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Differential Games in Spread of Covid-19

Sushant Vijayan

Abstract— Given the ongoing Covid-19 pandemic, it is of in-
terest to understand how the infections spread as the combined
result of measures taken by central planners (governments)
and individual behavior. In this work, the spread of Covid-19
is modelled as a differentiable game between the planner and
population with appropriate disease spread dynamical equa-
tions. We first characterise the equilibrium dynamics of only the
population with modifed Susceptible-Infected-Recovered (SIR)
equations to highlight the qualitative nature of the equilbrium.
Using this result, we formulate the joint equilibrium exposure
profile between the planner and population. Additionally, as
in case of Covid-19, the role of asymptomatic carriers, inade-
quacies in testing, contact tracing and quarantining can lead
to a significant underestimate of the true infected numbers as
compared to just the detected numbers. Therefore, it is vital to
model the true infected numbers within the context of choices
made by individuals within the population. To incorporate
this, we extend our framework by modifying the dynamics to
include additional sub-compartments of ‘undetected infected’
and ‘detected infected’ in the disease dynamics. The individuals
make their own estimates of the total infected from the detected
numbers and base their strategies on those estimates. We show
that these considerations lead to a retarded optimal control
problem for the players. We present some simulation results
based on these results to demonstrate how population behavior,
planner control, detection rates and trust in the reported
numbers play a key role in how the disease spreads.

I. INTRODUCTION

Infectious diseases spread because of interactions between

the infected and the susceptible. At an individual level, a

simple strategy to reduce the possibility of transmission

is to voluntarily reduce ones interaction with others, i.e.,

to do social distancing. A central planner aims to impose

constraints to individual behavior so as to maximise the total

societal welfare. To model the disease spread effectively it

is important to combine the choices of both the planner

and the individuals in a unified way. The main goal of this

work is to formulate a game theoretic framework in which

one can analyse and characterise the resulting equilibrium

between the individuals and the planner. A secondary goal

is to modify the disease spread dynamics so as to account

for the spread of disease by infected individuals who are

not detected and isolated from the susceptibles. This also

leads to incorporating the individual’s estimate of infection

in the disease spread model. Using this, we present some

simulations to qualitatively demonstrate the impact of plan-

ner control, population choices, detection rates and trust in

the detected numbers in the spread of the disease.
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A. Related Work

In mathematical epidemiology the spread of diseases is

often modelled through various compartmental models. The

simplest of them is the SIR model [1]. A considerable

literature has been built up to include many extensions and

variations to this basic model (see for example [2], [3], [4]

and references therein). An issue with these models is that

they don’t capture interventions of government nor individual

choices. These decisions can have a significant impact on the

disease spread trajectory.

Prior to the outbreak of Covid-19 some applications of

optimal control in field of epidemiology include masking

rates to prevent swine flu [5], treatment rates in dengue

transmission [6], etc. Since the Covid-19 pandemic began

there have been a considerable number of works which

formulate optimal Non-Pharmaceutical Intervention (NPI) as

a control problem. [7] proposed a a lockdown that tapers

down gradually. [8] has a multi-group SIR model in which

the authors look at the optimal control problem for a social

planner with control to do age-specific targeted lockdowns.

They show that the optimal solution is to enforce stringent

lockdowns for the older section of the population. [9] shows

that intermittent lockdowns may be better than moderate

measures suggested above for a class of utility functions

particularly in low sero-prevalence scenarios. In a line of

work closely related to the current work, [10] and [11]

combine game theoretic equilibrium analysis based on utility

considerations of the individuals with the SIR model. It is

clear from disease trajectories of many countries that it is

not sufficient to study a control problem for a planner or

the equilibrium strategies of the population separately. In all

these models, they don’t study combined interaction between

individual choices and governmental policies. We find that

the planner can try to take advantage of social distancing

tendencies of individuals to control the spread of diseases.

The above models also don’t incorporate how perceptions of

the extent of disease spread affects the further spread of the

disease.

II. PRELIMINARIES

A. Game theoretic setup

We assume that the game is played till a finite horizon

time T . This T can be interpreted as the idealized vaccine

arrival time wherein the vaccine affects the entire population

instantly and puts an end to the disease.

The planner tries to control the spread of disease by

imposing constraints on individual exposure choices. The

individual tries to modify their behavior by either reducing
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or increasing their exposure fraction at any time t while

complying with the constraints imposed by the planner.

A strategy A ∈ C[0, T ] 1 of the planner is such that

At
2∈ [0, 1], ∀t ∈ [0, T ]. At sets the maximum permis-

sible exposure of an individual at time t. At represents

the restrictions imposed by the planner on the individual’s

exposure profiles in the form of lockdowns, closing down

schools, restricting public transport and other NPIs. At can

vary between [0, 1] but, as will be argued later, a natural

upper bound of At to be binding is the so called ‘population

equilibrium’ formed by individuals amongst themselves. In a

realistic setting it is unacceptable (due to public disapproval

of harsh lockdowns) for the planner to keep the threshold

extremely low for extended periods of time. To capture this

we extend the model to ensure certain average threshold

limits are imposed on the planner.

An individual is assumed to respond to the spread of

the disease by modifying their exposure to other individuals

while complying with the threshold (At) imposed by the

planner. To keep the analysis simple, each individual is con-

sidered indistinguishable from another (one could consider

the more realistic setting of several distinct groups) and is

assumed to symmetrically employ an exposure strategy (or

individual control or exposure profile) g ∈ C[0, T ] with gt ∈
[0, At], ∀t ∈ [0, T ]. gt represents the reduced exposure from

a normal baseline of unity prior to the onset of the disease.

For the purposes of calculating the equilbrium we shall, at

times, also consider the strategy gα of a canonical individual

α differing from the symmetric strategy g employed by the

rest of the population.

In the simplest setting we assume that infected individuals

are not isolated from the rest of the population and know the

total number of infected at any given time. Later, we remove

these restrictions by modelling the detecting of infection

by introducing new infection compartments of ‘undetected

infected’ and ‘detected infected’.

B. Dynamics of Disease Spread

The evolution of susceptible fraction St ∈ [0, 1] and the

infected fraction It ∈ [0, 1] is given by:

dSt

dt
= −βg2tStIt

dIt
dt

= βg2tStIt − γIt

(1)

with the initial conditions S0 = 1 − ǫ, I0 = ǫ. ǫ is

the initial fraction of infection in the population, β is the

probability of getting infected per interaction with an infected

individual and γ is the recovery rate from infection3. If the

entire population plays a uniform exposure fraction gt, the

effective susceptible and infection fractions are gtSt and gtIt
respectively, and the total number of interactions between

the susceptibles and infected is g2tStIt. This explains the

1C[0, T ] refers to the space of continuous functions taking values from
[0, T ] to R.

2At = A(t), i.e, the value of the function A at time t. Similarly for gt.
3γ, β, ǫ,B, C and R are positive real constants.

quadratic dependence on gt. We note that if all individuals

played gt = 1, ∀t ∈ [0, T ] then we get the standard SIR

model.

A canonical individual α, will get infected at an unknown

random time τα. We assume that each individual has an es-

timate for their own survival probability which they estimate

through a hazard rate model

dP (τα > t)

dt
= −βgαt gtItP (τα > t) (2)

Here gαt is the exposure fraction strategy played by the

individual α and P (τα > t) is the survival probability4 at

time t. This estimate of the infection/survival probability and

the trade off between benefits and risks of exposure will drive

the individual’s exposure strategy. To model the benefits and

risks for the players we next define the cost functionals which

they each will seek to minimise.

C. Cost Functionals of Players

For simplicity, we assume α gets a linear rate of benefit B
per unit time from interacting with other individuals in the

society. We also assume that upon contracting the disease,

the individual suffers a one time cost C. If α survives till

T , there is a reward R for surviving. Thus, α minimises the

following cost functional Jα where ( in what follows 11{E}

is the characteristic function of a set E.)

Jα(g, g
α, A) = E

[
−

T∧τα∫

0

Bgαs ds+C11{τα≤T}−R11{τα>T}

]
.

The expectation above is with respect to the α’s survival

probability defined in (2) above. An equivalent formulation

of the functional5 more suited for optimal control methods

we seek to apply is

Jα(g, g
α, A) =

T∫

0

P (τα > t)gαt

{
−B + CβgtIt

}
dt

−RP (τα > T ).

(3)

In the objective functionals above, we impose the restriction

gαt , gt ≤ At.

An individual gets a benefit of −Bgt∆t and has an

expected cost of infection Cβg2t It from an exposure strategy

of gt in the interval [t, t+∆t]. Thus, a measure of cost borne

by the entire society is then (−B + CβgtIt)gtSt∆t during

this interval. Similarly, the total societal reward for surviv-

ing is RST . The above discussion motivates the planner’s

functional to be

JP (g,A) =

T∫

0

Stgt

{
−B + CβgtIt

}
dt−RST

41-P (τα > t) is the probability of getting infected before t.
5This form shows the explicit dependence of Jα on g, gα and A.



III. MAIN RESULTS

We shall first describe the result when there is no planner

control (At = 1, ∀t). The result highlights the qualitative

nature of the equilibrium amongst only the individuals in

the population. It will also serve as a natural constraint

on At when we consider the more involved case with the

planner control. This allows one to take a symmetric view

on strategies - choices of the planner constrains the choices

of the individual and vice versa.

A. Pure Population Equilibrium Without Detection

We shall assume that there is no control from the planner,

i.e., At = 1 for all t ∈ [0, T ]. It is only a game between the

individuals of the population. An equilibrium result similar

to that mentioned in this subsection can be found in [10].

To derive the equilibrium exposure strategy we use the

Pontryagin Minimum Principle (PMP) (see section 3.3 in

[12]). Let α play the strategy profile gαt and let the rest of

the population play geq,t. Then in equilibrium we have

Jα(geq, g
α
eq, 1) ≤ Jα(geq, g

α, 1)

gαeq,t = geq,t
(4)

The first condition is the definition of an equilibrium (Nash)

while the second equation follows from the symmetric as-

sumption on the individual’s exposure profile.

Theorem 1: For the dynamical game without a central

planner the equilibrium exposure profile must be of the form:

gαeq,t = geq,t = min

(
B

βIt(C − λt)
, 1

)
11{C>λt} + 11{C≤λt}.

(5)

The corresponding dynamics are governed by the equations:

dSt

dt
= −βg2eq,tStIt,

dIt
dt

= βg2eq,tStIt − γIt,

dλt

dt
= geq,t(B − βItgeq,t(C − λt)),

with boundary conditions: S0 = 1− ǫ, I0 = ǫ, λT = −R.

Proof: Let Pt := P (τα > t). The Hamiltonian

(dynamical system is (1)-(2) and (3) is the cost functional)

for the individual α’s minimisation problem when all the

other individuals play the profile geq,t is

H(gαt St, It, Pt, λt, µt, νt) := gαt (−B + Cβgeq,tIt)Pt+

λt(−βgαt geq,tItPt) + µt(−βg2eq,tStIt) + νt(βg
2
eq,tStIt − γIt).

λt, µt, νt are the adjoint functions. We know that the optimal

control gαt minimises the Hamiltonian and combining this

along with (4) gives

gαeq,t = argmin
gα
t ∈[0,1]

(−B + Cδgeq,tIt − λtβgeq,tIt)Ptg
α
t ,

=⇒ gαeq,t = min

(
B

βIt(C − λt)
, 1

)
11{C>λt} + 11{C≤λt}.

The only adjoint variable in the expression above is λt and

from PMP we have its dynamical equation to be

dλt

dt
=− ∂H

∂P
,

=geq,t(B − βItgeq,t(C − λt)).

with the additional boundary condition for this equation

supplied by the transversality condition of PMP, i.e., λT =
−R.

From standard results in optimal control (see [15]) we can

associate the adjoint variable with partial derivative of the

value function wrt state variables. Here, λt is the partial

derivative of the value function wrt Pt. This leads us to

conclude (see Appendix A for proof) that

λt = E

[ T∧τα∫

t

−Bgαs ds+ C11{τα≤T} −R11{τα>T}

∣∣∣∣τα > t

]

(6)

Thus λt can be interpreted as the future expected cost given

the individual has survived till time t. With this interpretation

the equilibrium profile in Theorem 1 implies that whenever

either the total number of infections or the future expected

costs are high then the population starts social distancing

until the number of infections decrease.

Lemma 2: λt is a non-decreasing function of t. More

precisely whenever geq,t < 1 then λt is a constant and is

strictly increasing whenever geq,t = 1.

Proof: This is easily verified by looking at the expres-

sions for geq,t and dλt

dt from Theorem 1.

This monotonicity intuitively is because for any arbitrarily

small interval the equilibrium strategy must accrue more

benefit than a strategy of complete social distancing, i.e,

gt = 0 within the same time interval.

Lemma 2 indicates that in equilibrium the dynamics is

a hybrid one with the value of geq,t triggering the switch

between the states of social distancing and normal behavior.

When geq,t = 1 we have normal behavior with no social

distancing and the dynamics of St, It is just the same as the

SIR model. We characterise the dynamics in social distancing

regime (geq,t < 1) with the following lemma:

Lemma 3: In the social distancing regime we have the

following relation between St and It

It =

√
St

C0

(
K1(2

√
C0St)− C1L1(2

√
C0St)

K0(2
√
C0St) + C1L0(2

√
C0St)

)



where Ln(x) and Kn(x) denote the nth order modified

Bessel functions of the first and the second kind, respectively.

C0 = γβ(C−λ0)
2

B2 . C1 is determined by the initial values

S0, I0, λ0 at the onset of social distancing.

Proof: In the social distancing regime from Theorem

1 we have geq,t =
B

βIt(C−λt)
and that λt is constant. Thus

we have:

dI

dS
= −1 +

γ

βg2eq,tS

= −1 +
C0I

2

S

This is a Riccatti equation and the standard reduction of a

Riccatti equation to a linear second order ODE (see [16])

gives the result.

We shall use the results in this subsection to characterise the

more complicated equilibrium that exists between the planner

and population of individuals.

B. Equilibrium with Population and Planner

In this case the planner is trying to optimally set a

threshold to minmise its own cost functional. The constraint

on the planner is that if it sets a high enough threshold

then individuals behavior may follow the pure population

equilibrium from the previous subsection (and hence the

threshold At becomes non-binding). We have the constraints

that 0 ≤ gt ≤ At and 0 ≤ At ≤ gpopeq,t
6. In this case at

equilibrium we must have

Jα(geq, g
α
eq,t, Aeq,t) ≤ Jα(geq, g

α, Aeq,t),

JP (geq, Aeq) ≤ JP (geq, A),

gαeq,t = geq,t.

(7)

As the set of admissible controls for the players vary with

both time and state we use a generalised version of PMP

(Theorem 3.1 in [13]). We have the following result charac-

terising the equilibrium between population and planner:

Theorem 4: The population-central planner game has the

following equilibrium profile:

geq,t =min

(
B

βIt(C − λt)
, Aeq,t

)
11{C>λt} +Aeq,t11{C≤λt}

Aeq,t =min

(
B

2βIt(C − λ1,t + λ2,t)
, gpopeq,t

)
11{C+λ2,t>λ1,t}

+ gpopeq,t11{C+λ2,t≤λ1,t}

(8)

6g
pop

eq,t refers to the pure population equilibrium described in the (5).

with gpopeq,t as defined in (5) of Theorem 1. The corresponding

dynamics is given by:

dSt

dt
= −βg2eq,tStIt,

dIt
dt

= βg2eq,tStIt − γIt,

dλt

dt
= geq,t(B − βgeq,tIt(C − λt)),

dλ1,t

dt
= geq,t(B − βgeq,tIt(C + λ2,t − λ1,t)),

dλ2,t

dt
= −βg2eq,tSt(C − λ1,t + λ2,t) + γλ2,t.

with boundary conditions: S0 = 1 − ǫ, I0 = ǫ, λT =
−R, λ1,T = 0, λ2,T = 0.

Proof: The individual is trying to minimise Jα given

the strategies geq,t and Aeq,t. Assuming Aeq,t to be a given

function of time we can parametrize the admissible set of

controls as Q1 ≤ 0 where:

Q1(t, St, It, g
α
t ) = gαt −Aeq,t.

This has a non-zero derivative wrt the control and hence

we can apply Theorem 3.1 from [13] for the individual’s

control problem. The difference from Theorem 1 is that the

controls are restricted dynamically. The Hamiltonian has to

be minimised only within this dynamically changing feasible

control set. The Hamiltonian in this case is

H(St, It,Pt, g
α
t , λt, λ2, λ3, µt) := Ptg

α
t (−B + Cβgeq,tIt)

+ λt(−βgαt geq,tItPt) + κt(−βg2eq,tStIt)

+ ιt(βg
2
eq,tStIt − γIt) + µt(g

α
t −Aeq,t).

λt, κt, ιt and µt are adjoint variables. Minimising the Hamil-

tonian with (7) gives

gαeq,t = argmin
gα
t ∈[0,Aeq,t]

Ptg
α
t (−B + Cβgeq,tIt − λtβftgeq,tIt)

gαeq,t = geq,t = min

(
B

βIt(C − λt)
, Aeq,t

)
11{C>λt}

+Aeq,t11{C≤λt}.

In the first step above µt doesn’t appear because of com-

plementarity condition µt(g
α
t − Aeq,t) = 0. The exposure

profile in this case is the population equilibrium with upper

threshold now set to Aeq,t rather than 1.

In case of the planner, for the threshold to be binding,

it must be set lesser than the population equilibrium profile

(see (5)).

gpopeq,t = min

(
B

βIt(C − λt)
, 1

)
11{C>λt} + 11{C≤λt}



Hence, for the planner, the state variables are St, It, λt. The

planner minimises JP given the population strategy geq,t.
The dynamical equations relevant to the planner are:

dSt

dt
= −βA2

t ItSt,

dIt
dt

= βA2
t ItSt − γIt,

dλt

dt
= At(B − βItAt(C − λt)).

The set of admissible controls for the planner can be sum-

marised by Q2 ≤ 0 where

Q2(t, St, It, λt, At) = At − gpopeq,t.

Thus we can again invoke Theorem 3.1 from [13] for the

planners control problem, The Hamiltonian is given by

H(St, It, λt, At, λ1, λ2, λ3, µt) := StAt(−B + CβAtIt)

+ λ1,t(−βA2
t ItSt) + λ2,t(βA

2
tStIt − γIt)

+ λ3,t(BAt − βA2
t It(C − λt)) + µt(At − gpopeq,t).

Minimising the Hamiltonian along with (7) gives

Aeq,t = argmin
At∈[0,gpop

eq,t]

BAt(λ3,t − St) + βItStA
2
t (C − λ1,t

+ λ2,t − λ3,t(C − λt))

The adjoint variables for the planner are denoted by

λ1,t, λ2,t, λ3,t. The adjoint equation of λ3,t becomes:

˙λ3,t = −βA2
tStIt

with the boundary condition λ3,T = 0. But as St, It are pos-

itive, the only way this boundary condition can be satisfied

is when λ3,t = 0, ∀t. Using this in the minimum principle

we get:

Aeq,t = argmin
At∈[0,gpop

eq,t]

−BAt + βItStA
2
t (C − λ1,t + λ2,t)

Aeq,t = min

(
B

2βIt(C − λ1,t + λ2,t)
, gpopeq,t

)
11{C+λ2,t>λ1,t}

+ gpopeq,t11{C+λ2,t≤λ1,t}.

The adjoint equations become:

˙λ1,t = BAeq,t − βA2
eq,tIt(C − λ1,t + λ2,t),

˙λ2,t = −βA2
eq,tSt(C − λ1,t + λ2,t) + γλ2,t.

It can be easily seen that Aeq,t = geq,t and hence the

planner’s threshold is always binding. The exposure profile

of the population is also seen to be the net result of the

strategic choices of the planner and the population.

Additionally, we impose an average threshold constraint on

the planner ie.
∫ T

0 Atdt > C1. This is to prevent the planner

from accessing strategies which entail harsh thresholds over

an extended period. These types of constraints are called

”isoperimetric constraints” and are handled in a standard way

in optimal control literature (see [14]).

C. Detection of Infection

As mentioned earlier it is important to model the group

of undetected infectious indivduals who spread the disease.

This framework also allows us to model the estimates of

infection spread made by individuals and the planner. In this

section we partition the infected group It into two subgroups

- Iu,t, the undetected group of infected and Id,t, the detected

group of infected. We have:

It = Iu,t + Id,t. (9)

We assume that once the infected are detected they are

effectively quarantined and no longer infect the susceptibles.

Hence, an infected individual either recovers without being

detected or gets quarantined after detection. An infected

individual is modelled to remain infectious for a period of
1
γ and has a probability of being detected in this period.

For an individual α, conditioned on the event τα = t, we

assume a probability density of detection over the period

(t, t+ 1
γ ]. τd denotes the random time of detection once α is

infected. Thus τd ∈ [0, 1
γ ]. For simplicity, we shall assume

that the probability of detection is uniform over [0, 1
γ ].Thus,

the individual’s objective functional becomes:

E[

(τα+τd)∧T∫

0

−Bgαt dt+ C11{τα≤T} −R11{τα>T}]

We can re-write the first term as:

−
∫ T

0

Bgαt P

(
(τα + τd) ∧ T > t

)
dt.

We have ∀t ∈ [0, T ]:

P

(
(τα + τd) ∧ T > t

)
= 1− P

(
τα + τd ≤ t

)
,

with

P

(
τα + τd ≤ t

)
= P

(
τα ≤ t− 1

γ

)

+ P

(
τd ≤ t− τα ≤ 1

γ

)
.

(10)

Assuming that τα has a density f and the uniform conditional

density for τd is γ
η , we rewrite the second term in RHS of



(9) as:

P

(
τd ≤ t−τα ≤ 1

γ

)
=

∫ t

t− 1
γ

(∫ r

t− 1
γ

f(s)ds

)
γ

η
dr

= P

(
τα > t− 1

γ

)
1

η
− γ

η

∫ t

t− 1
γ

P (τα > r)dr

Here 1
η (with η > 1) captures the probability of detection and

is a parameter in the model. Setting Mt := γ
∫ t

t− 1
γ

P (τα >

r)dr, we rewrite the individual’s objective functional as

(superscript d stands for detected):

Jd
α(g, g

α, A) = −B

∫ T

0

gαt

{
P

(
τα > t− 1

γ

)(
1− 1

η

)

+
Mt

η

}
dt+ CP (τα ≤ T )−RP (τα > T ).

(11)

The individual α has knowledge only of Id,t and makes an

estimate of Iu,t from Id,t. For simplicity, we assume that the

estimate has the form:

Îu,t = κId,t.

κ encapsulates the trust the population has on the reported

detected numbers. Now as P (τα > t) is linked to the

individuals perception of infection, we must modify (2) to:

dP (τα > t)

dt
= −βgαt gtÎu,tP (τα > t),

= −βgαt gtκId,tP (τα > t).

The state equations for the individual are:

dSt

dt
= −βg2tStIu,t,

dIu,t
dt

= βg2t StIu,t − γ(1 +
1

η
)Iu,t,

dId,t
dt

=
γ

η
Iu,t − γId,t,

dP (τα > t)

dt
= −βgαt gtκId,tP (τα > t),

dMt

dt
= γ

(
P (τα > t)− P

(
τα > t− 1

γ

))
.

(12)

New infections are caused by the interaction between the

susceptibles and undetected infected. These new infections

are intially always assumed to be undetected. Then, some

of the undetected infected move to Id,t due to the detection

density γ
η .

The control formulation now has constant delays in state

variable Pt(:= P (τα > t)) for both the objective functional

and state equations. These types of control problems are

called Retarded Optimal Control Problems (ROCP). We shall

use a version of the minimum principle for this ROCP (see

theorem 4.2 in [13]). Although one can in principle also

include the planner’s control in this more elaborate model,

the resulting profile is rather messy and unwieldy. This joint

equilibrium profile can be derived in an analogous manner

as in section III-B and is omitted. We shall assume a control

on the part of the planner and present the result for only the

resulting population equilibrium under this control.

Theorem 5: The population game with detection has the

following equilibrium profile:

geq,t = min

(
B((1 − 1/η)Pt−1/γ +Mt/η)

βPtκId,t(C − λt)
, 1

)
11{C>λt}

+ 11{C≤λt},
(13)

The equilibrium dynamics is given by (12). Additionally,

the equation for the adjoint variable λt is given by

dλt

dt
= −(βg2eq,tκId,t(C − λt) +

γ

η
(T − t))

+ 11[0,T−1/γ](t)

(
Bgeq,t+ 1

γ

(
1− 1

η

)
+

γ

η

(
T − t− 1

γ

))
,

with boundary conditions: S0 = 1 − ǫ, Iu,0 = ǫ, Id,0 =
0, λT = −R.

Proof: We apply theorem 4.2 from [13] to the ROCP

of the individual α. Compared to Theorems 1 & 4 the

Hamiltonian also incorporates the delayed state variables.

Consequently, the adjoint equations and the optimal control

depend on these delayed variables.The Hamiltonian is given

by:

H(St, Id,t,Iu,t, Pt,Mt, Pt−1/γ , λt) := Cβgαt gtκId,tPt

−Bgαt

(
Pt−1/γ

(
1− 1

η

)
+

1

η
Mt

)

+ λt(−βgαt gtκId,tPt) + λ1,t(−βg2tStIu,t)

+ λ2,t

(
βg2tStIu,t − γ

(
1 +

1

η

)
Iu,t

)

+ λ3,t

(
γ

η
Iu,t − γId,t

)
+ λ4,t(Pt − Pt−1/γ)

Minimising the Hamiltonian as a function of gα and using

geq,t = gαeq,t, we get

gαeq,t = argmin
gα
t ∈[0,1]

−Bgαt

(
Pt−1/γ(η − 1) +Mt

η

)

+ (C − λt)g
α
t gtκId,tPt,

gαeq,t =min

(
B((1 − 1/η)Pt−1/γ +Mt/η)

βPtκId,t(C − λt)
, 1

)
11{C>λt}

+ 11{C≤λt}



which is the profile in (13). As the exposure profile depends

only on λt, which in turn depends on λ4,t, we consider

differential equations of only these two variables. We can

explicitly solve for λ4,t with the condition λ4,T = 0. We

have
dλ4,t

dt
= − ∂H

∂Mt

dλ4,t

dt
= −γ

η

λ4,t =
γ

η
(T − t).

The differential equation for λt is then given by:

dλt

dt
=− ∂H

∂Pt
− 11[0,T−1/γ](t)

∂H

∂Pt−1/γ

=− (βg2eq,tκId,t(C − λt) +
γ

η
(T − t)) + 11[0,T−1/γ]

(
Bgeq,t+ 1

γ

(
1− 1

η

)
+

γ

η

(
T − t− 1

γ

))
.

IV. SIMULATION RESULTS

The theorems derived in section III provide a basis for

simulating a dynamical system with initial infection. The

equilibrium solution to the game leads to solving a system a

differential equations with a two point boundary condition.

This is fairly typical in optimal control and is due to the

PMP. The equilibrium in the model with detection leads to a

two point boundary value problem in a system of advanced-

delay differential equations. We only approximately solve

this system by using a cubic extrapolation for the advanced

term (see [13], [17] for other numerical examples).

The boundary value problem was solved using a shooting

approach coupled with an initial value differential and delay-

differential equation solver. This then reduces the problem

to solving a nonlinear problem (see [18]) of finding the

appropriate initial values for the adjoint variables.

Parameter Value

T 400
ǫ 1.65e-08
B 0.01
C 1
R 0
β 0.2
γ 0.05

TABLE I: Parameter values used in simulations.

The values for the various parameters in the simulation

are given in Table I above. The parameters η, the probability

of detection, and κ, trust in detected numbers, are varied to

give various scenarios shown in figures 4,5 and 6.
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Fig. 1: Susceptible fraction for SIR (blue), pure population

equilibrium (black), planner-population equilibrium (red) and

population equilbirium with high detection & trust (green).
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Fig. 2: Exposure strategies for cases shown in figure 1.

In figures 1, 2 and 3, we plot the susceptible fraction,

exposure and infected fraction, respectively, versus time. SIR

(blue) shows an exponential decrease in susceptibles at peak

infection with almost no susceptibles remaining at the end.

This is the worst case scenario- no social distancing, no

detection, no quarantining and no planner control. It has the

highest peak infection whose onset is advanced compared to

other scenarios.

The case with population equilibrium (black) shows a
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Fig. 3: Infection fraction for cases shown in figure 1.

prolonged infection peak with much slower decrease in

susceptible numbers (vis-a-vis SIR). From figure 2 it is clear

the population starts to socially distance as the infection

numbers increase and only stops doing so when it is close

to the vaccine arrival time (T).

In the case with planner control (red) the planner initially

sets a moderate threshold (see figure 2) to control the spread

of the disease. This results in a delayed infection peak. As the

infection numbers inevitably rise the population voluntarily

reduce exposure below even the planner’s threshold. This

results in the peak infection becoming plateaued in a manner

similar to population equilibrium. The social distancing and

thresholding is gradually reduced as we approach the vaccine

arrival (which is assumed to instantly stop the infection).

Compared to the population equilibrium case the peak in-

fection is delayed and the economic impact (as measured by

exposure time) is reduced.

The case with high detection (η = 1) and high trust

(κ = 1) leads to significantly lower peak than SIR but unlike

the population or population planner cases the peak is not

prolonged (though the peak infection itself is higher). There

is no social distancing due to high levels of trust, detection

and quarantining. The total susceptible surviving at the end is

similar to population or population-planner case. This seems

to be the most preferable case where the peak infection is

delayed and not prolonged and the economic impact minimal

assuming the higher peak infection can be managed.

In figures 4, 5 and 6, we plot the effects of different

detection rates (η) and trust parameters (κ) on the spread

of disease. We have already discussed the case with high
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Fig. 4: Susceptible fraction for SIR (blue), population equi-

librium with high detection & trust (dark green), with high

detection & low trust (dashed dark-green), with low detection

& high trust (light green) and low detection & low trust

(dashed light green).
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Fig. 5: Exposure strategies for cases shown in figure 4.

detection and high trust in the paragraph above. In the case

where the detection rates are high (η = 1) but trust (κ =
32) is low (dashed dark green), then we observe that (see

figure 5) as soon as infected numbers peak the population

completely reduces exposure to zero. This completely stops

the disease spread. This is due to the low trust in the detected

numbers. The population believes the planner is doing a poor
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Fig. 6: Infection fraction for cases shown in figure 4.

job of the detection even though in reality the detection rates

are high. This leads to unnecessary loss of exposure benefits.

In the low detection (η = 5) but high trust (κ = 1) (light

green) case, the disease spread curve is very close to the

SIR situation. This is expected since in this case there is

poor detection and yet the population trusts the detected

numbers are an accurate measure of disease spread. This

leads to the undetected infected comprising the entirety of

the infected numbers while the population seeing the low

detection numbers chooses not to socially distance. This is

similar to the SIR situation where there is no planner control

nor any social distancing.

Finally in the low detection (η = 5) and low trust

(κ = 32) (dashed light green) case, just as in the high

detection low trust case, the population reduces exposure

completely as soon as the infection numbers start to peak.

However, compared to the high detection setting the total

infected numbers is higher because most of the infected

aren’t detected and help spread the disease.

The various comparisons seem to suggest ideally for

controlling disease spread one needs to have high detection

rates with transparency in the reported numbers so that the

population has confidence in the reported numbers. If the de-

tection numbers are low and the planner tries to underplay the

poor detection it could result in the worst possible scenario-

an unmitigated disease spread which could stress the medical

resources at peak infection. In practice, it is often difficult

to achieve very high detection rates due to asymptomatic

carriers, testing errors etc. and hence must be combined

with some moderate amount of planner control in form of

lockdowns and imposing social restrictions. The population

also has an important role to play by voluntarily reducing

exposure and other NPIs (wearing masks, sanitisation, ad-

hering to restrictions etc.). The role of trust/confidence in

the reported numbers is demonstrated - too little confidence

can lead to a panic, societal intermingling can stop leading

to other adverse effects like economic collpase and too much

confidence can lead to scenarios where the confidence is

unfounded, leading to unmitigated spread of the dissease.

V. CONCLUSION

A unified game theoretic framework incorporating the

interventions of a planner, behavioral choices of individuals,

detection rates and trust in reported numbers has been

developed. Both the planner and population begin to favor

moderate social distancing when the infection numbers begin

to peak. The detection and the subsequent trust in these

reported numbers also play crucial role in the spread of dis-

ease. Too little detection coupled with unfounded confidence

can lead to an unmitigated spread of the disease while too

little confidence when the detection is reasonably high leads

to unnecessary loss of economic activity. Simulation results

supporting these conclusions are presented.
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Appendix A

Proof of (6).

In what follows we have set Pt := P(τ > t). Define Zt,

∀t ∈ [0, T ] as follows :

Zt := E

[ τ∧T∫

t

Bgsds− (C +R)11{τ≤T}

∣∣∣∣τ > t

]

=

τ∧T−t∫

0

gr+t
Pt+r

Pt
[B − β(C +R)gr+tIr+t]dr

Observe that Z0 is the loss functional Jα. For any time t < T
we have:

Z0 =E

[ τ∧T∫

0

Bgsds− (C +R)11{τ≤T}

]

=E

[
(

τ∧T∫

0

Bgsds− (C +R)11{τ≤T})11{τ≤t}

]
+

E

[ τ∧T∫

0

Bfsds− (C +R)11{τ≤T}

∣∣∣∣τ > t

]
Pt

=Ht + Pt(

∫ t

0

Bgsds) + PtZt

where Ht is defined as

Ht := E[(

∫ τ∧T

0

Bgsds− (C + R)11{τ≤T})11{τ≤t}]

Now since time t was arbitrary we can write the same

expression for t+∆t < T with ∆t > 0. Thus:

Ht + Pt(

t∫

0

Bfsds) + PtZt =Ht+∆t + Pt+∆t(

t+∆t∫

0

Bgsds)

+ Pt+∆tZt+∆t

Solving for Zt we get:

Zt =
(Ht+∆t −Ht)

Pt
+

[
Pt+∆t

Pt
(

t+∆t∫

0

Bgsds)−
∫ t

0

Bgsds

]

+
Pt+∆t

Pt
Zt+∆t

Plugging in the definition of Ht and doing some straightfor-

ward but tedious algebra we get:

Zt =
E[11{t<τ≤t+∆t}

∫ τ

t Bgsds]

Pt
+

Pt+∆t

Pt
(

∫ t+∆t

t

Bgsds)

+
Pt+∆t

Pt
Zt+∆t − (C +R)

Eτ [11{t<τ≤t+∆t}]

Pt

Zubtracting Zt+∆t on both sides and dividing by ∆t we get:

Zt − Zt+∆t

∆t︸ ︷︷ ︸
A

=
E[11{t<τ≤t+∆t}

∫ τ

t
Bgsds]

Pt∆t︸ ︷︷ ︸
B

+

[ Pt+∆t

Pt
− 1

∆t

]
Zt+∆t

︸ ︷︷ ︸
C

+
Pt+∆t

Pt
Zt+∆t

[∫ t+∆t

t Bgsds

∆t

]

︸ ︷︷ ︸
D

− (C +R)
E[11{t<τ≤t+∆t}]

Pt∆t︸ ︷︷ ︸
E

We will analyse this in the limit ∆t → 0 term by term. For

term B we observe that:

E[11{t<τ≤t+∆t}

∫ τ

t

Bgsds] ≤ BE[11{t<τ≤t+∆t}(τ − t)]

≤ BP(t < τ ≤ t+∆t)∆t

Hence:

lim
∆t→0

B = 0

For term C we note that 1
Pt

dPt

dt = lim
∆t→0

P(τ≤t+∆t|τ>t)
∆t to get:

lim
∆t→0

C = −(βg2t It)Zt

For term D from Mean Value Theorem for integrals we have

for some t ≤ s′ < t+∆t:
∫ t+∆t

t
Bgsds

∆t
= Bgs′

This combined with continuity of gt and the fact P(τ >
t+∆t|τ > t) → 1 as ∆t → 0 gives us :

lim
∆t→0

D = Bgt

Term E can be evaluated in a manner similar to term C:

lim
∆t→0

E = (C +R)βg2t It

This shows that the limit in term A exists and is equal to
dZt

dt . Hence we have the differential equation:

−dZt

dt
= Bgt − βg2t ItZt − (C +R)βg2t It

We also observe from definition of Zt that ZT = 0. This is

the same equation as the adjoint variable λt in Theorem 1

with the relation λt = −Zt −R.
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