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From Contraction Theory to Fixed Point Algorithms
on Riemannian and Non-Euclidean Spaces

Francesco Bullo, Pedro Cisneros-Velarde, Alexander Davydov, Saber Jafarpour

Abstract— The design of fixed point algorithms is at the heart
of monotone operator theory, convex analysis, and of many
modern optimization problems arising in machine learning and
control. This tutorial reviews recent advances in understand-
ing the relationship between Demidovich conditions, one-sided
Lipschitz conditions, and contractivity theorems. We review the
standard contraction theory on Euclidean spaces as well as
little-known results for Riemannian manifolds. Special emphasis
is placed on the setting of non-Euclidean norms and the recently
introduced weak pairings for the ¢; and /. norms. We highlight
recent results on explicit and implicit fixed point schemes for
non-Euclidean contracting systems.

I. INTRODUCTION

Motivated by control, optimization, and machine learn-
ing applications, this document provides a simplified and
incomplete tutorial about the main contraction theorem and
resulting fixed point algorithms. The combination of con-
traction theory and fixed point algorithms originates in the
classic ground-breaking paper by Desoer and Haneda [7];
these ideas play a central role in numerical integration of
differential equations [8].

The importance of fixed point strategies in modern day
data science is described in the recent review [4]. [14] is a
recent survey on monotone operators and their application to
convex optimization. In this paper, we argue that contraction
theory for vector fields is the continuous-time equivalent of
these theories. Indeed, strongly monotone operators and gra-
dient vector fields of strongly convex functions are strongly
contracting vector fields, modulo a sign change. A central
problem in these fields is the design of efficient fixed point
algorithms; recent contributions in this spirit are [18], [13].

Of special interest in this paper are contracting systems
in non-Euclidean spaces, i.e., vector fields whose flow is a
contraction mapping with respect to a non-Euclidean norm.
In this context, Aminzare and Sontag were the first to
highlight the connections between contraction theory and
semi-inner products in [1], [2].

This tutorial is based upon the theory of weak pairings
recently developed in [6], [9], [10]. We remark that monotone
operators over smooth semi-inner product spaces are studied
for example in [15]; here we are precisely interested in
nonsmooth polyhedral norms, such as the ¢; and /., norms.
For the same reason (lack of differentiability), contraction
theory over Finsler manifolds does not directly apply to the
non-Euclidean problems of interest here.
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This document also briefly reviews some generalizations
to Riemannian manifolds. Contraction theory on Riemannian
manifolds originates in the influential work by Lohmiller
and Slotine [11]. A formal coordinate-free analysis (with
connection to monotone operators) is given in [16]. In the
differential geometry literature, the study of geodesically
monotonic vector fields initiated in [12] and relevant exten-
sions were obtained in [5], [17].

This document is intended to be a tutorial and makes the
following contributions. First, we provide a unified view of
the main theorem on contraction and incremental stability
in the context of Euclidean, Riemannian and non-Euclidean
spaces. Similarly, we present a unified investigation into
fixed point algorithms over these three domains. Second, we
consider the setting of strongly contracting vector fields with
respect to non-Euclidean norms: we analyze and establish
convergence factors for the explicit Euler (from [10]), ex-
plicit extragradient, and implicit Euler algorithms. Notably,
these results provide a starting point for the generalization of
convex analysis and monotone operator theory to the setting
of strongly contracting vector fields with respect to the norms
{1 and /. Finally, we include a number of conjectures that
will hopefully stimulate further research.

A brief review of matrix measures

We recall the standard ¢, induced norms, p € {1,2, cc0}:

||A||2 Y, )‘maX(ATA)7
Alli = max a;il, Allooc = max aiil.
A = s, Sl 14l = s 3l

where Apa (AT A) is the largest eigenvalue of AT A. The

matrix measure of A € R™*™ with respect to a norm || - || is
. |HIn+hA[ -1

A):= lim ———. 1

plA) = lim W M

From [7] we recall fi2(A) = $Amax (A + A7),

m(A)= max (ag;+ Y laigl), poo(d) = m(A”).
je{l,...,n} My
For R invertible square, we define |A|, r = ||RA||, and

its associated matrix measure i, r(A) = p,(RAR™!). For
P=P" >0, we write ||z]|3 = [|z[|2 5,/> = = Pz. Matrix
measures enjoy numerous properties [7]; we present here

only the so-called Lumer’s equalities:

max ' PAx (2a)

H1H2,P1/2:1

=min{b € R| AT P+ PA < 2bP}.

pig p1/2(A) =

(2b)



II. CONTRACTION AND MONOTONE OPERATORS ON THE
EUCLIDEAN SPACE (R", {5)

We start with a very simple motivating discussion. For
beR, f:R— R is one-sided Lipschitz (osL) if

(@ —y)(f(@) = fy) <blz—w)%, Yoy Q)
= fl@) = fly) <b(z —y), Ve>y (4

and if f is continuously differentiable
= fl(z) <D, v (&)

We refer to (5) as differential one-sided Lipschitz bound (d-
osL). We note that
e fis osL with b = 0 if and only if f weakly decreasing;
o if f is Lipschitz with bound ¢, then f is osL with b = ¢,
whereas the converse is false;
« finally, for the scalar dynamics & = f(x), the Gronwall
lemma implies |z(t) — y(t)| < €® |z(0) — y(0)].
In what follows, we generalize this simple discussion in
numerous directions and study its implications.

A. Contraction and Incremental Stability

For a continuously differentiable f : R™ — R™, consider

i = f(x). (6)

We next state the main theorem of contraction and exponen-
tial incremental stability.

Theorem 1 (Equivalences on (R",{3)): For P = PT =~
0 and ¢ > 0, the following statements are equivalent:

@ (f(@) = f(y) Pz —y) <
T, Y5

(i) PDf(z)+ Df(x)" P =< —2¢P for all z, or equivalently
o pr/2(Df(x)) < —c for all z;

(i) DT [lx(t) =y ()2 pr/2 < —ca(t) =y(t)]|2,p1/2, for all
solutions x(-),y(- ), where DT is the upper right Dini
derivative;

@) 2(t) — y(O)lly p1/2 < e} (0)
solutions z(+), y().

—c||lz — y||§)P1/2, for all

- y(0)||27pl/2, for all

A vector field f satisfying any and therefore all of these
conditions is said to be c-strongly contacting.

We refer to statement (i) as the one-sided Lipschitz con-
dition (osL) and statement (ii) as the differential one-sided
Lipschitz (d-osL) (a.k.a. the Demidovich condition). The last
two statements are about differential incremental stability (d-
IS) and exponential incremental stability (IS), respectively.

Proof: We include an incomplete sketch of the proof.
Statement (i) implies (ii) by letting y = = + hv for some
v € R™ and taking the limit as h — 07T. Statement (ii)
implies (iii) by Coppel’s inequality [7, Lemma A]. State-
ment (iii) implies (iv) by the Gronwall Comparison Lemma.
Statement (iv) implies (i) by a Taylor expansion. [ ]

Variations of Theorem 1 hold for (1) forward-invariant
convex sets, (2) time-dependent vector fields, and (3) non-
differentiable vector fields f, where three of the four prop-
erties remain equivalent: osL, d-IS, and IS.

For an affine f(x)

(F@)— &) Pl —y) = (@
T
@y A Gy

Lumer’s equalities (2) imply that the smallest number —c
ensuring the osL and d-osL conditions is —c = jiy p1/2(4).

= Ax + b, the osL condition reads
—y) AT Pz —y)

< —clz—yll3 pra- D

B. Consequences of Contraction: Equilibria

One of the numerous desirable properties of strongly
contracting vector fields is that their flow forgets initial
conditions (e.g., see Figure 2) and, in the time-invariant case,
globally exponentially converges to a unique equilibrium
point. These points are illustrated in the next result.

Yo (i)

circle with radius e~
o

Fig. 1: Exponential incremental stability of contracting vector fields.
The distance between two trajectories decreases exponentially fast.

Theorem 2 (Equilibria of contracting vector fields): For
a time-invariant vector field f that is c-strongly contracting
with respect to || - ||, p1/2, P = PT =0,
(i) the flow of f is a contraction, i.e., the distance between
solutions exponentially decreases with rate ¢, and
(ii) there exists a unique equilibrium x* that is globally
exponentially stable with global Lyapunov functions

T = Hf(x)Hg,pl/z-
Proof: We include an incomplete sketch of the proof.
Theorem 5(iv) immediately implies (i) and that, for any
positive 7, the flow map of the vector field at time 7 is a
contraction map with constant e~“". The fixed point of this
contraction map is either a period orbit with period 7 (which
is impossible) or a fixed point of the flow map. The global
Lyapunov functions follow from direct computation. [ ]

x|l — 33*”3,131/2 and

C. Equilibrium Computation via Forward Step Method

The study of monotone operators is closely related to the
study of contracting vector fields. As it is classic in the
study of monotone operators, we here aim to provide an
algorithm to compute the equilibrium points of a vector field
f (equivalently regarded as an operator):

z* € zero(f) <<= 2" €fixedld+af), (@)

for any o > 0, where Id is the identity map. Here we define
zero(f) = {x € R | f(x) =0} and fixed(ld +af) = {z €
R™ | ¢ = (Id+af)z}. A map f is (globally) ¢-Lipschitz
continuous if

1f(2) =

f(y)||27P1/2 <tz — y||2,p1/2- 9)



for all x,y. We define the operator condition number of a
c-strongly contracting and ¢-Lipschitz continuous map f by

k={L/c>1. (10)

Remark 3 (Literature comparison): In the literature on
monotone operators, given P = P = 0, the map g : R" —
R™ is c-strongly monotone if

(9(@)—gW) P@—y) = cle—ylip..  (AD

Clearly, g is c-strongly monotone if and only if —g is c-
strongly contracting.

Next, we compare the operator condition number of a
contracting affine f(x) = Az +b, A € R™*", with the
standard contraction number of A. First, recall that, given a
norm |- ||, the condition number of a square invertible matrix
Ais k(A) = ||A||||A="|. Second, for the P/?-weighted ¢,
norm, we know from (7) that the contraction rate of f equals

po p1/2(A). Accordingly, given a norm || - ||, the operator
condition number of a square matrix A with p(A) <0 is
1Al
Kp(A) = . (12)
g (Al

From [7], note that u(A) < 0 implies ||[A7Y| < 1/|u(A)].
Therefore, x(A) < k,(A). One can show that the two
condition numbers coincide for A= AT and P=1,. O

Given a start point zg € R", the forward step method for
the operator f, i.e., the explicit Euler integration algorithm
for the vector field f, is:

Ty = (ld+af)zy = o + of (z). (13)

Theorem 4: (Optimal step size and contraction factor of
forward step method) For P = P' = 0, consider a map
f :R™ — R" with strong contraction rate ¢ > 0, Lipschitz
constant ¢ > 0, and condition number x = ¢/c. Then

(i) the map Id+af is a contraction map with respect to
[ - ll2,p1/2 for

2
I<a< 3
cK
(ii) the step size minimizing the contraction factor and

the minimum contraction factor (that is, the minimal
Lipschitz constant of Id +«f) are

1

cx?’

. 1\1/2 1 1

G=(1-5) =1-53+9(a)
Proof: We only sketch the standard proof here:

(Jd+af)z — (Id+af)y||2 pe

= llz =y +a(f(@) = FW)lz,pr2

= llz = yll3 pr/2 + 2a(f(z) = f(y)) Pz —y)
+ | f(x) - f(y)Hg,Plﬂ

< (1=2ac+ *C)|lz = yl3 prjo-

*
Qg =

(14)

It is easy to check that (1 — 2ac + o?¢?) < 1 if and only

if 0 < a < 2¢/¢? and that the minimal contraction factor is
(1—c2/t)V2 at a* = /2. [

ITII. CONTRACTION THEORY AND MONOTONE
OPERATORS ON RIEMANNIAN MANIFOLDS

In this section we consider a Riemannian manifold (M, G)
with associated Levi-Civita connection V, geodesic distance
dg, and parallel transport P () along a geodesic arc . Let
(-, ") denote the inner product associated to G and ~'
denote the velocity vector along a geodesic arc.

Loosely speaking, a vector field X on a Riemannian
manifold is geodesically contracting (—X is geodesically
monotone) if the first variation of the length of each geodesic
arc -y, with infinitesimal variation equal to the restriction of
X to v, is nonpositive.

Fig. 2: Contractivity of a vector field X on a Riemannian manifold:
the length of the geodesic curve 7;, connecting any two points x
and y decreases along the flow of X, as a function of the inner
product between X and the geodesic velocity vector at z and y.

A. Contraction and Incremental Stability

We consider a time-independent vector field X

i = X(2). (15)

Theorem 5 (Equivalences on (M,G)): For a Riemannian
manifold (M,G) and ¢ > 0, the following statements are
equivalent:

(i) for any =,y € M and geodesic curve v, : [0,1] = M
with 724 (0) = @, 72y (1) = ¥,

(X )75y (D6 — (X (2),75,(0))e < —cde(z,y)?;
(i1) for all v, € T, M

(Ax (2)v, val)o < —cllval,

where Ax(x) : TM — T,;M is the covariant differen-
tial of X defined by Ax(x)v, = V,, X (z);
(iii) DTdg(z(t),y(t)) < —cdg(z(t),y(t)), for all solutions
z(-),y();
(iv) dg(z(t),y(t)) < e “dg(x(0),y(0)), for all solutions
A vector field X satisfying any and therefore all of these
conditions is said to be c-strongly contacting.

Proof: We refer to the appropriate references. The
equivalence between property (i) and property (ii) is given
in [12], [5]. The implication (ii) = (iii) and (iv) is studied
in [16]. As before, the equivalence between statement (iii)
and statement (iv) is independent of the vector field X and
related to the Gronwall comparison lemma. [ ]



Here are some comments drawing a parallel between
Theorems 5 and 1. First, condition (i) is known [12], [5]
to be equivalent to either of the following conditions

(Vg (1), X (v(t)N & + ll72y (0)]|E is monotone decreasing,
(P(rya)y—e X (y) = X(2), 755 (0))e < —cdg(z,y)?,

where P(vyz)y—a @ TyM — T,M is the parallel transport
along the geodesic from y to x. It is easy to see that, when
(M,G) is the Euclidean space with the standard ¢ inner
product, condition (i) coincides with the one-side Lipschitz
condition in Theorem 1(i).

Second, we clarify that statement (ii) can easily be, and
usually is, written in components. For every z € M and
in a coordinate chart (z',...,2") in a neighborhood of =,
statement (ii) is equivalent to the linear matrix inequality:
oxk ox* 0Gy
B0t T o M B
or, in matrix form, letting G denote both the Riemannian
metric as well as its matrix coordinate representation,

G(x)%—f(m) + %(x)—r@(x) + G(z) 2 —2c¢G(2).
This is the classic contraction condition given in [11],
that generalizes the classic Demidovich condition in Theo-
rem 1(ii). The parallel between Theorem 5(iii) and (iv) versus

Theorem 1(iii) and (iv) is evident.

Gri X7 = —2c[Gy],

(16)

a7

B. Consequences of Contraction: Equilibria

In the interest of brevity we do not replicate Theorem 2,
whose extension to the Riemannian setting naturally holds.

C. Equilibrium Computation via Forward Step Method

We start with two useful definitions. Recall that a Rie-
mannian manifold M is complete if, for every v, € T,.M, the
geodesic curve v, () starting at v,, at time 0 is defined for all
t > 0. Accordingly, the exponential map exp, : T,M — M
is defined by exp,(vy) = 7u,(1). A vector field X is ¢-
Lipschitz continuous if

1P (Yay)ay X (2) = X (y)|le < Lde(z,y),  (18)

for any =,y € M. Here we assume for simplicity that the
geodesic 7y, from x to y is unique.

Given a start point 2o € M, the forward step method for
the operator f, i.e., the explicit Euler integration algorithm
for the vector field f, is:

Try1 = exp,, (X (z)). (19)

The following result is given in [5, Theorem 5.1].

Theorem 6: (Riemannian forward step method) Consider
a vector field X on a Riemannian manifold (M,G) with
strong contraction rate ¢ > 0, Lipschitz constant ¢ > 0, and
condition number x = ¢/c. The sequence {z} converges to
the unique equilibrium point of X.

To the best of the authors’ knowledge, it is an open
conjecture whether the algorithm 2 +— exp,, (X (z))
given in equation (19) is a Banach contraction mapping.

Practical implementations of the Riemannian forward step
algorithms may rely upon retractions (as an easily com-
putable replacement of the exponential map).

IV. CONTRACTION THEORY AND MONOTONE
OPERATORS ON NON-EUCLIDEAN SPACES

We now consider non-Euclidean spaces including, for
example, R™ equipped with either the ¢; or /., norms.

A. Linear Algebra Detour: Weak Pairings

We briefly review the notion and the properties of a weak
pairing on R™ from [6]. A weak pairing (WP) on R" is a
map [, -] : R™ x R" — R satisfying:
(1) (Sub-additivity and continuity of first argument)
[x1 + x2, y] < [z1,y] + [z2,y], for all 1,22,y € R™
and [-,-] is continuous in its first argument,
(i) (Weak homogeneity) [ax,y] = [z, ay] = o[z, y] and
[z, —y] = [z, y], for all z,y € R",a > 0,
(iii) (Positive definiteness) [z, z] > 0, for all z # 0,
(iv) (Cauchy-Schwarz inequality)

[, ] | < [, 2]2 [y, y] "2, for all 2,y € R™.
For every norm || - || on R™, there exists a (possibly not
unique) WP [, -] such that ||z||? = [z, x], for every x € R™.
When || - || is the 2 norm, the WP coincides with the usual
inner product. A WP [-, -] satisfies Deimling’s inequality if

ly + ha|| = [|y

h )
for every x,y € R™. A WP satisfying Deimling’s inequality
also satisfies, for all A € R™*", the Lumer’s equality
[Az, 2]

[l

For invertible R € R™*"™, we define the weighted sign WP
[-,-], r and the weighted max WP [-,-] _ p by

[z, 9], » = | Ryll1sign(Ry) ' Rz,

= R ZR (2
[2, 9] 0.5 ieﬁa}ﬁm( z)i(Ry)

<yl 1
[, 91 < llyll lim,

w(A) = sup (20

z#0n

2y
(22)

where Ioo(z) = {i € {1,...,n} | ; = ||z]s}. It can be
shown that, for p € {1, 00} and invertible matrix R € R™*",
we have || Rz[|? = [z, ], 5 and [, -], ; satisfies Deimling’s
inequality. We refer to [6] for a detailed discussion on WPs
and formulas for arbitrary p € [1, o0].

B. Contraction and Incremental Stability

For a continuously differentiable f : R” — R"™, consider
T = f(x). (23)

Theorem 7 (Equivalences on (R™, || - ||)): For a norm |||
with matrix measure p(-) and compatible WP [, -] satisfying
Deimling’s inequality, and ¢ > 0, the following statements
are equivalent:

() [f(x) = fly),z —y] < —cllx — yl|* for all z,y,
(i) [Df(z)v,v] < —cllv||?, for all v, z, or
w(Df(x)) < —c, for all z,
(i) DT||z(t) —y(t)|| < —c||z(t) — y(¢)||, for all solutions
z(),y(),
(i) ||z(t) — y(t)|| < e=¢®||lz(0) — y(0)]|, for all solutions
z(),y() -

Proof: We refer the reader to [6]. |



Norm WP

Matrix measure and Lumer equality

[=,y]; = llyll sign(y) "=

Izl = Jail
%

[2,9] =  max wiz;

Ielloo = mae %)

0 (a0 )
i (A) je?ll?fn} aj; + Z#j |as
= sup sign(z)' Az
llzlli=1
wo(A) = ( i + ij )
oo (A) max , a Zj#\aﬂ
= max max z;(A4x);

i€{l,...,n
H-’I;Hoozl ie[oo(x)

TABLE I: Table of norms, WPs, and matrix measures for {1, and ¢ norms. We define Ioo(z) = {i € {1,...,n} | || = ||z|| }-

C. Consequences of Contraction: Equilibria

In the interest of brevity we do not replicate Theorem 2,
whose extension to non-Euclidean setting naturally holds.

D. Equilibrium Computation via Forward Step Method

Consider the continuously differentiable dynamics & =
f(z). Let || - || denote a norm with compatible WP [, ].
Assume the vector field f is c-strongly contracting, i.e.,

[f(z) = f(y),z —y] < —cllz —y|?, 24)

and (globally) Lipschitz continuous with constant /, i.e.,

1f (@) = FWll <tz —yl, (25)

for any x,y. Next we summarize Theorem 1 from [10].
Theorem 8 (Forward step method on WP spaces):
Consider a norm || - || with compatible WP [-,-]. Let
the continuously differentiable function f be c-strongly
contracting, have Lipschitz constant ¢, and have condition
number £ = £/c¢ > 1. Then
(i) the map Id+af is a contraction map with respect to
|- for

0< —_—
@ ck(1+ k)’

(ii) the step size minimizing the contraction factor and the
minimum contraction factor are

STERE RPN
K:E:1f$+$+o($). @7

Compared to the forward step method for contracting
systems in the Euclidean space in Theorem 4, the optimal
step size is smaller (by a factor of 2 and by higher order
terms) and the optimal contraction factor is larger (the gap
is larger by a factor of 2 and by higher order terms).

Example 9: Consider the affine system & = Az +b, where

A= [_10 2'5} and b = [_19 . We compute

9 -3 20
—-10 5.75

p2(A) = Amax(3(A + A7) = Amax [5.75 -3

Therefore, this system is not contracting with respect to
¢ norm and Theorem 4 is not applicable for finding its
equilibrium point. However,

/Jl(A> =—-0.5<0.

} = 0.231.

Moreover, we have ||A(z — y)|l1 < ||A]l1]|z — yl/1. Thus,
with respect to the ¢; norm, the affine system is strongly
contracting with rate 0.5 and Lipschitz continuous with
Lipschitz constant ||A]|;. Now we can use Theorem 8 for
the ¢; norm and show that Is + a(Ax + b) is contracting for
mey o
[l (2 (A)] + [[All2)°
It is an open conjecture whether a version of Theorem 8§
holds for nonsmooth vector fields. We refer to [10] for
additional results on the optimal step size and acceleration
results for the norms ¢; and /..

every 0 < a <

E. Comments on Implicit Algorithms

We here review the implicit Euler integration scheme
and show its basic properties for strongly contracting vector
fields; the original reference for this material is [7]. Given a
vector field f on R™, we (implicitly) define the sequence:

Tpy1 = T + o f (Tpg1)- (28)

This scheme corresponds to the operator (Id —af)~!.

Theorem 10 (Implicit Euler method on WP spaces): Let
| - || denote a norm with compatible WP [-,-]. Let f be a
c-strongly contracting vector field with unique equilibrium
point «* and Lipschitz constant /. Then

(i) the (Id —af)~! is a contraction mapping with contrac-
tion factor (1 + ac)~! for any a > 0;
(ii) if ol < 1, then, at each time k, the implicit equa-
tion (28) is well-posed and the fixed-point iteration
_ li+1] _ iy .
Ty, = Tk, Ty, = T +af(xy] ) is a contraction
mapping with contraction factor a/;

ceen - ac)(l—al
(i) if of < 1 and ||f(zo)]] < %Eo}then, at

each time £, the Newton-Raphson iteration x;, 11 = Tk

+1 7 7 _ 7
o =l —Dg(ald )72 (g(alL ) —ap), for g(x) =

x — af (), converges quadratically to the solution the
implicit equation (28).

Proof: Given two sequences {zx}%>; and {yx}3,
generated by (28), the properties of WPs in IV-A imply:

||$Ck+1 - yk+1||2
=[xk — yk + a(f(@r+1) = F(Yk+1)), Th1 — Y]
< =k = Yk, o1 — Yrsa]
+alf(@kt1) = f(Yrr1), Trorr — Ykl
< loe = yrllllzerr — yrsrll — callzp — yk+1H2-



Demidovich
condition

Measure
bound

One-sided Lipschitz
condition

iz, pr/2 (Df (x)) < b PDf(z) + Df(z)" P < 2bP

p(Df (x)) < b sign(v) " Df (z)v < bllvlx

“max v; (Df (z)v), < bllv||%
€1 (V)

fioo (Df (x)) < b

(z—y)"P(f(z) — f(¥)) <bllz =yl
sign(z —y) ' (f(z) = f(y)) < bl -yl

_max (z; — ;) (fil) — fily)) < bllz —yl%
i€ oo (2 )

TABLE II: Table of equivalences between measure bounded Jacobians,

After simple manipulation we obtain ||xg11 — yrr1|| < (14
ca)7Y|zr —y||; this proves (i); for a more general treatment
see [3]. The proof of statement (ii) is immediate, since the
Lipschitz constant of x — x + «af(x) is af. The proof of
statement (iii) relies upon [7, Theorem C] and is omitted in
the interest of brevity. [ ]

A conjecture is that the Newton-Raphson iteration con-
verges globally and not only locally.

F. Comments on Higher Order Algorithms

We here briefly present the extra-gradient algorithm and
prove that it has accelerated convergence over the forward
step method. Let f be a vector field on R™. The extra-
gradient iterations with step size « are given by

Trro5 = Tk + af (zg), (29)
Tr+1 = Tk + o f (Trto.5)-
Theorem 11 (Extra-gradient method on WP spaces):
Let || - || denote a norm with compatible WP [ -]. Let
f be a c-strongly contracting vector field with unique
equilibrium point z*, Lipschitz constant ¢, and condition
number x = £ > 1. Then

(i) the extra-gradient iterations (29) satisfy
[zp+1 — 2| <

_1
and, for every 0 < a < L
converges to x*;

(i) for a = 26; the convergence factor is

the sequence {zx}?°,

=’

1—

3 1
o().
8Kk + K3
The proof of this theorem is omitted in the interest

of brevity. It is an open conjecture whether the optimal
convergence factor is of order 1 — 1/k.

V. CONCLUSIONS

Contraction theory and monotone operator theory are well
established methodologies to tackle control, optimization and
learning problems. This article surveys connections among
them and shows how to generalize some elements of these
theories to Riemannian manifolds and non-Euclidean norms.
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