarified in the following subsection.

B. Adversarial MFG over multigraphs

In the mean-field setting of this game, we consider
a generic (representative) agent interacting with infinitely
many agents, where the global aggregate is denoted by Z̄t
and the local aggregate is denoted by Yt. The total number of
agents N →∞, but the number of agents in a neighborhood
may still be finite. The dynamics of the generic agent in the
MFG is given by

Zt+1 = AZt +BUt + CVt +Wt. (5)

We dropped the superscript for simplicity. The cost function
the generic agent aims to minimize is given by

J(µ, Z̄, V ) =

T−1∑
t=0

E
[∥∥Zt∥∥2

Qt
+
∥∥Zt − Yt∥∥2

Q̃t
+
∥∥Zt − Z̄t∥∥2

Q̄t

+
∥∥Ut∥∥2

Rt
−
∥∥Vt∥∥2

St

]
+ E

[∥∥ZT∥∥2

QT
+ ‖ZT − Z̄T ‖2Q̄T

+
∥∥ZT − YT∥∥2

Q̃T

]
(6)

where Z̄ = (Z̄0, . . . , Z̄T ) represents the global aggregate
(also called global mean-field), Y = (Y0, . . . , YT ) represents
the local aggregate (local mean-field) and adversary control
policy is denoted by V = (V0, . . . , VT ). In this setting, the
quantities Z̄ and V are assumed to be deterministic signals.
The control µt of the generic agent at time t, is adapted
to the filtration generated by the state of the agent and the
local mean-field, FZt and FYT respectively. We assume that
the multigraph follows the homogeneous mixing property
and as a result the local mean-field is assumed to satisfy the
following property.

Assumption 1. [Homogeneous Mixing] The local mean-
field Yt is assumed to be an exogenous noise process with
mean E[Yt] = Z̄t.

Remark 1. This assumption is justified by the homogeneous
mixing hypothesis [31], which states that an agent’s neigh-
bors are randomly distributed among all agents in the game.
This hypothesis is quite standard in infection [31], [33] and
opinion [34] dynamics literature and is being used in mean-
field games for the first time to the best of the author’s
knowledge. We notice that this hypothesis is valid only for
large population games.

The adversary aims to disrupt consensus between the
agents, by maximizing the average cost of the generic agent,



given the control policy µ of the generic agent and the mean-
field trajectory,

J0(V, µ, Z̄) = lim
N→∞

J0
N (V, µ(N))

where µ(N) = (µ, . . . , µ) signifies that all the agents (in the
finite population setting) follows the control policy µ. The
mean-field equilibrium is an analog of the Nash equilibrium
for the MFG and is defined as the 4-tuple (µ, V, Z̄, Y ),
where µ = (µ0, . . . , µT−1) is the control policy of the
generic agent, V = (V0, . . . , VT−1) is the control policy
of the adversary, Z̄ is the global mean-field and Y is the
local mean-field of the neighborhood of the generic agent.
It is formally defined as follows.

Definition 2. The tuple (µ∗, V ∗, Z̄∗, Y ∗) is a mean-field
equilibrium if (1) Optimality:

µ∗ = argmin
µ

J(µ, Z̄∗, V ∗), V ∗ = argmin
V

J0(V, µ∗, Z̄∗)

and (2) Consistency: Z̄∗ is the aggregate behavior of the
infinitely many agents and Y ∗ is the aggregate behavior of
the neighborhood of the generic agent, if the agents follow
control policy µ∗ and adversary follows control policy V ∗.

The quantities Y ∗ and Z̄∗ are called the equilibrium
global and local mean-fields (MFs), respectively and the
control policies V ∗ and µ∗ are called the equilibrium adver-
sarial and generic agent control policies, respectively. Next
we characterize the mean-field equilibrium (MFE) of the A-
MFG over multigraphs, by using open-loop analysis. This is
accomplished by first developing the maximum principle for
stochastic tracking. This maximum principle is then used to
obtain the form of optimal control policies for the generic
agent and the adversary. Then the equilibrium local and
global MFs are characterized under these optimal control
policies and the consistency conditions.

III. MFE CHARACTERIZATION

In this section we characterize the MFE of A-MFG over
a multigraph. We start by providing the form of equilibrium
control policy of the generic agent and the adversary in sec-
tion III-A. This is obtained by developing a stochastic max-
imum principle (SMP) for tracking a stochastic reference
signal. The behavior of the agents and the adversary under
equilibrium control policies is aggregated to characterize the
equilibrium global MF in section III-B. This also leads to
a closed-form expression for adversary’s equilibrium policy.
Finally we characterize the behavior of the equilibrium local
MF and the equilibrium policy of the generic agent.

A. Equilibrium control policies

In this subsection, we obtain the form of equilib-
rium control policies for the generic agent and the ad-
versary. First we deal with the generic agent’s equilib-
rium control problem for a given deterministic global MF
Z̄ = (Z̄0, . . . , Z̄T−1), adversary control policy V =
(V0, . . . , VT−1), and an exogenous stochastic local MF noise
process Y = (Y0, . . . , YT−1). The control of the generic

agent is assumed to be adapted to filtrations generated by its
state and the local MF, FZ and FY , respectively. Recalling
the dynamics of the generic agent,

Zt+1 = AZt +BUt + CVt +Wt, Z0 ∼ G(µ0,Σ0), (7)

and that the cost function of the generic agent is coupled
with the other agents through the global MF Z̄t and the
local MF Yt in the following manner,

J =

T−1∑
t=0

E
[∥∥Zt∥∥2

Qt
+
∥∥Zt − Yt∥∥2

Q̃t
+
∥∥Zt − Z̄t∥∥2

Q̄t
+
∥∥Ut∥∥2

Rt

−
∥∥Vt∥∥2

St

]
+E
[∥∥ZT∥∥2

QT
+ ‖ZT − Z̄T ‖2Q̄T

+
∥∥ZT − YT∥∥2

Q̃T

]
where Z̄t and Vt are deterministic signals and µ is adapted
to the state process Zt and exogenous local MF Yt. We
obtain the SMP for this problem by using a technique similar
to [35]. This maximum principle is novel as it solves the
problem of linear quadratic tracking of a stochastic signal.

Theorem 1. The generic agent’s equilibrium control
adapted to filtration FZt ∨ FYt is given by

U∗t = −R−1
t BT ζt+1

where ζt can be constructed as

ζt = AT ζt+1 + (Qt + Q̄t + Q̃t)Zt − Q̄tZ̄t − Q̃tYt −Mζ
t ,

ζT = (QT + Q̄T + Q̃T )ZT − Q̄T Z̄T − Q̃TYT ,
Mζ
t = AT ζt+1 −ATE

[
ζt+1 | FZt ∨ FYt

]
.

where Mζ
t is a martingale difference sequence adapted to

filtration FZt ∨ FYt .

The agent’s equilibrim policy doesn’t depend explicitly
on the adversary’s control actions but might have implicit
dependence through the mean-field trajectories. Notice that
the co-state equation depends on a martingale difference
sequence adapted to a filtration. This makes the control
policy adapted to the filtration FZt ∨ FYt . This gives us
the form of equilibrium control of the generic agent but
still does not provide its closed-form expression. Towards
that end we need to first characterize the equilibrium local
and global MFs. And for this, we first derive the form of
equilibrium control of the adversary, which is shown to
depend on just the global MF of the game.

Theorem 2. If the following condition is satisfied

St − CT P̂t+1C > 0, (8)

where the matrix P̂t is defined recursively
by P̂t = Qt + AT P̂t+1A + AT P̂t+1C(St −
CT P̂t+1C)−1CT P̂t+1A, P̂T = QT , then the equilibrium
control policy of the adversary is,

V ∗t = −S−1
t CT ζ̄0

t+1, ζ̄
0
t = AT ζ̄0

t+1 −QtZ̄t, ζ̄0
T = −QT Z̄T ,

(9)

where ζ̄0
t is the adversary’s co-state and Z̄ is the global MF

of the agents.



The theorem provides the form of equilibrium control for
the adversary. The proof starts by obtaining a SMP for the
adversary’s equilibrium control problem in the finite popu-
lation setting. Then by taking the limit N →∞ we arrive at
the conclusion. The condition on positive definiteness of the
matrix St − CT P̂t+1C is standard condition in two-player
zero sum games [32]. This arises because in essence the
adversary plays a zero sum game with the global MF.

B. Equilibrium MF analysis and equilibrium policies

Having obtained the form of equilibrium control for both
the adversary and the generic agent, we now characterize
the equilibrium local and global MFs. This will allow us
to compute the closed-form expressions for the equilibrium
control policies of the generic agent and the adversary. MF
characterization involves proving existence, uniqueness and
some useful properties of the equilibrium global and local
MFs.

Theorem 3. If condition (8) is satisfied, then equilibrium
global MF follows linear dynamics,

Z̄∗t+1 = E−1
t AZ̄∗t = F̄tZ̄

∗
t , (10)

where Et = (I + BR−1
t BT P̄t+1 − CS−1

t CT P̄t+1) and P̄t
is given by the Riccati equation, P̄t = AT P̄t+1E

−1
t A +

Qt, PT = QT , and the equilibrium adversarial policy,

V ∗t = S−1
t CT P̄tF̄tZ̄

∗
t . (11)

is linear in the equilibrium global MF.

Now we need to characterize the dynamics of equilib-
rium local MF so as to obtain the closed-form expression
of the generic agent’s equilibrium control policy. Let us
define Y ∗t =

∑
j∈N Z

j∗
t /|N |, where each j corresponds

to a generic agent chosen independently from infinitely
many agents (due to homogenous mixing property) and N
corresponds to the neighborhood of the generic agent. The
dynamics of the equilibrium local MF can be characterized
as follows,

Theorem 4. If the condition (8) is satisfied, then local
equilibrium MF has linear Gaussian dynamics driven by
the equilibrium global MF:

Y ∗t+1 = F̃ 1
t Y
∗
t + F̃ 2

t Z̄
∗
t + Ẽ−1

t W̃t (12)

where W̃t =
∑
j∈N W

j
t /|N |,

Ẽt =(I +BR−1BT P̃t+1 − CS−1
t CT P̃t+1), F̃ 1

t = Ẽ−1
t A,

F̃ 2
t =Ẽ−1

t (BR−1
t BT − CS−1

t CT ))

T−t∑
i=0

i∏
j=1

H̃t+jQ̄t+iF̄t+j

P̃t =AT P̃t+1Ẽ
−1
t A+Qt + Q̄t, P̃T = QT + Q̄T ,

and H̃t = AT (I − P̃t+1Ẽ
−1
t BR−1BT ).

Having shown that the equilibrium global MF follows
deterministic linear dynamics and the equilibrium local MF
follows stochastic linear dynamics driven by the equilib-
rium global MF, we now turn our attention to obtaining

the expression for the equilibrium control policy for the
generic agent µ∗. We start by concatenating the equilibrium
local and global MFs with the state of the generic agent
Xt = [ZTt , Y

∗T
t , Z̄∗Tt ]T . Now finding the generic agent’s

equilibrium control policy, turns into an LQG problem with
dynamics,

Xt+1 = ĀtXt + B̄Ut + W̄t

where,

Āt =

A 0 0

0 F̃ 1
t F̃ 2

t

0 0 F̄t

 , B̄ =

B0
0

 , W̄t =

 Wt

Ẽ−1
t W̃t

0


The reformulated cost function is

J =

T−1∑
t=0

E
[∥∥Xt

∥∥2

Qt
+
∥∥Ut∥∥2

Rt
−
∥∥Vt∥∥2

St

]
+ E

[∥∥ZT∥∥2

QT

]
where Vt is given by (11) and

Qt =

Qt + Q̄t + Q̃t −Q̃t −Q̄t
−Q̃t Q̃t 0
−Q̄t 0 −Q̄t


for t = 0, . . . , T . If condition (8) is satisfied, this is a
standard time varying linear quadratic regulator (TV-LQR)
problem. Using standard techniques [36] the equilibrium
control for the generic agent is,

U∗t = µ∗t (Zt, Y
∗
t , Z̄

∗
t ) = −(Rt + B̄TP ∗t+1B̄)−1B̄TP ∗t+1ĀtXt

where P ∗t satisfies the Riccati equation:
P ∗t = Qt + ĀTt P

∗
t+1Āt − ĀTt P

∗
t+1B̄(Rt +

B̄TP ∗t+1B̄)−1B̄TP ∗t+1Āt, P
∗
T = QT .

We have thus completely characterized the MFE of the
A-MFG over networks. The equilibrium control policy of
the adversary (11), depends solely on the equilibrium global
MF whose dynamics are deterministic and linear (10). So
the equilibrium global MF and equilibrium adversary policy
can be precomputed. The equilibrium control policy of the
generic agent, on the other hand, depends on the equilibrium
local and global MFs. Since the dynamics of the equilibrium
local MF is Gaussian (12), it cannot be computed and
hence needs to be observed by the generic agent. Thus
the generic agent’s equilibrium control policy has closed-
loop dependence on the equilibrium local MF but open-loop
dependence on the equilibrium global MF.

Considering opinion dynamics over multigraphs, this
means that consensus over a global graph can be pre-
computed with high level of confidence (due to the large
number of agents). But consensus over the local graph
(neighborhood) must be actively measured as it is signif-
icantly perturbed by the deviations of individual agents in
the neighborhood.

IV. CONCLUSION

We have introduced the model of the Adversarial Linear
Quadratic Mean-Field Games over Multigraphs, to study the
strategic interactions among a network of agents and an ex-
ogenous adversary. The network is of multigraph type which



is composed of two graphs. The global graph (representing
virtual interactions) connects together all the agents, whereas
the local graph (representing physical interactions) couples a
subset of agents to form a neighborhood. The agents aim to
form consensus over the multigraph whereas the adversary
aims to disrupt that consensus.

Under homogeneous mixing hypothesis of the multigraph,
we have shown that the equilibrium control policy of the
adversary depends linearly on the equilibrium global MF
whereas the equilibrium control policy of the generic agent
depends linearly on the equilibrium local and global MFs.
Furthermore, we have also shown that the equilibrium global
MF can be precomputed, as opposed to the equilibrium local
MF which follows linear Gaussian dynamics. As a result the
equilibrium control policy of the adversary can be computed
offline whereas the equilibrium control policy of the generic
agent has online dependence on the state of the generic
agent, the equilibrium local and global MFs.

As one extension, our goal is to show that the MFE
of the A-MFG over multigraphs, is also an approximate
Nash equilibrium for the N -player Adversarial game over
multigraphs. Our goal, in particular, is to investigate the
level of the approximation as a function of increasing neigh-
borhood and global graph size (|N | and N respectively).
Other possible extensions to this work include generalizing
the local graph structure to overlapping neighborhoods with
sparse interconnections.
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equilibrium computation for discrete-time linear-quadratic mean-field
games,” in 2020 American Control Conference (ACC). IEEE, 2020,
pp. 333–339.

[16] Z. Fu, Z. Yang, Y. Chen, and Z. Wang, “Actor-critic provably finds
Nash equilibria of linear-quadratic mean-field games,” in Interna-
tional Conference on Learning Representation, 2020.

[17] J. Subramanian and A. Mahajan, “Reinforcement learning in station-
ary mean-field games,” in International Conference on Autonomous
Agents and MultiAgent Systems, 2019, pp. 251–259.

[18] M. A. uz Zaman, K. Zhang, E. Miehling, and T. Bas, ar, “Reinforce-
ment learning in non-stationary discrete-time linear-quadratic mean-
field games,” in 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE, 2020, pp. 2278–2284.

[19] F. Delarue, “Mean field games: A toy model on an Erdös-Renyi
graph.” ESAIM: Proceedings and Surveys, vol. 60, pp. 1–26, 2017.

[20] P. E. Caines and M. Huang, “Graphon mean field games and the
GMFG equations,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 4129–4134.

[21] S. Gao, P. E. Caines, and M. Huang, “LQG graphon mean field
games,” arXiv preprint arXiv:2004.00679, 2020.

[22] P. E. Caines and M. Huang, “Graphon mean field games and the
GMFG equations: ε-Nash equilibria,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 286–292.

[23] A. Bensoussan, M. Chau, and S. Yam, “Mean field games with a
dominating player,” Applied Mathematics & Optimization, vol. 74,
no. 1, pp. 91–128, 2016.

[24] J.-M. Lasry and P.-L. Lions, “Mean-field games with a major player,”
Comptes Rendus Mathematique, vol. 356, no. 8, pp. 886–890, 2018.

[25] Y. Ma and M. Huang, “Linear quadratic mean field games with a
major player: The multi-scale approach,” Automatica, vol. 113, p.
108774, 2020.

[26] M. Huang, “Large-population LQG games involving a major player:
the Nash certainty equivalence principle,” SIAM Journal on Control
and Optimization, vol. 48, no. 5, pp. 3318–3353, 2010.
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APPENDIX

Proof of Theorem 1. Consider perturbation of optimal con-
trol Ut + τŨt, τ ∈ R+ and the control Ũ = (Ũ0, Ũ1, . . .) is
adapted to filtration FZt ∨ FYt . The original state becomes
Zt + τZ̃t where

Z̃t+1 = AZ̃t +BŨt, Z̃0 = 0.

Due to optimality of control the necessary Euler condition
must be satisfied:

0 =
d

dτ
J

∣∣∣∣
τ=0

= 2E
[
〈U0, Ũ0〉Rt +

T∑
t=0

(
〈Zt, Z̃t〉Qt

+ 〈Ut, Ũt〉Rt
+ 〈Zt − Z̄t, Z̃t〉Q̄t

+ 〈Zt − Yt, Z̃t〉Q̃t

)
+ 〈ZT , Z̃T 〉QT

+ 〈ZT − Z̄T , Z̃T 〉Q̄T
+ 〈ZT − YT , Z̃T 〉Q̃T

]
Let us introduce the adjoint process:

ξt = AT ξt+1 + (Qt + Q̄t + Q̃t)Zt − Q̄tZ̄t − Q̃tYt −∆Mξ
t ,

ξT = (QT + Q̄T + Q̃T )ZT − Q̄T Z̄T − Q̃TYT

where, ∆Mξ
t = AT ξt+1 − ATE

[
ξt+1 | Ft

]
. Note that

ATE[ξt+1 | Ft]+(Q+Q̄t+Q̃t)Zt−Q̄tZ̄t−Q̃tYt = ξt ∈ Ft.
Consider,

〈Z̃t+1, ξt+1〉 − 〈Z̃t, pt〉
= 〈Z̃t+1 − Z̃t, ξt+1〉 − 〈Z̃t, ξt+1 − pt〉
= 〈AZ̃t +BŨt − Z̃t, ξt+1〉 − 〈Z̃t, ξt+1 −AT ξt+1

− (Qt + Q̄t + Q̃t)Zt + Q̄tZ̄t + Q̃tYt + ∆Mξ
t 〉

= 〈Z̃t,−(Q+ Q̄t + Q̃t)Zt + Q̄tZ̄t + Q̃tYt〉+ 〈BŨt, ξt+1〉
+ 〈Z̃t,∆Mξ

t 〉

Summing up for t = 0 to T − 1 and taking expectation,

0 =E
[
〈Z̃T ,−(QT + Q̄T + Q̃T )ZT + Q̄T Z̄T + Q̃TYT 〉

+

T−1∑
t=0

〈Z̃t,−(Qt + Q̄t + Q̃t)Zt + Q̄tZ̄t + Q̃tYt〉

+ 〈BŨt, ξt+1〉+ 〈Z̃t,∆Mξ
t 〉
]

Using the Euler condition and noting that Ut and Ũt are
adapted to process FZt ∨ FYt ,

0 = E
[ T−1∑
t=0

〈RtUt +BT ξt+1, Ũt〉
]

= E
[ T−1∑
t=0

〈RtUt +BTE[ξt+1 | FZt ∨ FYt ], Ũt〉
]
.

Since Ũt is arbitrary, we get the optimal control Ut =
−R−1

t BTE[ξt+1 | FZt ∨ FYt ], t = 0, 1, . . . , T − 1. Let
ζt = E[ξt | FZt ∨ FYt ] then

ζt = E[ξt | FZt ∨ FYt ] = ATE[ξt+1 | FZt ∨ FYt ]

+ (Qt + Q̄t + Q̃t)Zt − Q̄tZ̄t − Q̃tYt
= AT ζt+1 + (Qt + Q̄t + Q̃t)Zt − Q̄tZ̄t − Q̃tYt −∆Mζ

t

where

∆Mζ
t = AT ζt+1 −ATE[pk+1 | FZt ∨ FYt ]

= AT ζt+1 −ATE[E[pk+1 | FZt+1 ∨ F Z̄t+1] | FZt ∨ FYt ]

= AT ζt+1 −ATE
[
ζt+1 | FZt ∨ FYt

]
.

Therefore the optimal control is Ut = −R−1
t BT ζt+1. Since

the cost is convex, the optimal control is unique and the
necessary condition for optimality is also sufficient.

Proof of Theorem 2. First we obtain the form of the optimal
control for the adversary, for the finite population setting.
Using techniques similar to the proof of Theorem 1, we can
obtain the form of optimal control of adversary:

0 =SVt + CT
N∑
i=1

ζi,0t+1 = SVt + CT ζ0
t+1

=⇒ Vt = −S−1
t CT ζ0

t+1,

and the co-state equations are

ζi,0t =− 1

N
QtZ

i
t −

1

N
Q̃t
(
Zit − Y it

)
− 1

N
Q̄t
(
Zit − Z̄t

)
+

1

N
AT ζi,0t+1 −M

ζ,0
t , t = 1, . . . , T − 1

ζi,0T =− 1

N
QTZ

i
T −

1

N
Q̃T
(
ZiT − Y iT

)
− 1

N
Q̄T
(
ZiT − Z̄T

)
for i = (1, . . . , N), where ζ0

t :=
∑N
i=1 ζ

i,0
t and Mζ,0

t is
a Martingale difference sequence adapted to the filtration
F0
t = FZ1

t ∨ FZ
1

t . . .FZN

t ∨ FZN

t .

Mζ,0
t =

1

N
AT ζi,0t+1 −

1

N
ATE[ζi,0t+1 | F0

t ].

For this necessary condition to be sufficient, the adversary’s
cost needs to be convex in V . This is satisfied by the
concavity condition in 2-player zero-sum games [32], St −
CT P̂t+1C > 0 where the matrix P̂t is defined recursively,

P̂t = Qt +AT P̂t+1A+

AT P̂t+1C(St − CT P̂t+1C)−1CT P̂t+1A, P̂T = QT

Now we take the limit N → ∞ to arrive at the MFE of
the game. Let Z̄t and ζ̄0

t denote the global MF and adversary
co-state at time t respectively, such that

Z̄t = lim
N→∞

N∑
i=1

Zit
N
, ζ̄0

t = lim
N→∞

N∑
i=1

ζi,0t .

Notice that the first equation assumes that the tracking signal
Z̄t is also the aggregate state trajectory. We can write down
the dynamics of these quantities as follows,

Z̄t+1 =AZ̄t +BŪt + CVt,

Vt =− S−1
t CT ζ̄0

t+1, ζ̄0
t = AT ζ̄0

t+1 −QtZ̄t, (13)

Hence, we arrive at the adversary’s equilibrium control
policy.

Proof of Theorem 3. To characterize the equilibrium global
MF we start by substituting the equilibrium control of the



generic agent from Theorem 1 into the dynamics of the
generic agent:

Zt+1 = AZt −BUt + CVt +Wt,

U∗t = −R−1
t BT ζt+1

where ζt and Mζ
t are defined in Theorem 1. By taking

expectation and invoking the consistency conditions Z̄∗t =
E[Zt] and Z̄∗t = E[Y ∗t ], we get

Z̄∗t+1 = AZ̄∗t +BŪ∗t + CV ∗t , Ū
∗
t = −R−1

t BT ζ̄t+1

ζ̄t = AT ζ̄t+1 +QtZ̄
∗
t , ζ̄T = QT Z̄

∗
T (14)

where ζ̄t = E[ζt]. Comparing equations (13) and (14) we
can see that ζ̄t = −ζ̄0

t so the equilibrium global MF and
costate dynamics can be written down as

Z̄∗t+1 = AZ̄∗t − (BR−1
t BT − CS−1

t CT )ζ̄t+1, (15)

ζ̄t = AT ζ̄t+1 +QtZ̄
∗
t , ζ̄T = QT Z̄

∗
T (16)

Let us assume the form of costate as ζ̄t = P̄tZ̄
∗
t + s̄t.

Substituting into (15), we get

Z̄∗t+1

= AZ̄∗t − (BR−1
t BT − CS−1

t CT )(P̄t+1Z̄
∗
t+1 + s̄t+1),

= E−1
t (AZ̄∗t − (BR−1

t BT − CS−1
t CT )s̄t+1) (17)

where Et = (I + BR−1
t BT P̄t+1 − CS−1

t CT P̄t+1). Now
substituting ζ̄t = P̄tZ̄

∗
t + s̄t into (16), we get

P̄tZ̄
∗
t + s̄t = AT (P̄t+1Z̄

∗
t+1 + s̄t+1) +QtZ̄

∗
t ,

P̄T Z̄
∗
T + s̄T = QT Z̄

∗
T

Substituting (17) into this equation, we arrive at

P̄tZ̄
∗
t + s̄t = AT (P̄t+1E

−1
t (AZ̄∗t (18)

− (BR−1
t BT − CS−1

t CT )s̄t+1) + s̄t+1) +QtZ̄
∗
t

Comparing coefficients of Z̄∗t we obtain the Riccati eq.:

P̄t = AT P̄t+1E
−1
t A+Qt, PT = QT

The variable s̄t can be recursively computed from (18):

s̄t = −AT (P̄E−1
t (BR−1

t BT − CS−1
t CT ) + I)s̄t+1,

and s̄T = 0. Solving these equations we get s̄t ≡ 0. Hence,
from (17) we can deduce that the equilibrium global MF
follows linear dynamics:

Z̄∗t+1 = E−1
t AZ̄∗t = F̄tZ̄

∗
t , (19)

where Et = (I+BR−1
t BT P̄t+1−CS−1

t CT P̄t+1). Further-
more the co-state ζ̄t has the form ζ̄t = P̄tZ̄

∗
t . Substituting

this into the equilibrium adversarial control (9) and observ-
ing that ζ̄t = −ζ̄0

t we get

V ∗t = S−1
t CT ζ̄t+1 = S−1

t CT P̄tZ̄
∗
t+1 = S−1

t CT P̄tF̄tZ̄
∗
t .
(20)

Hence we have shown that the equilibrium adversarial
policy is linear in the equilibrium global MF, which has
deterministic linear dynamics.

Proof of Theorem 4. Let us define ζ̃t =
∑
j∈N ζ

j
t /|N |,

where ζjt is the co-state of the jth agent. We can write the
dynamics of these quantities as follows:

Y ∗t+1 = AY ∗t − (BR−1
t BT − CS−1

t CT )ζ̃t+1 + W̃t, (21)

ζ̃t = AT ζ̃t+1 + (Qt + Q̄t)Y
∗
t − Q̄tZ̄∗t − M̃

ζ
t , (22)

ζ̃T = (QT + Q̄T )Y ∗T − Q̄T Z̄∗T ,

where W̃t =
∑
j∈N W

j
t /|N | and M̃ζ

t is a Martingale
difference sequence, M̃ζ

t = AT ζ̃t+1 − ATE
[
ζ̃t+1 | FYt

]
.

Now we assume the form of the co-state ζ̃t = P̃tY
∗
t + s̃t.

Substituting into the dynamics of the equilibrium local MF,
we get

Y ∗t+1 (23)

= AY ∗t − (BR−1
t BT − CS−1

t CT )(P̃t+1Y
∗
t+1 + s̃t+1) + W̃t

= Ẽ−1
t (AY ∗t − (BR−1

t BT − CS−1
t CT )s̃t+1 + W̃t)

where Ẽt = (I+BR−1BT P̃t+1−CS−1
t CT P̃t+1). Now we

substitute ζ̃t = P̃tY
∗
t + s̃t into (22) to arrive at

P̃tY
∗
t + s̃t = AT P̃t+1E[Y ∗t+1 | FYt ] +AT s̃t+1 (24)

+ (Qt + Q̄t)Y
∗
t − Q̄tZ̄∗t

= AT P̃t+1(Ẽ−1
t (AY ∗t − (BR−1

t BT − CS−1
t CT )s̃t+1)

+AT s̃t+1 + (Qt + Q̄t)Y
∗
t − Q̄tZ̄∗t ,

P̃TY
∗
T + s̃T = (QT + Q̄T )Y ∗T − Q̄T Z̄∗T

Comparing coefficients of Y ∗t , we arrive at the Riccati
equation:

P̃t = AT P̃t+1Ẽ
−1
t A+Qt + Q̄t, P̃T = QT + Q̄T

From (24) we can compute the process s̃t in a backwards-
in-time manner,

s̃t = H̃ts̃t+1 − Q̄tZ̄∗t , s̃T = −Q̄T Z̄∗T ,

where H̃ = AT (I−P̃t+1Ẽ
−1
t BR−1BT ). Hence, the process

s̃t can be computed as

s̃t = −
T−t∑
i=0

i∏
j=1

H̃t+jQ̄t+iZ̄t+i

= −
T−t∑
i=0

i∏
j=1

H̃t+jQ̄t+iF̄t+jZ̄t.

The last equality is due to the fact that equilibrium global
MF follows linear dynamics (10). Substituting this expres-
sion into (23), we get

Y ∗t+1 = F̃ 1
t Y
∗
t + F̃ 2

t Z̄
∗
t + Ẽ−1

t W̃t (25)

where

F̃ 1
t =Ẽ−1A,

F̃ 2
t =Ẽ−1

t (BR−1
t BT − CS−1

t CT ))

T−t∑
i=0

i∏
j=1

H̃t+jQ̄t+iF̄t+j

Hence the equilibrium local MF has linear Gaussian dynam-
ics driven by the equilibrium global MF.
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