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Abstract— In this paper we propose a new operator splitting
algorithm for distributed Nash equilibrium seeking under
stochastic uncertainty, featuring relaxation and inertial effects.
Our work is inspired by recent deterministic operator splitting
methods, designed for solving structured monotone inclusion
problems. The algorithm is derived from a forward-backward-
forward scheme for solving structured monotone inclusion
problems featuring a Lipschitz continuous and monotone game
operator. To the best of our knowledge, this is the first
distributed (generalized) Nash equilibrium seeking algorithm
featuring acceleration techniques in stochastic Nash games
without assuming cocoercivity. Numerical examples illustrate
the effect of inertia and relaxation on the performance of our
proposed algorithm.

I. INTRODUCTION

A stochastic generalized Nash equilibrium problem
(SGNEP) describes a subclass of competitive multi-agent
optimization problems in which local unilateral minimiza-
tion of an agent-specific expectation-valued cost function
subject to system-wide shared coupling constraints. Due to
the presence of the uncertainty and the shared constraints,
computing a SGNE is generally rather challenging. However,
these problems have recently received the attention of the
system and control community, especially because of their
applicability [1], [2], [3], [4], [5] to relevant problems in
the engineering sciences. An important class of models
in this context is that of networked Cournot games with
market capacity constraints and uncertainty in demand and
capacity [6]. Instances of these models arise in transportation
systems, where the drivers’ perception of travel-time is a
possible source of uncertainty [7], electricity markets where
companies dispatch electricity without an a priori knowledge
of actual demand [8], and natural gas markets where the
companies participate in a bounded capacity market [9].

Typically, two key concerns arise in any attempt to deal
with uncertainty. First, often the distribution of the random
noise is not known to the agent, thus making the com-
putation of the cost function impossible. Second, even if
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the distribution of the stochastic uncertainty is known or
predictable from, say, historical data, a key complication
arises when trying to compute the expected value (and its
gradients). Costly simulation-based integration techniques
required employment each time an agent is asked to compute
its decision variable, imposing significant computational bur-
den on each agent. A versatile alternative to such approaches
is provided by stochastic approximation theory (SA), under
which agents’ draw fresh samples at each iteration.

With the aim of boosting the performance of distributed
Nash equilibrium seeking algorithms, Yi and Pavel [10]
introduced a preconditioned forward-backward splitting with
inertial effects in a completely deterministic environment
where agents receive perfect feedback information. The
possibility of including inertia in the basic forward-backward
scheme has received some attention in the field already be-
fore (see e.g. [11], [12], [13], [14]). The common motivation
of all these contributions is to exploit momentum effects
to accelerate the numerical schemes, inspired by Nesterov’s
accelerated gradient method [15] for convex optimization.
However, in the context of distributed computation of Nash
equilibria, the role of inertial and acceleration effects is
not well understood. This applies in particular to situations
where the game data are subject to stochastic uncertainty
so that agents have only noisy information available in
their decision-making process. Even in the most general
problem where one’s aim is to solve a stochastic mono-
tone inclusion [16], [17], [18], [19], standard acceleration
techniques have not received much attention. Our aim is to
shed some light on this highly understudied question and
prove some interesting properties about accelerated game
dynamics. This paper departs from recent progress made
in the field of splitting algorithms for stochastic variational
problems, summarized in [20], [21] and [19], which contain
new asymptotic and non-asymptotic results on stochastic
sampling-based algorithms under weaker hypothesis than
usually assumed in the computational game theory literature.
In these seminal contributions, stochastic versions of Tseng’s
modified extragradient (hitherto forward-backward-forward)
algorithm [22], [23] have been introduced. The importance
of this alternative splitting technique in the context of dis-
tributed Nash equilibrium seeking has been emphasized in
[24]. This work extends all these seminal contributions via
an explicit study of the effects of acceleration parameters.
The numerical scheme presented in this paper is provably
convergent (in an almost sure sense) without assuming co-
coercivity of the game operator, and can be implemented
via a disciplined mini-batch stochastic approximation tech-
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nology, distributed over a network of competing agents. The
main result of this work gives a precise set of parameter
sequences ensuring convergence of the game play to the set
of variational equilibria, an important subset of generalized
Nash equilibria with a clear economic interpretation [25].
Our work extends the recent results reported in [26], reliant
on forward-backward splitting ideas, and thus require co-
coercivity, as well as the stochastic extragradient method
introduced in [27], where no joint coupling constraints are
considered.

A. Basic Notation

R denotes the set of real numbers and R̄ = R ∪ {+∞}.
〈·, ·〉 : Rn×Rn → R denotes the standard inner product and
‖·‖ represents the associated Euclidean norm. We indicate
a (symmetric and) positive definite matrix A, i.e., x>Ax >
0, with A � 0. Given a matrix Φ � 0, we define the Φ-
induced inner product as 〈x, y〉Φ = 〈Φx, y〉 and the norm as
‖x‖Φ =

√
〈Φx, x〉. A⊗ B indicates the Kronecker product

between matrices A and B. 0m (1m) indicates the vector
with m entries all equal to 0 (1). Given x1, . . . , xN ∈ Rn,
x := col (x1, . . . , xN ) =

[
x>1 , . . . , x

>
N

]>
.

Let T : Rn ⇒ Rn be a set-valued operator. The domain
of T are defined by domT = {x ∈ Rn | T (x) 6= ∅}. The
set of zeros of T is Zer(T ) = {x ∈ Rn | 0 ∈ T (x)}. The
resolvent of the operator T is JT = (Id +T )−1, where Id
indicates the identity operator. An operator T is monotone
if 〈T (x) − T (y), x − y〉 ≥ 0 and it is Lipschitz continuous
if, for some β > 0, ‖T (x) − T (y)‖ ≤ β‖x − y‖ for all
x, y ∈ domT . A monotone operator is maximally monotone
if its graph is not properly contained in the graph of another
monotone operator.

Given a proper, lower semi-continuous, and convex func-
tion g, the subdifferential is the operator ∂g(x) := {u ∈
Ω | (∀y ∈ Ω) : 〈y − x, u〉 + g(x) ≤ g(y)}. The proximal
operator is defined as proxg(v) := argminu∈Ω{g(u)+ 1

2‖u−
v‖2} = J∂g(v). ιC is the indicator function of the set C,
i.e., ιC(x) = 1 if x ∈ C and ιC(x) = 0 otherwise. The
set-valued mapping NC : Rn ⇒ Rn denotes the normal
cone operator for the the set C , i.e., NC(x) = ∅ if
x /∈ C,

{
v ∈ Rn| supz∈C v

>(z − x) ≤ 0
}

otherwise.
All randomness is modeled on a complete probability

space (Ω,F ,P), endowed with a filtration F = (Fk)k≥0.

II. MATHEMATICAL SETUP

A. Generalized Nash equilibrium problems

We consider a game where each agent i ∈ I = {1, . . . , N}
chooses an action ui ∈ Rdi . Let u = col(u1, . . . , uN ) and
d ≡

∑N
i=1 di. Each agent i has a local cost function Ji :

Rd → R̄ of the form

Ji(ui,u−i) = fi(ui,u−i) + gi(ui). (1)

where u−i = col({uj}j 6=i) is the vector of all decision
variables except for ui, and gi : Rdi → R̄ is a local
idiosyncratic cost function. The function Ji in (1) has the
typical splitting into smooth and non-smooth parts.

Standing Assumption 1: For each i ∈ I, the function gi
in (1) is proper, convex and lower semi-continuous and
dom(gi) = Ui ⊆ Rdi is (nonempty) compact and convex. �

Examples for the nonsmooth part are indicator functions to
enforce local constraints, or penalty functions that promote
sparsity, or other desirable structure.

We assume that the function fi(ui,u−i) depends on the
own action ui and a subset of the others actions {uj}j∈NAi ,
where the set NA

i ⊂ I is the interaction neighborhood of
agent i. Furthermore, we assume convexity and differentia-
bility, as usual in the generalized Nash equilibrium problem
(GNEP) literature [28], [29], [1].

Standing Assumption 2: For each i ∈ I and for all u−i,
the function fi(·,u−i) in (1) is convex and continuously
differentiable. �

We assume that the game displays joint convexity with
affine coupling constraints defining the collective feasible set

C = {u ∈ U | Du− b ≤ 0m}, (2)

where U = U1 × · · · × UN , D = [D1 | · · · | DN ] ∈ Rm×d
and b =

∑N
i=1 bi ∈ Rm. Each matrix Di ∈ Rm×di defines

how agent i is involved in the coupling constraints. Given the
strategies of all other agents u−i, the set of feasible actions
of player i is defined as the following set-valued map.

Ci(u−i) = {ui ∈ Ui | Diui − bi ≤
N∑
j 6=i

(bj −Djuj)}. (3)

Standing Assumption 3: The global feasible set C in (2)
satisfies Slater’s constraint qualification. �

For i ∈ I, the ith agent solves the following parametrized
optimization problem.

∀i ∈ I :

{
min
ui∈Rdi

Ji(ui,u−i)

s.t. ui ∈ Ci(u−i).
(4)

The usual solution concept for the game with coupling
constraints in (4) is that of generalized Nash equilibrium
(GNE) [29], [30], i.e., an N -tuple u∗ = col(u∗1, . . . , u

∗
N ) ∈ U

such that for all i ∈ I,

Ji(u∗i ,u∗−i) ≤ inf{Ji(ui,u∗−i) | ui ∈ Ci(u−i)}.

Our computational approach for solving the GNEP in (4)
makes use of the Karush-Kuhn-Tucker (KKT) conditions
characterizing the unilateral optimization of the agents. To
achieve a numerically tractable framework, we impose some
conditions on the model concerning the monotonicity and
Lipschitz continuity of the mapping that collects the local
pseudogradients of the agents.

Standing Assumption 4: The pseudogradient mapping

F (u) = col (∇u1f1(u), . . . ,∇uN fN (u)) (5)

is monotone and `-Lipschitz continuous. �
The KKT conditions corresponding to the game in (4)

are necessary and sufficient for characterizing a tuple of
strategies to be a GNE. Among all possible GNEs of the
game, we focus on the computation of variational equilibria
(v-GNE), i.e. a GNE in which all agents share consensus
on the dual variables [29, Theorem 3.1], [31, Theorem 3.1]
which is, in turn, a solution of the variational system



∀i ∈ I :

{
0di ∈ ∇uifi(u∗i ,u∗−i) + ∂gi(u

∗
i ) +D>i λ

∗

0m ∈ NRm≥0
(λ∗)− (Du∗ − b).

(6)
for some λ∗ ∈ RM≥0.

B. Distributed GNE via operator splitting

A key challenge one faces in any computational approach
in Nash equilibrium problems is to resolve the question how
players access the decision variables of the other agents. An
attractive approach for resolving this issue is the distributed
operator splitting approach pioneered in [10].

We allow each agent to have information on his own local
problem data only, i.e., Ji, Ui, Di and bi. Moreover, each
agent i controls its local decision ui and a local copy λi ∈
Rm≥0 of dual variables, as well as a local auxiliary variable
µi ∈ Rm used to enforce consensus of the dual variables. To
reach such consensus, we let the agents exchange information
via an undirected weighted communication graph represented
by its weighted adjacency matrix W = [wi,j ] ∈ RN×N . We
assume wij > 0 iff (i, j) is an edge in the communication
graph. The set of neighbors of agent i in the communication
graph is N λ

i = {j | wi,j > 0}.
Standing Assumption 5: The adjacency matrix W of the

communication graph is symmetric and irreducible. �
Let us define the weighted Laplacian as L =
diag {(W1N )1, . . . , (W1N )N} − W. It holds that
L> = L, null(L) = {a1N , a ∈ R} and that, given
Standing Assumption 5, L is positive semi-definite with
real and distinct eigenvalues 0 = s1 < s2 ≤ . . . ≤ sN .
Moreover, given the maximum (weighted) degree of the
graph, ∆ := maxi∈I(W1N )i, it holds that ∆ ≤ sN ≤ 2∆.
Denoting by κ = |L|, it holds that κ ≤ 2∆ [32]. We define
the tensorized Laplacian as the matrix L̄ = L ⊗ Im. We
set b̄ = (b1, . . . , bN )>, u = col(u1, . . . , uN ) and similarly
µ and λ. As the state variable, we consider the triple
x = (u,µ,λ) ∈ X := Rn × RmN × RmN and endow X
with the product topology. Let D = diag{D1, . . . , DN}.
Then, we define the maximally monotone operators

V (x) =

 F (u) + D>λ
L̄λ

b̄+ L̄(λ− µ)− D̄u

 , (7)

T (x) = G(u)× {0Nm} ×NRmN≥0
(λ), (8)

where G(u) = ∂g1(u1)×· · ·×∂gN (uN ). Let us summarize
the properties of the operators above.

Lemma 1: The following statements hold:
(i) V : X→ X is maximally monotone and `V = (`+2κ+
|D|)-Lipschitz continuous.

(ii) T : X⇒ X is maximally monotone.
Proof: (i) We can split the operator V into the

parts V1(x) = col(F (u),0mN , b̄ + L̄λ) and V2(x) =
col(D>λ, L̄λ,−Du− L̄µ), which are maximally monotone
by [23, Prop. 20.23], [23, Cor. 20.28]. Furthermore, similarly
to [24, Lemma 1] V1 is `1 = (` + κ)-Lipschitz continuous
and V2 is `2 = (|D|+ κ)-Lipschitz continuous. Hence, V is
`1 + `2 = `V -Lipschitz continuous.

(ii) It follows from [10, Lemma 5], [24, Lemma 1].

The splitting V +T encodes a distributed version of the KKT
conditions for v-GNE (4). In particular, it can be shown that
the zeros of the maximally monotone inclusion V +T are in
correspondence with variational equilibria of the Nash game.

Proposition 1: The set zer(V +T ) coincides with the set
of v-GNE of the game satisfying the KKT conditions in (6).

Proof: This follows from [10, Thm. 2] or [24, Lemma
3].

C. Stochastic GNEPs

Stochastic uncertainty affecting the decision problem of
agent i is modeled by a random variable ξi : Ω→ Ξi, where
Ξi ⊂ Rqi is a given measurable set. We assume that the
uncertainty enters the model in the smooth part of the agents’
optimization problem, i.e., for each i ∈ I

Ji(ui,u−i) = E[f̂i(u, ξi)] + gi(ui). (9)

It follows that the local optimization problems in (4) de-
scribes a stochastic programming problem, parameterized by
the decisions of the opponents u−i.

Let k ∈ N denote the iteration count of our computational
procedure. We assume that at each round k agent i is able
to generate a random sample ξi,k = (ξ

(t)
i,k)Skt=1, consisting of

i.i.d copies of the random element ξi. This sample is used
to construct an agent-specific gradient estimator of the form

F̂i,k(u, ξi,k) =
1

Sk

Sk∑
t=1

∇ui f̂i(u, ξ
(t)
i,k), (10)

where Sk ≥ 1 is the size of the data sample. (10) is an
example of a mini-batch estimator, which interpolates be-
tween cheap sampling and precision. The degree of precision
is regulated via the batch size sequence {Sk}k. Dynami-
cally adjusting the size of the batch simulates an online
variance reduction mechanism, which plays a key role in
our convergence analysis of the distributed operator splitting
algorithm to come. Mini-batch samples are prominent in
simulation-based optimization, where taking repeated sam-
ples of stochastic gradients is computationally cheap [33],
[27], [21], [19], [34].

Standing Assumption 6: The batch size (Sk)k≥1 is in-
creasing and such that

∑
k∈N

1
Sk

<∞. �
Under the prevailing i.i.d. assumption, it holds true that
E[F̂i,k(u, ξi,k)|u] = Fi(u) for all i ∈ I and all u ∈ Rd.
Hence, the random variable (10) is an unbiased estimator of
the individual payoff gradient at each action profile u. Upon
defining the random operator

V̂k(x, ξk) =

 F̂k(u, ξk) + D>λ
L̄λ

b̄+ L̄(λ− µ)−Du

 , (11)

with ξk = col(ξi,k)i∈I , we see that E[V̂k(x, ξk)|x] = V (x)
for all x = (u,µ,λ) ∈ X.

Fundamental to the analysis of stochastic approximation
algorithms is the control of the stochastic error, defined for
all k ∈ N as

εk(x, ξk) = V̂k(x, ξk)− V (x) ∀x ∈ X. (12)



Algorithm 1 Distributed Relaxed Inertial Stochastic Forward
Backward Forward (RISFBF)
Initialization: ui,0 ∈ Rdi , λi,0 ∈ Rm≥0, and µi,0 ∈ Rm.
Iteration k: Agent i
(1) Perform inertia step:

uini,k = ui,k + α(ui,k − ui,k−1)

µini,k = µi,k + α(µi,k − µi,k−1)

λini,k = λi,k + α(λi,k − λi,k−1).

(2) Receives uinj,k for j ∈ NA
i , λinj,k and µinj,k for j ∈ N λ

i and
update

umdi,k = proxγigi [u
in
i,k − γi(F̂i,k(uink , ξk) +D>i λi,k)]

µmdi,k = µini,k + σi
∑

j
wi,j(λ

in
j,k − λmdi,k )

λmdi,k = ΠRm≥0
{λini,k + τi(Diu

in
i,k − bi)

+ τ
∑

j
wi,j [(µ

in
i,k − µinj,k)− (λini,k − λinj,k)]}

(3) Receives umdj,k for j ∈ NA
i , λmdj,k and µmdj,k for j ∈ N λ

i

and performs a relaxation step:

ui,k+1 = (1− ρk)uini,k + ρk[umdi,k + γi(F̂i,k(uink , ξi,k)+

− F̂i,k(umdk , ηi,k)) + γiD
>
i (λini,k − λmdi,k )

µi,k+1 = (1− ρk)µini,k + ρk{µmdi,k +

σi
∑

j
wi,j [(λ

in
i,k − λinj,k)− (λmdi,k − λmdj,k )]}

λi,k+1 = (1− ρk)λini,k + ρk{[λmdi,k + τiDi(u
in
i,k − umdi,k )

− τi
∑

j∈Nλi
wi,j [(µ

md
i,k − µmdj,k )− (µini,k − µinj,k)]

+ τi
∑

j∈Nλi
wi,j [(λ

in
i,k − λinj,k)− (λmdi,k − λmdj,k )]}

Standing Assumption 7: There exists σ > 0 such that for
all k ∈ N, the stochastic error is such that the following hold
P-a.s. .

EP[εk(x, ξk) | x] = 0, and (13)

EP[‖εk(x, ξk)‖2 | x] ≤ σ2

Sk
. (14)

�

Remark 1: Assumption 7 is rather mild and standard
in stochastic optimization [35], [26] while Condition (13)
means that the random operator V̂k(x, ξk) is a conditionally
unbiased estimator of V (x). Note that (14) can be satisfied if
the sequence of martingale difference errors F̂k(u, ξ)−F (u)
satisfies a uniform variance bound [35], [26].

III. A DISTRIBUTED ALGORITHM

With the intent of boosting the convergence of distributed
Nash seeking algorithms, we propose a relaxed inertial
forward-backward-forward algorithm (RISFBF), presented in
Algorithm 1. Using operator-theoretic notation, the numeri-

M1 M2 M3

M4 M5 M6 M7

C1

C2 C3 C4

C5

C6C7C8C9C10

Fig. 1: Networked Cournot game: an edge from Ci to Mj means
that company i sells energy in market j.

cal scheme can be restated compactly as
Zk = Xk + αk(Xk −Xk−1),

Yk = JΨ−1T (Zk −Ψ−1V̂k(Zk, ξk)),
Xk+1 = (1− ρk)Zk+

ρk[Yk −Ψ−1(V̂k(Yk, ηk)− V̂k(Zk, ξk))],

(15)

where Zk = (uink ,µ
in
k ,λ

in
k ), Xk = (uk,µk,λk) and Yk =

(umdk ,µmdk ,λmdk ). The random sequence ηk = (ηi,k)i∈I is
another i.i.d. random sample, generated independently by
each agent after the first updating step in Algorithm 1 is
completed. The preconditioning matrix

Ψ = diag(γ−1,σ−1, τ−1) (16)

collects all agent-specific step sizes, so that γ =
diag{γ1Id1 , . . . , γNIdN } is a block-diagonal matrix with
γi > 0 (analogously, σ and τ ).

The iterations involve first an inertial step in the primal-
dual space. Then, there is a proximal step corresponding to
a gradient-based update given the stochastic estimate of the
pseudogradient and the local estimate of the dual variable,
followed by a consensus-enforcing estimate merging the
values of the dual variables of neighboring agents, and a
dual update in the spirit of Lagrangian methods. The last
step is a weighted average between the inertial iterate Zk
and the forward update Yk. The algorithm is distributed
and involves communication only in terms of dual variables.
This fact makes the scheme very attractive for decentralized
implementations in large networked game-theoretic settings.

Standing Assumption 4 and Lemma 1 imply that V is
monotone and `V,Ψ = `V /λmin(Ψ)-Lipschitz continuous in
the Ψ-induced norm [24].

Theorem 1: Suppose ν is a positive scalar where 0 < ν <

1. Let λmin(Ψ) ∈
(

0, 1−ν
2`V

)
, 0 < αk ≤ ᾱ < 1 and ρk =

(3−ν)(1−ᾱ)2

2(2α2
k−αk+1)(1+`V,Ψ)

. Then, the sequence (uk)k≥1 generated
by Algorithm 1 converges almost surely to a v-GNE of the
game in (4).

Proof: See Section V-B.
Remark 2: The classic SFBF algorithm [21] is obtained

as a special case by taking α = 0 and ρk = 1. Under noise-
free feedback, this scheme would coincide with the operator-
splitting approach of [24].

IV. NUMERICAL RESULTS

In this section, we report the results of some numerical
simulations to illustrate the improved performance of the



Fig. 2: Residual distance of the primal variable form the solution.

RISFBF algorithm (Algorithm 1) compared to the classic
SFBF [35], [24] and with the preconditioned SFB [26], [10].

Let us consider a networked Cournot problem with market
capacity constraints as, for instance, the electricity market
or the gas market, inspired by [36]. We suppose that there
are N = 10 firms selling energy in m = 7 markets. Not
every company sells quantities on each market. Instead, we
let Mi ⊆ {1, . . . ,m} denote the subset of markets firm
i is active on. Each company has a cost of production
ci(ui) = c>i ui where ci ∈ Rdi is chosen according to a trun-
cated normal distribution, i.e., [ci]j = max(N(2, 1), 0.6).
Moreover, each market j has an inverse demand function
Pj(u, ξ) = qj + pj(ξ)[Sj(u)]σ where qj = 400 and pj(ξ)
depends on the unknown random variable, e.g, the overall
demand. The values of pj(ξ) are randomly generated with a
normal distribution with mean 0.02 and bounded variance.
The variable Sj(u) =

∑
i∈I [ui]j couples the actions of

the companies and it represents the total energy sold in
market j. Hence, the cost function of each company is
Ji(ui,u−i) = ci(ui) −

∑
j∈Mi

E[Pj(u, ξ)[ui]j ]. The cor-
responding pseudogradient mapping is monotone, according
to [36, Section 4], for 1 < σ ≤ 3. Therefore, we fix
σ = 1.2. Moreover, we suppose that the companies have
a limited production, i.e., 0 ≤ [ui]j ≤ θi,j with θi,j =
max(N(250, 50), 0) for j ∈ Mi. This can be incorporated
by setting gi(ui) =

∑
j∈NAi

ι[0,θi,j ]([ui]j). Similarly, the
markets have a bounded capacity bj ∈ [5, 10], j = 1, . . . ,m,
and the coupling between the companies can be retrieved
from Figure 1.

The plot in Figure 2 shows the performance, in terms
of the residual, of our proposed algorithm in comparison
with the SFBF and SFB algorithms. The residual mapping
is defined as res(xk) = ‖xk − projC(x

k − F (xk))‖ and it
measures the distance of the primal variable from being a
Nash equilibrium. The thick line indicates the average per-
formance and the transparent area is the variability over 10
simulations. The acceleration parameter is updated according
to αk = ᾱ(1 − 1

k+1 ) with ᾱ = 0.1 and the relaxation

101 102 103 104
10-4

10-3

10-2

10-1

Fig. 3: Residual distance of the primal variable form the solution
for the RISFBF algorithm varying the inertial parameter.

parameter is ρk = (3−ν)(1−ᾱ)2

2(2α2
k−αk+1)(1+`V,Ψ)

, with ν = 0.01.
Figure 3 shows how the performance changes varying the
inertial parameter ᾱ while ρk = 1 is fixed. For the sake of
comparison, we also include the performance with the same
parameters as in Figure 2, the updating rule for ρk as in
Theorem 1 and the SFBF (αk = 0, ρk = 0).

V. ANALYSIS

A. Preparatory facts

To simplify the analysis, let us define the random processes
Ak := V̂k(Zk, ξk) and Bk := V̂k(Yk, ηk). Define the sub-
sigma algebra Fk := σ(x0, ξ0, . . . , ξk−1, η0, . . . , ηk−1), and
Gk := σ (Fk ∪ σ(ξk)). We introduce the centered error
processes Uk := Ak − E[Ak | Fk] and Wk := Bk − E[Bk |
Gk]. Note that Standing Assumption 7 implies that E[Uk |
Fk] = E[Wk | Fk] = 0 and that

(
E[‖Uk‖2Ψ−1 | Fk]

)
k≥1

and(
E[‖Wk‖2Ψ−1 | Fk]

)
k≥1

are summable sequences.
Define the residual function for the monotone inclusion as

rΨ(x) = ‖x − JΨ−1T (x − Ψ−1V (x))‖. For every Ψ � 0,
x ∈ zer(V + T )⇔ rΨ(x) = 0.

Lemma 2: For x, y ∈ X and α, β ≥ 0 with α+ β = 1, it
holds that ‖αx+ βy‖2 = α‖x‖2 + β‖y‖2 − αβ‖x− y‖2.

Lemma 3 (Robbins-Siegmund): [37, Lemma 11, page 50].
Let (Ω,F ,F = (Fk)k≥0,P) be a discrete stochastic basis.
Let (αk)k∈N, (θk)k∈N, (ηk)k∈N and (χk)k∈N be non-negative
processes such that

∑
k ηk <∞,

∑
k χk <∞ and let

∀k ∈ N, E[αk+1|Fk] + θk ≤ (1 + χk)αk + ηk a.s.

Then
∑
k θk < ∞ and (αk)k∈N converges a.s. to a non

negative random variable.
Lemma 4: For all k ≥ 1 we have

−‖Zk − Yk‖2Ψ ≤ ‖Uk‖2Ψ−1 − 1
2r

2
Ψ(Zk). (17)

Proof: By definition

1
2r

2
Ψ(Zk) = 1

2‖Zk − JΨ−1T (Zk −Ψ−1V (Zk)‖2

≤ ‖Zk − Yk‖2Ψ



+ ‖JΨ−1T (Zk −Ψ−1Ak)− JΨ−1T (Zk −Ψ−1V (Zk))‖2Ψ
≤ ‖Zk − Yk‖2Ψ + ‖Uk‖2Ψ−1

where the last inequality uses the non-expansiveness of the
resolvent operator JΨ−1T under the norm ‖·‖Ψ.

B. Convergence analysis of RISFBF algorithm

Define the stochastic processes

∆Mk := (3−ν)ρk
1+`V,Ψ

‖ek‖2 + νρk‖Uk‖2Ψ−1 , (18)

∆Nk(p) := 2ρk〈Wk, p− Yk〉, (19)

with ek := Wk − Uk. We start proving the following
fundamental inequality.

Lemma 5 (Fundamental Recursion): Fix p ∈ zer(V + T )
arbitrary, and set Rk = Yk + Ψ−1(Ak −Bk). For all k ≥ 0,
it holds true that

‖Xk+1 − p‖2Ψ ≤ (1 + αk)‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ
+ ∆Mk + ∆Nk(p)− νρk

2 r2
Ψ(Zk)

+ αk‖Xk −Xk−1‖2Ψ
(

2αk + 3−ν(1−αk)
2ρk(1+`V,Ψ)

)
− (1− αk)

(
3−ν

2ρk(1+`V,Ψ) − 1
)
‖Xk+1 −Xk‖2Ψ.

Proof: Start by observing

‖Zk − p‖2Ψ = ‖Zk − Yk + Yk −Rk +Rk − p‖2Ψ
= ‖Zk − Yk‖2Ψ − ‖Yk −Rk‖2Ψ + ‖Rk − p‖2Ψ
+ 2〈Zk −Rk, Yk − p〉Ψ.

Since

‖Yk −Rk‖2Ψ = ‖Ψ−1(Ak − Bk)‖2Ψ
= ‖V (Yk)− V (Zk) +Wk − Uk‖2Ψ−1

≤ 2`2V,Ψ‖Yk − Zk‖2Ψ + 2‖Wk − Uk‖2Ψ−1

= 2`2V,Ψ‖Yk − Zk‖2Ψ + 2‖ek‖2Ψ−1 . (20)

Hence,

‖Zk − p‖2Ψ
(20)
≥ (1− 2`2V,Ψ)‖Zk − Yk‖2Ψ − 2‖ek‖2Ψ−1

+ ‖Rk − p‖2Ψ + 2〈Zk −Rk, Yk − p〉Ψ.

Using the definition Yk, JΨ−1T (Zk −Ψ−1Ak), we get

Yk + Ψ−1T (Yk) 3 (Zk −Ψ−1Ak)

or T (Yk) 3 Ψ(Zk − Yk −Ψ−1Ak)

Since p ∈ zer(T + V ), (p,0) ∈ gr(T + V ), implying that
0− V (p) ∈ T (p). Consequently, by monotonicity of T , we
have that

〈Ψ(Zk − Yk −Ψ−1Ak) + V (p), Yk − p〉 ≥ 0

or 〈Zk − Yk −Ψ−1(Ak − Bk), Yk − p〉Ψ
≥ 〈V (Yk)− V (p), Yk − p〉+ 〈Bk − V (Yk), Yk − p〉.

By definition, Rk = Yk+Ψ−1(Ak−Bk), Wk = Bk−V (Yk),
and V (Yk) = E[Bk | Gk], we have that

〈Zk −Rk, Yk − p〉Ψ ≥ 〈V (Yk)− V (p), Yk − p〉
+ 〈Wk, Yk − p〉

Since V is a monotone operator, this implies 〈Zk−Rk, Yk−
p〉Ψ ≥ 〈Wk, Yk − p〉. Whence,

‖Zk − p‖2Ψ ≥(1− 2`2V,Ψ)‖Yk − Zk‖2Ψ + ‖Rk − p‖2Ψ
− 2‖ek‖2Ψ−1 + 2〈Wk, Yk − p〉.

Rearranging, we arrive at

‖Rk − p‖2Ψ ≤ ‖Zk − p‖2Ψ + 2‖ek‖2Ψ−1

−(1− 2`2V,Ψ)‖Yk − Zk‖2Ψ + 2〈Wk, p− Yk〉.
(21)

Next, we use Lemma 2 to arrive at

‖Xk+1 − p‖2Ψ = ‖(1− ρk)Zk + ρkRk − p‖2Ψ
= (1− ρk)‖Zk − p‖2Ψ + ρk‖Rk − p‖2Ψ
− ρk(1− ρk)‖Rk − Zk‖2Ψ
= (1− ρk)‖Zk − p‖2Ψ + ρk‖Rk − p‖2Ψ −

1−ρk
ρk
‖Xk+1 − Zk‖2Ψ

≤ ‖Zk − p‖2Ψ −
1−ρk
ρk
‖Xk+1 − Zk‖2Ψ + 2λ2ρk‖ek‖2Ψ−1

− ρk(1− 2`2V,Ψ)‖Zk − Yk‖2Ψ − 2ρk〈Wk, Yk − p〉
= ‖Zk − p‖2Ψ −

1−ρk
ρk
‖Xk+1 − Zk‖2Ψ − 2ρk〈Wk, Yk − p〉

− ρk((1− ν)− 2`2V,Ψ)‖Zk − Yk‖2Ψ − νρk‖Yk − Zk‖2Ψ
+ 2ρk‖ek‖2Ψ−1 .

Using (17), this implies

‖Xk+1 − p‖2Ψ ≤ ‖Zk − p‖2Ψ −
1−ρk
ρk
‖Xk+1 − Zk‖2Ψ

− ρk((1− ν)− 2`2V,Ψ)‖Zk − Yk‖2Ψ −
νρk
2 r2

Ψ(Zk)

− 2ρk〈Wk, Yk − p〉+ 2ρk‖ek‖2Ψ−1 + νρk‖Uk‖2Ψ−1 .

Furthermore,
1
ρk
‖Xk+1 − Zk‖Ψ = ‖Rk − Zk‖Ψ

≤ ‖Bk −Ak‖Ψ−1 + ‖Yk − Zk‖Ψ
≤ (1 + `V,Ψ)‖Yk − Zk‖Ψ + ‖ek‖Ψ−1 ,

which implies
1

2ρ2
k
‖Xk+1 − Zk‖2Ψ ≤ (1 + `V,Ψ)2‖Yk − Zk‖2Ψ + ‖ek‖2Ψ−1 .

Multiplying both sides by ρk(1−ν−2`V,Ψ)
1+`V,Ψ

, we obtain

1−ν−2`V,Ψ
2ρk

(1 + `V,Ψ)‖Xk+1 − Zk‖2Ψ
≤ ρk(1− ν − 2`V,Ψ)(1 + `V,Ψ)‖Yk − Zk‖2Ψ
+

ρk(1−ν−2`V,Ψ)
1+`V,Ψ

‖ek‖2Ψ−1 .

Rearranging terms, and noting that (1− ν − 2`V,Ψ)(1 +
`V,Ψ) ≤ 1− ν − 2`2V,Ψ, the above estimate becomes

− ρk(1− ν − 2`2V,Ψ)‖Yk − Zk‖2Ψ
≤ − 1−ν−2`V,Ψ

2ρk
(1 + `V,Ψ)‖Xk+1 − Zk‖2Ψ +

ρk(1−ν−2`V,ΨΨ)
1+`V,Ψ

‖ek‖2Ψ−1 .

Substituting this bound into the first majorization of the
anchor process ‖Xk+1 − p‖2Ψ, we see

‖Xk+1 − p‖2Ψ ≤ ‖Zk − p‖2Ψ + νρk‖Uk‖2Ψ−1 − νρk
2 r2

Ψ(Zk)

−
(

1−ρk
ρk

+
1−ν−2`V,Ψ
2ρk(1+`V,Ψ)

)
‖Xk+1 − Zk‖2Ψ

+ ρk‖ek‖2Ψ−1

(
2 +

1−ν−2`V,Ψ
1+`V,Ψ

)
− 2ρk〈Wk, Yk − p〉.



Observe that

‖Xk+1 − Zk‖2Ψ ≥ (1− αk)‖Xk+1 −Xk‖2Ψ
+ (α2

k − αk)‖Xk −Xk−1‖2Ψ, (22)

‖Zk − p‖2Ψ = (1 + αk)‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ
+ αk(1 + αk)‖Xk −Xk−1‖2Ψ. (23)

Choose parameters αk and ρk such that 3−ν−2ρk(1+`V,Ψ)
2ρk(1+`V,Ψ) >

0. Then, using both of these relations in the last estimate for
‖Xk+1 − p‖2Ψ, we arrive at

‖Xk+1 − p‖2Ψ ≤ (1 + αk)‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ
+ αk(1 + αk)‖Xk −Xk−1‖2Ψ − 2ρk〈Wk+1, Yk − p〉
− νρk

2 r2
Ψ(Zk) + (3−ν)ρk

1+`V,Ψ
‖ek‖2Ψ−1 + νρk‖Uk‖2Ψ−1

−
(

3−ν
2ρk(1+`V,Ψ) − 1

)
[(1− αk)‖Xk+1 −Xk‖2Ψ

+ (α2
k − αk)‖Xk −Xk−1‖2Ψ].

Using the respective definitions of the stochastic increments
∆Mk+1,∆Nk(p) in (18) and (19), we arrive at

‖Xk+1 − p‖2Ψ ≤ (1 + αk)‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ
+ ∆Mk + ∆Nk(p)− νρk

2 r2
Ψ(Zk)

+ αk‖Xk −Xk−1‖2Ψ
(

2αk + (3−ν)(1−αk)
2ρk(1+`V,Ψ)

)
− (1− αk)

(
3−ν

2ρk(1+`V,Ψ) − 1
)
‖Xk+1 −Xk‖2Ψ

Rearranging the fundamental recursion, we see

‖Xk+1 − p‖2Ψ − αk‖Xk − p‖2Ψ
+ (1− αk)

(
3−ν

2ρk(1+`V,Ψ) − 1
)
‖Xk+1 −Xk‖2Ψ

≤ ‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ + ∆Mk + ∆Nk(p)

+ (1− αk)
(

3−ν
2ρk(1+`V,Ψ) − 1

)
‖Xk −Xk−1‖2Ψ −

νρk
2 r2

Ψ(Zk)

+
(

2α2
k + (1− αk)

(
1− (3−ν)(1−αk)

2ρk(1+`V,Ψ)

))
‖Xk −Xk−1‖2Ψ.

Suppose (αk)k is a non-decreasing sequence satisfying 0 <

αk ≤ ᾱ < 1 and ρk = (3−ν)(1−ᾱ)2

2(2α2
k−αk+1)(1+`V,Ψ)

. Since ρk ≤
(3−ν)(1−αk)2

2(2α2
k−αk+1)(1+`V,Ψ)

, we claim that

‖Xk+1 − p‖2Ψ − αk‖Xk − p‖2Ψ
+ (1− αk)

(
3−ν

2ρk(1+`V,Ψ) − 1
)
‖Xk+1 −Xk‖2Ψ

≥ ‖Xk+1 − p‖2Ψ − αk‖Xk − p‖2Ψ
+ (1− αk)

(
2α2
k−αk+1

(1−αk)2 − 1
)
‖Xk+1 −Xk‖2Ψ ≥ 0.

To see this, observe that for any α > 0,

‖Xk+1 − p‖2Ψ − α‖Xk − p‖2Ψ
+ (1− α)

(
2α2−α+1

(1−α)2 − 1
)
‖Xk+1 −Xk‖2Ψ

> ‖Xk+1 − p‖2Ψ − α‖Xk − p‖2Ψ
+ (1− α)

(
α2−α+1
(1−α)2 − 1

)
‖Xk+1 −Xk‖2Ψ

= ‖Xk+1 − p‖2Ψ − α‖Xk − p‖2Ψ

−
(
α2−α+1

1−α − 1−2α+α2

1−α

)
‖Xk+1 −Xk‖2Ψ

= (α+ (1− α))‖Xk+1 − p‖2Ψ − α‖Xk − p‖2Ψ
+
(
α+ α2

1−α

)
‖Xk+1 −Xk‖2Ψ

≥ α‖Xk+1 − p‖2Ψ + α‖Xk+1 −Xk‖2Ψ − α‖Xk − p‖2Ψ
+ 2α‖Xk+1 − p‖Ψ · ‖Xk+1 −Xk‖Ψ
= α(‖Xk+1 − p‖Ψ + ‖Xk+1 −Xk‖Ψ)2 − α‖Xk − p‖2Ψ
≥ α‖Xk+1 − p+Xk −Xk+1‖2Ψ − α‖Xk − p‖2Ψ = 0

where the third inequality follows from Young’s inequality.
Under this specific coupling of the inertial and relaxation
parameters, it holds that 2α2

k+(1−αk)
(

1− (3−ν)(1−αk)
2ρk(1+`V,Ψ)

)
≤

0. Now, let Hk(p) = ‖Xk − p‖2Ψ − αk‖Xk−1 − p‖2Ψ +

(1 − αk)
(

3−ν
2ρk(1+`V,Ψ) − 1

)
‖Xk − Xk−1‖2Ψ, and δk =

νρk
2 r2

Ψ(Zk) −
(

2α2
k + (1− αk)

(
1− (3−ν)(1−αk)

2ρk(1+`V,Ψ)

))
‖Xk −

Xk−1‖2Ψ. Then, (1 − αk+1)
(

3−ν
2ρk+1(1+`V,Ψ) − 1

)
‖Xk+1 −

Xk‖2Ψ ≤ (1−αk)
(

3−ν
2ρk(1+`V,Ψ) − 1

)
‖Xk+1−Xk‖2Ψ. There-

fore, for all k ≥ 0, we conclude

E[Hk+1(p) | Fk] ≤ Hk(p)− δk(p) + E[∆Mk | Fk].

Using Standing Assumption 7, we deduce that
(E[∆Mk | Fk])k∈N is summable, and thus we can apply
Lemma 3 to the above recursion. Hence, we readily deduce
the existence of an a.s. finite limiting random variable
H∞(p) such that P (limk→∞Hk(p) = H∞(p)) = 1 and∑
k∈N δk(p))k∈N <∞. Therefore, there exists a measurable

set Ω0 ∈ F with P(Ω0) = 1 such that for each ω ∈ Ω0 it
holds true that

lim
k→∞

‖Xk(ω)−Xk−1(ω)‖Ψ = 0 and

lim
k→∞

νρk
2 r2

Ψ(Zk(ω)) = 0.

Assuming that lim infk→∞ ρk > 0, we conclude that
limk→∞ r2

Ψ(Zk) = 0 P-a.s. Therefore, we conclude that
(Xk)k≥1 converges a.s. to a limiting random variable with
values in zer(V + T ).

VI. CONCLUSION

In the context of shared constraint variants of stochastic
generalized Nash equilibrium problems, the convergence of
the forward-backward-forward algorithm can be boosted via
an integrated acceleration-relaxation procedure. In the pres-
ence of stochastic uncertainty, convergence can be proved
assuming only monotonicity and Lipschitz continuity of the
expected-valued operator. Specifically, our main result is the
claim of almost sure global convergence of the trajectory
of actions to the set of variational equilibria. In future
research, we aim to investigate the question how one may
relax monotonicity and Lipschitz continuity assumptions
even further, derive rate statements, and examine how partial
information may be introduced into the algorithm.
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[27] A. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson, “Extragradient
method with variance reduction for stochastic variational inequalities,”
SIAM Journal on Optimization, vol. 27, no. 2, pp. 686–724

[28] F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,”
4or, vol. 5, no. 3, pp. 173–210, 2007.

[29] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash games
and variational inequalities,” Operations Research Letters, vol. 35,
no. 2, pp. 159–164, 2007.

[30] F. Facchinei and J.-s. Pang, Finite-Dimensional Variational Inequal-
ities and Complementarity Problems - Volume I and Volume II.
Springer Series in Operations Research, 2003.

[31] A. Auslender and M. Teboulle, “Lagrangian duality and related
multiplier methods for variational inequality problems,” SIAM Journal
on Optimization, vol. 10, no. 4, pp. 1097–1115, 2000.

[32] C. Godsil and G. F. Royle, Algebraic graph theory. Springer Science
& Business Media, 2013, vol. 207.

[33] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample
size selection in optimization methods for machine learning,”
Mathematical Programming, vol. 134, no. 1, pp. 127–155, 2012.
[Online]. Available: https://doi.org/10.1007/s10107-012-0572-5

[34] J. Lei and U. V. Shanbhag, “Distributed variable sample-size gradient-
response and best-response schemes for stochastic nash equilibrium
problems over graphs,” arXiv preprint arXiv:1811.11246, 2018.

[35] R. Bot, P. Mertikopoulos, M. Staudigl, and P. Vuong, “Mini-batch
forward-backward-forward methods for solving stochastic variational
inequalities,” Stochastic Systems, 2020.

[36] A. Kannan and U. V. Shanbhag, “Distributed computation of equilibria
in monotone nash games via iterative regularization techniques,” SIAM
Journal on Optimization, vol. 22, no. 4, pp. 1177–1205, 2012.

[37] B. T. Polyak, Introduction to Optimization. Optimization Software,
1987.


