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ABSTRACT

Game theory provides essential analysis in many applications of strategic interactions. However,
the question of how to construct a game model and what is its fidelity is seldom addressed. In
this work, we consider learning in a class of repeated zero-sum games with unknown, time-varying
payoff matrix, and noisy feedbacks, by making use of an ensemble of benchmark game models.
These models can be pre-trained and collected dynamically during sequential plays. They serve
as prior side information and imperfectly underpin the unknown true game model. We propose
OFULinMat, an episodic learning algorithm that integrates the adaptive estimation of game models
and the learning of the strategies. The proposed algorithm is shown to achieve a sublinear bound on
the saddle-point regret. We show that this algorithm is provably efficient through both theoretical
analysis and numerical examples. We use a dynamic honeypot allocation game as a case study to
illustrate and corroborate our results. We also discuss the relationship and highlight the difference
between our framework and the classical adversarial multi-armed bandit framework.

1 INTRODUCTION

Game theory has been used to model and analyze complex and strategic multi-agent interactions, and has a wide
range of applications in economics, sociology, politics, and engineering. Game theoretic analysis often relies on the
construction or estimation of the underlying game models. For example, Empirical Game Theoretical Analysis (EGTA)
[1] uses empirical observations from a priori black-box simulator to analyze the equilibria. Model-based reinforcement
learning (RL) is another approach that can guarantee the sample efficiency as well as enable learning online tasks. In
this work, we consider the setting where the autonomous agent aims to learn an unknown repeated zero-sum game
using an ensemble of priori known expert game models. The target game can be either a black-box simulator, or a
multi-agent task with unknown utility functions.

We propose the framework of approximating an underlying unknown zero-sum game using a set of a priori zero-
sum game models, which we refer to as expert games. In our framework, agents (players) repeatedly interact in an
environment for a period of time. The total duration is divided into episodes and every episode is divided into a
fixed number of rounds. An episode starts with revealing the expert games to the players. At each round, agents
simultaneously observe an executed action pair and its corresponding noisy payoffs. The players can estimate the game
based on their observations and choose strategies that minimize the cumulative regret.

This work focuses on the class of zero-sum normal-form games, which can be represented by a matrix. The game
consists of a row player and a column player. The game matrix is unknown to the players ahead of time. The task of one
player, say, the row player is to minimize the loss of the sequential play, no matter what her opponent does. If the game
matrix were known, a security strategy would be to play the saddle-point mixed strategy at each round. One challenge
of the problem is that the players need to find the best-effort strategies based on historical observations without knowing
the game.

Multi-Armed Bandit (MAB) [2] is a fundamental sequential decision-making framework in an unknown environment.
The contextual bandit is a variant of the MAB framework that allows agents to make decisions with side information.
The side information is any knowledge that is not the direct input for a learning task, but correlates with the intrinsic
features of the task. In our framework, expert games can be viewed as the source of side information. The knowledge
of expert games can be acquired in multiple ways, e.g., from the past experience of the players or a collaborative agent.

*The authors are with the Department of Electrical and Computer Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY, 11201 USA; E-mail: {yp1170,qz494}@nyu.edu
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We develop a regret-efficient algorithm that allows the players to estimate the game using the contextual information of
expert games and adapt their strategies to minimize cumulative regrets. The notion of the regret we define here is the
saddle-point regret, which is slightly weaker than the best-response regret. Yet, they are equivalent when a player faces
an opponent playing saddle-point strategy. We show that our algorithm outperforms the exponential-weight algorithm
for exploration and exploitation (Exp3) in terms of the performance across the entire time period. This result arises
from the following features of our design:

1) Our algorithm explores the matrix structure and takes advantage of the knowledge of the expert games;

2) Our algorithm achieves a near-optimal policy that is sufficient to achieve the values under the saddle-point
equilibria.

3) Our algorithm is aware of the time-varying nature of underlying matrix game in contrast to Exp3.

A direct result of the algorithm is that the agent can suffer only Õ(
√
KT ) saddle-point regret in the sequential play

(here K is the total number of episodes and T is the total number of rounds in each episode), while theoretical result
shows that Exp3 can only reach a Õ(K

√
T ) bound on best-response regret. We also show that the agent can quickly

learn the weighting coefficients of the expert games, as the interaction proceeds.

One important application of the proposed algorithm is in the domain of cybersecurity. The interaction between an
attacker and a defender naturally leads to zero-sum game scenario. However, in many cases, the knowledge of the true
underlying game is expensive and non-stationary. For example, in network systems, the exact configuration information
for every individual node may be incomplete, and the network states would often be time-varying. Our framework
can leverage the expert domain knowledge of the network and form an ensemble of expert security games. They
represent the expert knowledge of the attack model as of the episode the game is played. The network system may not
encounter the same attacker in each episode. The underlying security game can change over the episodes. Furthermore,
a sophisticated attacker may exploit a zero-day vulnerability unknown to the defender. By the end of the episode, the
defender will learn about the zero-day attacker and expand the expert domain knowledge by including the experienced
zero-day attack encoded as a new expert security game. The proposed algorithm will enable the learning and adaptation
of the defense strategies at each round and episode to secure the network.

We present our problem formulation along with discussions in Section 2. Related works will be discussed in Section 3.
The algorithmic development and theoretic analysis will be presented in Section 4. A case study and conclusions will
be stated in Sections 5 and 6, respectively.

2 PROBLEM FORMULATION

2.1 Non-stationary Games with Side Information

We define a general class of repeated two-player zero-sum game containing multiple time scales and expert information.
It can be encapsulated by the tuple

〈
{P1,P2}, {[n1], [n2]},K, T, {M (k),M(k)}Kk=1

〉
. This game is played by a row

player P1 (the maximizer) and a column player P2 (the minimizer). Their action sets are [n1] = {1, . . . , n1} and
[n2] := {1, . . . , n2}, respectively, and remain unchanged during the play. The duration of their interactions is divided
into episodes k = 1, . . . ,K, and each episode contains a finite number of time fractions t = 1, . . . , T . The payoff
matrix M (k) ∈ Rn1×n2 defines the target game or ground truth game underlying the environment for each episode k.
It is naturally evolving across episodes, but at the finer time scale t, it is time-invariant, so that in each episode players
play a static game for finite rounds. Associated with each M (k) is a set of matrices that define the expert games, they
are also called side information or contextual matrices, and are revealed to the players at the beginning of every episode.
The expert games M(k) = {M (k)

1 , . . . ,M
(k)
S }, where the cardinality |M(k)| = S. Let subscripts s = 1, . . . , S index

expert games. We impose a regularity assumption that each M (k)
s ∈ [0, 1]n1×n2 is of the same dimension as the target

game and they capture the same action capability of both players. Figure 1 illustrates the timeline of the sequential play.

Denote the strategies of P1 and P2 by µ ∈ Π1, ν ∈ Π2, with their strategy space Π1 and Π2 being (n1−1)−dimensional
and (n2 − 1)−dimensional simplex, respectively, i.e., Π1 := ∆(n1) and Π2 := ∆(n2). In every episode k, there exists
a mixed-strategy saddle-point equilibrium that is optimal for both players. We denote this mixed-strategy saddle-point
value of the ground truth game M (k) as val(M (k)):

val(M (k)) := sup
µ∈Π1

inf
ν∈Π2

µ>M (k)ν = inf
ν∈Π2

sup
µ∈Π1

µ>M (k)ν

2



Figure 1: Illustration of the timeline of episodic learning. The learning is divided into multiple episode. Each episode
has multiple rounds. Oracle reveals the expert game M(k) at the beginning of each episode. At round t in an episode,
the players choose the action pair (it, jt) of an unknown zero-sum matrix game M (k). The payoff entry M

(k)
it,jt

is
observed by the players at each round. The underlying unknown game M (k) may change at each episode k.

The players’ goal is to play as close to the saddle-point strategy as possible to ensure robustness in a minimax sense.
Yet they have no knowledge about M (k). Hence the players need to exploit the expert information to estimate the game
using their accumulated observations.

2.2 Parametric Assumption and Learning Protocol

2.2.1 Linear Combinations of Expert Games

We aim to find the implications of expert predictions by exploring the stationary pattern, this pattern is encoded by
a parametric assumption relating the underlying payoff matrix M (k) and these contextual matrices, which states the
following:

M (k) = h(M(k); θ∗)

where the matrix-valued function h : [0, 1]S×n1×n2 → Rn1×n2 is assumed to be stationarily parameterized by θ∗ living
in some parameter space. In particular, we assume that h takes a linear form, i.e., θ∗ ∈ RS and the estimated ground
truth game is a linear combination of expert games. Therefore, given a set of expert games, h can be expressed as a
function of the variable θ:

h(M(k); θ) =

S∑
s=1

θsM
(k)
s (1)

2.2.2 Learning through Feedback

While being aware of the contextual matrices, the players do not have access to the true game; instead they learn the
underlying matrix M (k) through sequential interactions: at each round t of episode k, players choose their own actions
it ∈ {1, . . . , n1} and jt ∈ {1, . . . , n2}, and obtain their payoffs r(k)

t and −r(k)
t :

r
(k)
t = M

(k)
[it,jt]

+ η
(k)
t (2)

Here, we use M
(k)
[i,j] to denote the it, jt-th entry of the matrix M (k). The noise η(k)

t is assumed to be a Martingale
difference sequence that is conditionally 1-sub-Gaussian, i.e.,

E[η
(k)
t |H

(k)
t−1] = 0, E(exp(γη

(k)
t )|H(k)

t−1) ≤ exp(
γ2

2
),

whereH(k)
t−1 := {(i(k

′)
t , j

(k′)
t , r

(k′)
t )Tt=1,M

(k′)}k−1
k′=1

⋃
{(i(k)

t , j
(k)
t , r

(k)
t )t−1

t=1,M
(k)} is the historical observations up

to episode k and prior to time t. We introduce σ(H(k)
t−1) as the σ−field generated by the history. Without loss of
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generality, we only discuss the control of P1. Thus, at time (k − 1)T + t, an algorithm alg is a σ(H(k)
t−1)-measurable

mapping from the set of possible histories H(k)
t−1 to the strategy space Π1, generating strategy µ(k)

t . We denote P2’s
strategy as ν(k)

t , but we do not make specific assumptions about ν(k)
t .

2.3 Performance Metric

A plausible goal of learning in such an environment from one player’s perspective is to minimize the cumulative regret
against some benchmark strategies. In a single-agent setting, the benchmark strategy is the hindsight optimal action,
but since we have a multi-agent environment, the hindsight optimum is changing round by round, this makes tracking
the internal regret per round hard to analyze. Here we discuss several cases of regret definition from one player’s
perspective.

2.3.1 Best Response Regret

The best-response regret is defined as the gap between the actual expected performance and the expected outcome of
best response against the opponent’s mixed-strategy. Let ν(k)

t be the mixed-strategy that P2 uses in episode k at round t,
player P1’s best response regret BR of alg during the K episodes play is defined as:

BR(alg,K) = Eη,alg

[
K∑
k=1

T∑
t=1

sup
µ∈Π1

µ>M (k)ν
(k)
t − r(k)

t

]
where the randomness comes from the learner’s algorithm as well as the noise.

2.3.2 Exploitability Regret

The exploitability regret is defined by adding up two player’s best-response regret.

ER(alg,K) = Eη,alg
[ K∑
k=1

T∑
t=1

sup
µ∈Π1

µ>M (k)ν
(k)
t −

inf
ν∈Π2

µ
(k)>
t M (k)ν

]
= Eη,alg

[
K∑
k=1

T∑
t=1

sup
µ∈Π1

µ>M (k)ν
(k)
t − r(k)

t

]
︸ ︷︷ ︸

BR of P1

+ Eη,alg

[
K∑
k=1

T∑
t=1

r
(k)
t − inf

ν∈Π2
µ

(k)>
t M (k)ν

]
︸ ︷︷ ︸

BR of P2

If the exploitability regret is asymptotically small, the two-agent system will closely reach the saddle-point equilibrium.
However, oftentimes the exploitability regret analysis is limited to self-play or scenarios where both player’s learning
procedures are known.

2.3.3 Saddle-Point Regret

We focus on Saddle-Point regret, which is defined using the gap between the saddle-point value and the actual expected
performance. The saddle-point regret SR for P1 using alg during K episodes of play is:

SR(alg,K) = Eη,alg

[
K∑
k=1

T∑
t=1

val(M (k))− r(k)
t

]
. (3)

We define the pseudo saddle-point regret SR̂ as a random difference between the saddle-point value and the expected
reward:

SR̂(alg,K) =

K∑
k=1

T∑
t=1

val(M (k))− µ(k)
t M (k)ν

(k)
t .

4



2.3.4 Discussion and Comparison with Adversarial Setting

For a fixed sequence of strategies executed:
SR ≤ BR ≤ ER.

Therefore, guaranteeing small ER or BR naturally guarantees small SR. However, on the one hand, small ER
requires the regret of opponent being small. On the other hand, SR analysis requires tracking the opponent’s strategy,
thus further assumption about the opponent is usually needed. We note that since in many cases the opponent might not
even be a learning agent, it is ideal to ensure good performance regardless of what the opponent’s strategy is, which
motivates us to define the saddle-point regret.

It is also worth noting that our framework can be viewed as an adversarial MAB problem, by rewriting (2) as
r

(k)
t = M

(k)
t,it

, where M (k) ∈ RT×n1 is the sequence of column chosen by the opponent plus the random noise. Thus,
the Exp3 algorithm is applicable to our problem. The details of the algorithm can be found in [3]. Adversarial MAB
algorithms such as Exp3 and their variants usually deal with the external regret R. When applied to a static matrix
game, the regret is defined as following:

R(alg,K) = Eη,alg

[
K∑
k=1

max
i∈[n1]

T∑
t=1

M
(k)
i,jt
− r(k)

t

]
(4)

This regret is slightly larger than saddle-point regret: R ≥ SR. However, applying Exp3-type of algorithms for K
times will cause the agent to suffer linear regret, while our algorithm reaches a bound that is sublinear in K. Or,
applying Exp3 for once would only ensure the regret comparing to a hindsight optimal action (i.e., the regret defined as
Eη,alg

[
maxi∈[n1]

∑K
k=1

∑T
t=1 M

(k)
i,jt
− r(k)

t

]
) to be small, this performance metric is weaker than what is defined in

(3).

3 RELATED WORK

3.1 Learning with a Mixture of Models

Using multiple game models to approximate the real environment was proposed in [4], it assumes that the existence
of equilibrium data and focuses on the parametric identification and numerical solution. However, this idea of model
mixtures can be traced back to multiple model RL [5]. The authors decompose the given task domain into a convex
combination of multiple models. Instead of estimating the coefficients, they aim to train the model ensembles and their
mixture weights. The linear combination framework was proposed in [6], which decomposes the reward and transition
function using state-action dependent features. The model uncertainty setting receives wide interests and is studied in
single-agent RL literature, its natural extension to the multi-agent setting, however, is rarely studied.

3.2 Robust Contextual Multi-Armed Bandits

A game with noisy payoffs can be viewed as a special case of robust MAB problems, see [7, 8]. Because from one
player’s perspective, the actions can be viewed as arms, but the outcome of each arm is partially determined by another
player’s action. Our framework can be viewed as a contextual extension of it, which is a special case of the robust
MAB problem. Since the game model ensembles can be viewed as context for each action/arm. Nevertheless, unlike
general robust MAB problems, the capability of the adversary is encoded into a matrix, which makes its action more
predictable. Thus, equipped with a game theoretic viewpoint, the robust strategy is to make the worst-case best-response
in a minimax sense.

3.3 Learning in Games with Side Information

Another viewing angle is to treat this problem as learning in games with side information, a closely related formulation
has been studied in [9]. In studying the repeatedly played game driven by context information, the authors have
modeled the correlation between game payoff and contexts using kernel-based non-parametric methods. However,
the focus of their work is to study convergence to an newly proposed equilibria concept, called contextual coarse
correlated equilibria, and its efficiency in a more generic setting. Our work targets zero-sum cases with model ensembles
representing the context, this additional information enables parametric estimation and allows for direct computation of
saddle-point strategies.
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4 THEORETICAL ANALYSIS

The key idea for ensuring learning efficiency is to implement the optimistic exploration of underlying game entries
and select actions accordingly. This principle is called Optimism in the Face of Uncertainty (OFU). Note that since (1)
holds, exploring one game entry will give information about other game entries, as all the action-payoffs are correlated
through the parameter θ∗. Thus, estimating the true parameter θ∗ is essential to the algorithmic development. To do
this, we leverage a Kalman-filter-type result to obtain an adaptive minimum-variance estimation θ̂(k). We construct the
confidence region around θ̂(k) for optimistic exploration of the underlying matrix M (k).

4.1 Online Confidence Set Construction

At round t of episode k , P1 and P2 jointly choose the entry of the unknown game matrix that corresponds to row it
and column jt, and the payoff of this entry is partially revealed by the expert games. Let

z
(k)
it,jt

:=
(

[M
(k)
1 ]it,jt , [M

(k)
2 ]it,jt , . . . , [M

(k)
S ]it,jt

)
be the vector that contains the side information of one game entry, then the payoff of P1 playing it and P2 playing jt is:

r
(k)
t = 〈θ∗, z(k)

t 〉+ η
(k)
t , (5)

where we use the shorthand notation z(k)
t for z(k)

it,jt
. We employ a minimum-variance estimation framework regularized

by l2-norm of θ,

min
θ

k−1∑
k′=1

T∑
t=1

(r
(k′)
t − 〈θ, z(k′)

t 〉)2 + λ‖θ‖22 (6)

Thus, the λ-l2-regularized least square estimator of θ∗ is θ̂k:

θ̂(k) =

(
λI +

k−1∑
k′=1

T∑
t=1

z
(k′)
t z

(k′)>
t

)−1 k−1∑
k′=1

T∑
t=1

z
(k′)
t r

(k′)
t

= V −1
k−1Yk−1,

(7)

where the normalizing matrices Vk is defined in (8), in which we introduce its imaginary intermediate form Vk−1,t,

Vk−1 := λI +

k∑
k′=1

T∑
t=1

z
(k′)
t z

(k′)>
t

Vk−1,t := λI +
∑
k′<k

T∑
t′=1

z
(k′)
t′ z

(k′)>
t′ +

t∑
t′=1

z
(k)
t′ z

(k)>
t′ ,

(8)

where k = 1, . . ., and the summation of z(k)
t r

(k)
t ,

Yk :=

k∑
k′=1

T∑
t=1

z
(k′)
t r

(k′)
t

Since the noise η(k)
t is 1-sub-Gaussian, we have an elliptical δ-confidence ball Ck(δ):

Ck(δ) =
{
θ ∈ RS : ‖θ − θ̂(k)‖2Vk−1

≤ βk(δ)
}

(9)

where δ > 0 is a confidence parameter and the ball radius term

βk(δ) =


√√√√2 ln

(
det (Vk)

1/2
det(λI)−1/2

δ

)
+ λ1/2B

2

(10)

Before we introduce a technical lemma that is central to our analysis of the algorithm, it is useful to impose a regularity
assumption over the parameter space.
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Assumption 1. The true underlying parameter θ∗ is inside a Euclidean ball B with probability 1, where B is defined
as:

B =
{
θ ∈ RS : ‖θ‖2 ≤ B2

}
.

Now we arrive at the following lemma which allows us to quantify the probability of constructed confidence bounds.

Lemma 1 ([10] Corollary 10.). With hidden linear model (5) satisfied by θ∗ ∈ Rd, and assumption 1 is given, consider
the λ-l2-regularized least square estimation θ̂ defined in (7) with λ > 0, where z(k)

t are arbitrary random sequences;
Vk are designed as in (8) to indicate the inverse of the covariance matrix. Then, with probability at least 1− δ,

∀ k > 0 ‖θ∗ − θ̂(k)‖2Vk−1
≤ βk(δ), (11)

where βk(δ), as defined in (10), is an increasing sequence.

Equivalently, define Ek as the event such that θ∗ ∈ Ck(δ) holds, where the elliptical ball Ck(δ) is defined in (9). Then,
we have P (∃k ∈ N+ : Ek

c) ≤ δ.

4.2 The Upper Confidence Bound Algorithm

Our designed procedure, called Optimism in the Face of Uncertainty for Linear Matrix (OFULinMat), is shown in
Algorithm 1. We clarify that, at every episode k, the row player is executing a fixed policy µ(k) at the smaller time scale
t ∈ [T ]. The reason is due to economic considerations. On one hand, it is not computationally efficient to update the
estimation of θ whenever encountering a new reward feedback. On the other hand, since the underlying game models
are consistent within the smaller time scale, it is not necessary to adjust the policy per time step.

Algorithm 1: Optimism in the Face of Uncertainty for Linear Matrix (OFULinMat)
Input : B > 0, 0 < δ < 1, λ > 0;
Initialize V0 = λI , and Y0 = 0;
for k = 1, 2, . . . do

Oracle reveals M (k)
1 ,M

(k)
2 , . . . ,M

(k)
S ;

Estimate θ̂(k) = V −1
k−1Yk−1 ;

Compute θ̃(k) ∈ arg maxθ∈Ck(δ)
⋂
B val(

∑S
s=1 θsM

(k)
s ) ;

Compute µ(k) ∈ arg maxµ∈Π1 minν∈Π2 µ>(
∑S
s=1 θ̃

(k)
s M

(k)
s )ν ;

for t = 1 to T do
Execute i(k)

t ∼ µ(k)(·) ;
Receive opponent’s action jt, and reward rt ;

end
Save (z

(k)
1 , z

(k)
2 , . . . , z

(k)
T ) and (r

(k)
1 , r

(k)
2 . . . , r

(k)
T ) as Z>k and X>k ;

Vk := Vk−1 + Z>k Zk;
Yk := Yk−1 + Z>k Xk;

end

4.3 Main Results

Assumption 2 (Regularity Assumption).

(a) For any opponent strategy ν, the maximum regret gap is:

max
k∈[K]

sup
µ1,µ2∈Π1

(µ1 − µ2)>M (k)ν ≤ 1.

(b) The increment ratio of det(Vk) is bounded by constant κ− 1 (κ > 1) at every episode, i.e.,

det(Vk)

det(Vk−1)
≤ κ, k = 1, 2, · · · (12)

7



Remark 1.

(a) The first assumption restricts the regret per time step to be limited by a constant 1 so we do not have to repeat
it in later analysis.

(b) The assumption that limits the increment ratio of determinant is reasonable since we can write detVk,t

detVk,t−1
=

1 + ‖z(k)
t z

(k)>
t ‖V −1

k,t−1
, while ‖z(k)

t ‖ does not grow over time, Vk,t−1 are constantly increasing, thus we can
safely assume that detVk does not change too much over the limited T time-step duration.

Theorem 1. Under the conditions of assumptions 1 and 2, with probability 1− δ, the pseudo saddle-point regret of
OFULinMat with regularizing parameter λ satisfies

SR̂(OFULinMat,K) ≤

√
8κKTSβK(δ) ln

(
λS +KTS

λS

)
, (13)

where κ is a sufficiently large constant, and
√
βK(δ) is chosen to be

√
βK(δ) =

√
λB +

√
2 ln(

1

δ
) + S ln

(
λS +KTS

λS

)
.

A direct result obtained from Theorem 1 is that the expected regret of algorithm OFULinMat can be bounded by
Corollary 1. Under the conditions of assumptions 1 and 2, choosing δ = 1/KT , the saddle-point regret of OFULinMat
with regularizing parameter λ satisfies:

SR(OFULinMat,K) ≤ Õ(S
√
KT ) (14)

4.4 Regret Analysis

4.4.1 Technical Lemmas

.
Lemma 2 (Lemma 15, [10]). Let A,B ∈ RS×S be two positive semi-definite matrices such that A � B, then following
identity holds:

sup
z∈RS , z 6=0

z>Az

z>Bz
≤ det(A)

det(B)
.

Lemma 3 (Bounding ‖z(k)
t ‖2V −1

k−1

). Let V0 ∈ RS×S be positive definite and the sequence of vectors z(k)
t ∈ RS satisfies

‖z(k)
t ‖2 ≤

√
S < +∞ for all t ∈ [T ] and k ∈ [K], let Vk−1,t be as defined in (8). Then,

K∑
k=1

T∑
t=1

min{1, ‖z(k)
t ‖2V −1

k−1,t

} ≤ 2 ln

(
det(VK)

det(V0)

)
≤ 2S ln

(
tr(V0) +KTS

S tr(V0)
1
S

)
,

where tr(·) is the trace operator of a matrix.

The result can be obtained by extending [10] lemma 4.

4.4.2 The Proof of Main Results

Now we are able to establish the saddle-point regret bound via the technical tools provided above.

Let M̃
(k)

be the overestimation of matrix game M (k), ν(k)
∗ := arg minν∈Π2 maxµ∈Π1 µ>M̃

(k)
ν be the saddle-point

strategy of P2. By definition, the algorithm returns a corresponding optimal strategy µ(k) for P1 at every episodes. In a
word, we have strategy profiles:

(µ(k), ν
(k)
∗ ) = arg max

µ∈Π1
min
ν∈Π2

µ>M̃
(k)
ν.

8



By the definition of the saddle-point regret:

SR = E

{
K∑
k=1

T val(M (k))−
T∑
t=1

E{r(k)
t

∣∣H(k)
t−1}

}

= E
{ K∑
k=1

T val(M (k))−
T∑
t=1

E{µ(k)M (k)ν
(k)
t

∣∣H(k)
t−1}

(1{Ek} + 1{Ek
c})

}
≤ E

{ K∑
k=1

T∑
t=1

val(M (k))− E{µ(k)M (k)ν(k)
∣∣H(k)

t−1}1{Ek}

}
︸ ︷︷ ︸

(A) ineq. holds withEk

+ KTP(

K⋃
k=1

Ek
c)︸ ︷︷ ︸

(B) bounded by lemma 9

.

Here, the inequality is obtained by assumption 2 (a). Since the term (B) can be bounded as a constant by choosing
δ = 1

KT , we turn to look at term (A). The term (A) can be viewed as the expected pseudo saddle-point regret when Ek
holds for all k, in this case, by the tower rule and the optimistic exploration:

E
{ K∑
k=1

T val(M (k))−
T∑
t=1

E{µ(k)M (k)ν
(k)
t

∣∣H(k)
t−1}

}

=E
{ K∑
k=1

T∑
t=1

E{val(M (k))− µ(k)M (k)ν
(k)
t

∣∣H(k)
t−1}

}

≤E
{ K∑
k=1

T∑
t=1

E{val(M̃
(k)

)− µ(k)M (k)ν
(k)
t

∣∣H(k)
t−1}

}

≤E

{
K∑
k=1

T∑
t=1

E
[
µ(k)>M̃

(k)
ν(k) − µ(k)M (k)ν(k)

∣∣H(k)
t−1

]}
.

Therefore, when event Ek holds for all k with probability 1− δ, consider the term (A):

E

∑
k,t

E
[
µ(k)>M̃

(k)
ν(k) − µ(k)M (k)ν(k)

∣∣H(k)
t−1

]
=E

∑
k,t

E
[
µ(k)>(M̃

(k)
−M (k))ν(k)

∣∣H(k)
t−1

]

=E


∑
k,t

E

µ(k)>
S∑
s=1

(θ̃(k)
s − θ∗s)M (k)

s︸ ︷︷ ︸
matrix h(θ̃(k)−θ∗,M(k))

ν(k)
∣∣H(k)

t−1




.
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Here, each component of the matrix h(θ̃(k) − θ∗,M(k)) with subscripts i, j is an inner product 〈θ̃(k) − θ∗, z(k)
i,j 〉, and

thus,

E

∑
k,t

E

∑
i,j

µ
(k)
i 〈θ̃

(k) − θ∗, z(k)
ij 〉ν

(k)
j

∣∣H(k)
t−1


=E

∑
k,t

E
[
E
(
〈θ̃(k) − θ∗, z(k)

it,jt
〉
∣∣H(k)

t−1

)]
≤E

∑
k,t

E
[
‖θ̃(k) − θ∗‖Vk−1

‖z(k)
it,jt
‖V −1

k−1

∣∣H(k)
t−1

]
≤E

{∑
k,t

E
[
(‖θ∗ − θ̂(k)‖Vk−1

+ ‖θ̃(k) − θ̂(k)‖Vk−1
)

‖z(k)
it,jt
‖V −1

k−1

∣∣H(k)
t−1

]}

≤E

∑
k,t

E

[
2
√
βk(δ)‖z(k)

t ‖V −1
k−1,t

√
det(Vk−1,t)

det(Vk−1,0)

∣∣H(k)
t−1

]
≤E

∑
k,t

E
[
2κ
√
βk(δ)‖z(k)

t ‖V −1
k−1,t

∣∣H(k)
t−1

] ,

where we apply the Cauchy–Schwarz inequality for the first inequality; the triangular inequality for the second
inequality; Lemma 2 for the third inequality; and Assumption 2 (b) for the fourth inequality.

The pseudo saddle-point regret can be bounded up to now. With probability at least 1 − δ, the pseudo saddle-point
regret, which is inside the expectation in term (A), satisfies:

SR̂ ≤
K∑
k=1

T∑
t=1

2κ
√
βk(δ)‖z(k)

it,jt
‖V −1

k−1,t
.

According to Assumption 2, the regret per round is bounded by 2, and since βK ≤ max{1, βk},

SR̂ ≤
K∑
k=1

2
√
βK(δ)

T∑
t=1

min
(

1, ‖z(k)
it,jt
‖V −1

k−1

)
.

Using the quadratic mean inequality, we arrive at

SR̂ ≤ 2

√√√√KTβK(δ)κ

K∑
k=1

T∑
t=1

min

{
1, ‖z(k)

it,jt
‖2
V −1
k−1,t

}
Applying Lemma 3 completes the proof of theorem 1. Finally, let δ = 1/KT , we obtain:

SR ≤ O(S
√
KT ln(KTS)),

thus proving Corollary 1.

4.5 Computational Issue

While the following parameterized optimization problem is normally intractable:

max
θ∈Ck(δ)

⋂
B

max
µ∈Π1

min
ν∈Π2

µ>(

S∑
s=1

θsM
(k)
s )ν,

in some special case the optimistic strategy µ̃ can be computed efficiently. For example, when B covers Ck(δ), the total
confidence set is just the original elliptical ball; i.e., Ck(δ) = Ck(δ)

⋂
B, then the computation of µ̃ and θ̃ can be written
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as:

(µ̃(k), θ̃(k)) = arg max
θ×µ∈(Ck(δ)×Π1)

min
ν∈Π2

µ>

(
S∑
s=1

θsM
(k)
s

)
ν.

One can define the unit ball B2 :=
{
x ∈ RS : ‖x‖2 ≤ 1

}
and rewrite the elliptical ball: Ck(δ) = θ̂ +

√
βk(δ)V

− 1
2

k−1B2.
And since by Von Neumann minimax theorem the value is convex and concave in (Ck(δ)×Π1) and Π2, we rewrite the
objective as:

(µ̃(k), θ̃(k)) = min
ν∈Π2

arg max
θ×µ∈(Ck(δ)×Π1x)

µ>
[
〈θ, z(k)

i,j 〉
]
ν

µ̃(k) = min
ν∈Π2

arg max
µ∈×Π1

µ>
[
〈θ̂, z(k)

i,j 〉+ β
1
2

k (δ)‖z(k)
i,j ‖V −1

k−1

]
ν,

where [·] represents the n1 × n2 matrix formed by i, j-th entries. In doing so, we compute the optimistic estimate of
every game entry.

4.6 Adversarial Algorithm

In the viewpoint of a player who cannot observe what action her opponent takes at each round, the interaction per
episode can be formulated as a adversarial multi-armed bandit problem. The arm set is the set of rows {1, . . . , n1}, and
we shall assume that the adversary selects the worst-case column sequences. This assumption is equivalent to selecting
a sequence of loss vector. Hence, denote eit as the one-hot basis vector, the row player receives:

r
(k)
t = e>itM

(k)
jt
,

which is essentially an adversarial MAB problem. Exp3 is a common approach for this type of problem. One version of
the Exp3 algorithm outputs the policy based on the cumulative reward estimates of each action.

µ
(k)
t,i = αt

1

n1
+ (1− αt)

exp(γt
∑
t r̂

(k)
t,i )∑n1

i=1 exp(γt
∑
t r̂

(k)
t,i )

,

where αt is the weight for uniform exploration, γt is the learning rate, and r̂(k)
t,i is obtained through the importance-

sampling estimator:

r̂
(k)
t,i = 1{it=i}

r
(k)
t

µ
(k)
t,i

.

It has been shown that when αt and γt are tuned properly, the algorithm leads to a Õ(
√
n1T ) best-response regret

bound per episode, thus an Exp3 agent suffers totally BR ≤ Õ(K
√
n1T ).

5 CASE STUDY

Game theory has played an important role in modeling the strategic interaction between a system defender and an
adversary [11, 12, 13]. In many security games, the attack model and the game matrix are prescribed by the designer,
who aims to protect the system from a known class of attacks. In many security applications, the capabilities of the
attackers are not fully known to the defender. Hence, it is essential to develop mechanisms for the defender to update
her strategies online. In this case study, we consider a version of Dynamic Honeypot Allocation (DHA) game. In
this game, a defender places decoys to protect network resources whereas some periphery attackers aim to capture
these resources. Thus, the action pairs of attacking or placing decoys in each of the nodes construct a matrix game,
with unknown payoffs. The environment contains S experts, an agent for central allocation and an attacker, and an
underlying time-varying matrix game. Fig. 2 illustrates one round of play, the attacker and the defender simultaneously
select a subset of nodes to attack and place decoys, the outcome of the play is encoded in the underlying matrix game.

5.0.1 Experimental Set Up

Suppose that both players have 10 strategies, n1 = n2 = 10. Let the defender interact with the opponent for 15
episodes, 200 rounds per episode. We fix a true sampled parameter θ∗ ∼ N (0.51S , IS×S), and sample 10 10 × 10

matrices for every episode from uniform distribution U [0, 1], together yielding the true game matrices M (k). The
interaction outcome is the entry of M (k) plus an i.i.d. noise η(k)

t sampled from Gaussian N (0, 0.5).
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Figure 2: The dynamic honeypot allocation (DHA) game: The attacker moves in the network and selects node to attack
while the defender aims to bait with the honeybots.

5.0.2 Methodology and Results

We show that the regret of OFULinMat is converging in a sublinear speed, which is much faster than Exp3. In running the
former, we set λ = 0.1, δ = 3×10−3, andB = 3. In running the latter, we set the parameter αt = min(1,

√
n1 lnn1/t)

and γt =
√

2 lnn1/n1t, and reset the cumulative estimates for every episode. We let defender use these two algorithms
in parallel to play in the same game, against an omniscient attacker who always play saddle-point strategies, and report
the pseudo saddle-point regret for both players. We also report the parameter estimation process of OFULinMat.

The results are shown in Fig. 3. It is clear that for OFULinMat, as the estimated parameter becomes more accurate,
the regret per round becomes smaller and the cumulative regret curve becomes flatter. Taking advantage of additional
expert information, its performance is much better than a naive Exp3 agent.

6 CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

We have proposed an episodic online learning framework for a time-varying zero-sum game environment with expert
game models. The learners do not know the entries of the game matrix and yet they have imperfect observations of
the outcomes of their play. The proposed OFULinMat algorithm has addressed the learning problem by integrating
the parameter estimation phase and optimistic exploration phase during the play. We have shown that our algorithm
is provably efficient by establishing a sublinear upper bound on the saddle-point regret, under the model linearity
assumption. Comparing it to the classical adversarial multi-arm bandit algorithm in the case study of dynamic honeypot
allocation game, we have seen that additional expert information can significantly boost the efficiency of the learning
process.
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Figure 3: The figure shows that OFULinMat outperforms Exp3, meanwhile, the estimated parameter θ̂ also converges to
the true parameter θ∗.

6.2 Future Works

There are many future research directions related to the proposed framework. E.g., from a computational perspective,
we can show whether Thompson sampling will be provably efficient in exploring the weighting coefficients, given
that its implementation is often simpler than an algorithm with OFU principles. When the matrix becomes large and
sparse, more efficient planning and estimation techniques need to be incorporated. Another potential direction lies
in the model linearity assumption. It is possible to explore a richer class of parametric or non-parametric functions
for game estimation and adapt the model ensembles during the learning process. The proposed framework could also
inspire the meta-learning in games, which enables agents to quickly adapt to new tasks.
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