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The Effect of Population Flow on Epidemic Spread: Analysis and Control

Brooks Butler, Ciyuan Zhang, Ian Walter, Nishant Nair, Raphael Stern, and Philip E. Paré*

Abstract

In this paper, we present a discrete-time networked SEIR model using population flow, its derivation, and assumptions under

which this model is well defined. We identify properties of the system’s equilibria, namely the healthy states. We show that

the set of healthy states is asymptotically stable, and that the value of the equilibria becomes equal across all sub-populations

as a result of the network flow model. Furthermore, we explore closed-loop feedback control of the system by limiting flow

between sub-populations as a function of the current infected states. These results are illustrated via simulation based on flight

traffic between major airports in the United States. We find that a flow restriction strategy combined with a vaccine roll-out

significantly reduces the total number of infections over the course of an epidemic, given that the initial flow restriction response

is not delayed.

I. INTRODUCTION

Global interconnectivity has proven to be a key factor in the propagation of infectious diseases [1], [2]. Most recently,

we have seen evidence of such connectivity through the rapid spread of the COVID-19 pandemic, which propagated from

its origin in Wuhan, China to every major population center globally in a matter of weeks [3]. Given the implications

of global population flow on disease spread, it becomes important to accurately model this flow, as reliable modeling is

an essential step to developing effective and efficient mitigation strategies. Various infection models have been proposed

based on characteristics of individual pathogens and studied in the literature, including susceptible-infected-susceptible (SIS),

susceptible-infected-removed (SIR), and susceptible-infected-removed-susceptible (SIRS) [4], [5]. For this paper, we consider

the recent COVID-19 pandemic as a motivating case for the model selection and construction. Due to the delay in onset of

COVID-19 symptoms [6]–[9] and large asymptomatic populations estimated between 17 − 81% [10]–[13], we choose the

susceptible-exposed-infected-removed (SEIR) model as the foundation of our model development.

Previous work involving the incorporation of population flows in epidemic process models include analysis of a networked

SIS model with flows [14] as well as using a networked SIR model with flows to predict arrival times for various epidemics

using global flight data [15], where both models are developed in continuous time. This paper uses similar derivation

techniques to define our discrete-time epidemic model. However, we contribute to the development of such models by

including the exposed state in our model formulation, as well as provide analysis of the discrete time dynamics. While other

work has considered capturing the effect of transportation on the spread of COVID-19 using the SEIR model [16], the key

distinction in this work is that infection propagation over the network is modeled by the relocation of infected individuals
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to other sub-populations rather than assuming direct contact and intermingling between sub-populations. Furthermore, while

previous work assumes the likelihood of individuals traveling is independent of their infection state, this work considers the

effect of being infected on the probability of an individual traveling.

A. Contributions

In this paper, we explore a discrete-time networked SEIR model to analyze the effect of population flows on the propagation

of an infectious disease. We summarize the contributions of this paper as follows:

1) We derive a discrete-time networked SEIR model incorporating population flows, including the conditional probabilities

of a given state affecting the likelihood of an individual to be traveling.

2) We present assumptions on the parameters for the model to be well defined given proper initial conditions.

3) We prove model convergence and show that the equilibria (i.e., the healthy states) are homogeneous, that is, the same

value for all sub-populations.

4) We present a feedback control law that restricts system flow globally using the infection states, show that under the

control effort the model is still well defined, and illustrate its behavior via simulation.

In the remainder of this paper, we present our model derivation and necessary assumptions in Section II, provide analysis

of the healthy states in Section III, propose a feedback control in Section IV, and illustrate the model and the effectiveness

of the controller through simulation in Section V. Finally, we provide our conclusions in Section VI.

B. Notation

We denote the set of real numbers, positive real numbers, non-negative integers, and the positive integers as R, R>0, Z≥0,

and Z≥1, respectively. For any positive integer n, we have [n] = {1, 2, ..., n}. A diagonal matrix is denoted as diag(·). The

transpose of a vector x ∈ Rn is x>. We use 0 and 1 to denote the vectors whose entries all equal 0 and 1, respectively.

We let G = (V,E,W) denote a weighted directed graph where V = {v1, v2, ..., vn} is the set of nodes, E ⊆ V × V is the

set of edges, and W : E→ R>0 maps to the real valued edge weights on each edge. We denote the configuration of edges

in a directed graph at time step k as Gk = (V,Ek,W), where Ek denotes the set of edges at time step k. Furthermore, we

denote ∪k≥0Ek as the union of all non-zero edge configurations on a graph for all k ≥ 0. We define a graph G as being

strongly connected if there is a path from every node to every other node in the graph.

II. SEIR MODEL WITH NETWORK FLOWS

In this section, we present a networked SEIR model incorporating the population flow of individuals between sub-

populations. First, consider a group of n sub-populations in a graph, where each sub-population i ∈ [n] is represented by

a node in the graph. We use the SEIR model to describe how suceptible individuals in sub-population i become exposed,

infected, and eventually recover as the result of an infectious disease [17]. We begin with defining the SEIR model behavior

without graph connections for each sub-population i ∈ [n] where Si, Ei, Ii, and Ri represent the number of susceptible,
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exposed, infected, and recovered individuals in sub-population i, respectively,

Ṡi(t) = −βi(t)
Ii(t)

Ni
Si(t) (1a)

Ėi(t) = βi(t)
Ii(t)

Ni
Si(t)− σi(t)Ei(t) (1b)

İi(t) = σi(t)Ei(t)− δi(t)Ii(t) (1c)

Ṙi(t) = δi(t)Ii(t), (1d)

where βi is the infection rate, σi is transition rate from exposed to infected, and δi is the healing rate. We assume Si(t) +

Ei(t) + Ii(t) +Ri(t) = Ni for all t, i.e., a fixed population size for each sub-population. We assume fixed sub-populations

as the intended time scale of the model is such that population change due to birth/death rates and migration is negligible

(e.g. rapid disease propagation over weeks or months). While all the variables (and model parameters, except population),

will (may) continue to vary with time, we remove the time-dependence notation for convenience and ease of reading from

this point forward.

To account for the flow of individuals between sub-populations we we expand the model in (1):

Ṡi = −βi
Ii
Ni
Si +

∑
j 6=i

(
Fij

Sj

Nj
− Fji

Si

Ni

)
(2a)

Ėi = βi
Ii
Ni
Si − σiEi +

∑
j 6=i

(
Fij

Ej

Nj
− Fji

Ei

Ni

)
(2b)

İi = σiEi − δiIi +
∑
j 6=i

(
Fij

Ij
Nj
− Fji

Ii
Ni

)
(2c)

Ṙi = δiIi +
∑
j 6=i

(
Fij

Rj

Nj
− Fji

Ri

Ni

)
, (2d)

where Fij represents the number of individuals flowing from sub-population j to i, where Fii = 0. By making a substitution

of variables where si = Si/Ni, ei = Ei/Ni, xi = Ii/Ni, ri = Ri/Ni we can model the proportion of individuals as follows

ṡi = −βixisi +
1

Ni

∑
j 6=i

(Fijsj − Fjisi) (3a)

ėi = βixisi − σiei +
1

Ni

∑
j 6=i

(Fijej − Fjiei) (3b)

ẋi = σiei − δixi +
1

Ni

∑
j 6=i

(Fijxj − Fjixi) (3c)

ṙi = δixi +
1

Ni

∑
j 6=i

(Fijrj − Fjiri) , (3d)

where si + ei + xi + ri = 1. Note that both (2) and (3) assume the sub-populations are well mixed and that the likelihood

of an individual traveling is independent of their infectious state, that is, whether they are susceptible, exposed, infected, or
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recovered. We now extend our model to include the probability that an individual is traveling, given their infectious state.

ṡi = −βixisi +
1

Ni

∑
j 6=i

(FijP (sj |Tj)− FjiP (si|Ti)) (4a)

ėi = βixisi − σiei +
1

Ni

∑
j 6=i

(FijP (ej |Tj)− FjiP (ei|Ti)) (4b)

ẋi = σiei − δixi +
1

Ni

∑
j 6=i

(FijP (xj |Tj)− FjiP (xi|Ti)) (4c)

ṙi = δixi +
1

Ni

∑
j 6=i

(FijP (rj |Tj)− FjiP (ri|Ti)) , (4d)

where P (qi|Ti), qi ∈ {si, ei, xi, ri} is the probability of an individual at sub-population i being in a certain infectious state

given that they are also traveling. Note that

P (si|Ti) + P (ei|Ti) + P (xi|Ti) + P (ri|Ti) = 1 (5)

for all i ∈ [n]. We can compute the probability that an individual from sub-population i is traveling given that they are in

state qi using Bayes’ rule,

P (qi|Ti) =
P (Ti|qi)P (qi)

P (Ti)
, (6)

where P (Ti) is the probability of an individual traveling from sub-population i and P (qi) = qi is the probability they are

in state qi. We compute the probability of an individual traveling from a given sub-population i ∈ [n] as

P (Ti) = γi =

∑
j 6=i Fji

Ni
, (7)

where γi is the proportion of the population flowing out of sub-population i and γi ∈ [0, 1] as it is reasonable to assume that∑
j 6=i Fji � Ni (as

∑
j 6=i Fji = Ni would imply that the entire population is traveling at a given time). Since measuring

P (qi|Ti) is practically challenging, we instead parameterize pqi := P (Ti|qi), for qi ∈ {si, ei, xi, ri}, as follows. Using (5)-(7)

we have that

1

γi
(psi si + pei ei + pxi xi + pri ri) = 1. (8)

Therefore, assuming that psi = pei = pri = pTi , we have

pTi (si + ei + ri) + pxi xi = γi.

Thus, solving for pTi yields

pTi =
γi − pxi xi
si + ei + ri

, (9)

which allows us to use pxi ∈ [0, 1] as a parameter to describe how likely an individual will be traveling given that they are

infected. Furthermore, we can compute the number of individuals flowing from sub-population j to i as

Fij = γjwijNj , (10)

where wij is the proportion of traveling individuals flowing from sub-population j to i computed as

wij =
Fij∑
l 6=j Flj

(11)



5

with wii = 0. Thus, we can derive the dynamics for the susceptible proportion at sub-population i as

ṡi = −βixisi +
1

Ni

∑
j 6=i

(FijP (sj |Tj)− FjiP (si|Ti))

= −βixisi +
1

Ni

∑
j 6=i

(
γjwijNj

pTj sj

γj
− γiwjiNi

pTi si
γi

)

= −βixisi +
∑
j 6=i

(
Nj

Ni
wijp

T
j sj − wjip

T
i si

)
.

Using the fact that
∑

j 6=i wji = 1, by (11), we have that

ṡi = −(βixi + pTi )si +
∑
j 6=i

Nj

Ni
wijp

T
j sj .

By similar derivations, we can rewrite (4) as

ṡi = −(βixi + pTi )si +
∑
j 6=i

Nj

Ni
wijp

T
j sj (12a)

ėi = βixisi − (σi + pTi )ei +
∑
j 6=i

Nj

Ni
wijp

T
j ej (12b)

ẋi = σiei − (δi + pxi )xi +
∑
j 6=i

Nj

Ni
wijp

x
j xj (12c)

ṙi = δixi − pTi ri +
∑
j 6=i

Nj

Ni
wijp

T
j rj . (12d)

We choose to discretize our model due to the nature of the collected data on the spread of pandemics, where the highest

resolution data is typically recorded once per day. Using Euler’s method, we can write (12) in discrete time as

sk+1
i = ski + h

−(βk
i x

k
i + pT,k

i )ski +
∑
j 6=i

Nj

Ni
wk

ijp
T,k
j skj

 (13a)

ek+1
i = eki + h

βk
i x

k
i s

k
i − (σk

i + pT,k
i )eki +

∑
j 6=i

Nj

Ni
wk

ijp
T,k
j ekj

 (13b)

xk+1
i = xki + h

σk
i e

k
i − (δki + px,ki )xki +

∑
j 6=i

Nj

Ni
wk

ijp
x,k
j xkj

 (13c)

rk+1
i = rki + h

δki xki − pT,k
i rki +

∑
j 6=i

Nj

Ni
wk

ijp
T,k
j rkj

 , (13d)

where k ∈ Z≥0 is a given time step and h ∈ R>0 is a sampling parameter, yielding our discrete time model.

For the model in (13) to be well-defined we require the following assumptions.

Assumption 1. Let
∑

i 6=j F
k
ij =

∑
i 6=j F

k
ji for all i ∈ [n] and k ∈ Z≥0.

This assumption requires that the total flow of individuals into a given sub-population must be equal to the total flow out.

Furthermore, we impose the following assumption on the model parameters.

Assumption 2. For all i ∈ [n] and k ∈ Z≥0, let βk
i , δ

k
i , σ

k
i ∈ R>0, hβk

i , hδ
k
i , hσ

k
i ∈ (0, 1], h(βk

i +pT,k
i ) ≤ 1, h(σk

i +pT,k
i ) ≤

1, and h(δki + pT,k
i ) ≤ 1.
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Under these assumptions, we can show that given proper initial conditions the model will always remain well defined.

Lemma 1. Consider the model in (13) under Assumptions 1-2. Suppose s0i , e
0
i , x

0
i , r

0
i ∈ [0, 1] and s0i + e0i + x0i + r0i = 1

for all i ∈ [n]. Then, for all k ≥ 0 and i ∈ [n], ski , e
k
i , x

k
i , r

k
i ∈ [0, 1] and ski + eki + xki + rki = 1.

Proof. We prove the result by induction. By assumption, it holds for the base case k = 0. We now show the inductive step,

where given ski , e
k
i , x

k
i , r

k
i ∈ [0, 1] and ski + eki + xki + rki = 1 for all i ∈ [n], we show that the same holds for k + 1. By

(13) and Assumption 2 we have

qk+1
i ≥ h

∑
j 6=i

Nj

Ni
wk

ijp
T,k
j qkj ≥ 0, (14)

where qki ∈ {ski , eki , xki , rki } for all i ∈ [n] and k ∈ Z≥0.
Furthermore, computing sk+1

i + ek+1
i + xk+1

i + rk+1
i yields

sk+1
i + ek+1

i + xk+1
i + rk+1

i = ski + eki + xki + rki + h
(
−βk

i x
k
i si + βk

i x
k
i si − σk

i e
k
i + σk

i e
k
i − δki xki + δki x

k
i

)
+

h

Ni

∑
j 6=i

(
F k
ij(P (si|Ti) + P (ei|Ti) + P (xi|Ti) + P (ri|Ti))− F k

ji(P (sj |Tj) + P (ej |Tj) + P (xj |Tj) + P (rj |Tj))
)

= ski + eki + xki + rki +
h

Ni

(
F+ − F−

)
= 1, (15)

where F+ =
∑

j 6=i F
k
ij and F− =

∑
j 6=i F

k
ji denote the total flow in and out of each sub-population, respectively, which are

equal by Assumption 1. Since each variable is non-negative by (14) and their sum must add to one by (15), we have that

sk+1
i , ek+1

i , xk+1
i , rk+1

i ≤ 1. Thus, we have shown that sk+1
i , ek+1

i , xk+1
i , rk+1

i ∈ [0, 1], completing the inductive step.

Remark 1. Assumption 2 requires that the sampling parameter be small enough in relation to the model spread parameters

such that the model remains well defined. Furthermore, requiring h(βk
i x

k
i +pT,k

i ) ≤ 1, h(σk
i +pT,k

i ) ≤ 1, and h(δki +pT,k
i ) ≤ 1

can be interpreted as requiring that no individual can both travel and transition between infectious states during the same

time step k ∈ Z≥0, as our model does not capture infection occurring during travel.

The following are not required for the model to remain well defined. However, we use them in the next section to show

that the set of healthy states have a homogeneous structure.

Definition 1. A graph Gk = (V,∪k≥0Ek,W) for k ∈ Z≥0 is K-strongly connected if there exist some bound K such that

(V,∪k+K−1
j=k Ej ,W) is strongly connected, for all k ∈ Z≥0.

Assumption 3. Let the graph Gk = (V,∪k≥0Ek,W), where W : Ek → R>0 is defined by wk
ij , be K-strongly connected.

III. MODEL ANALYSIS

In this section we analyze the equilibria of the model in (13), i.e., the healthy states of the system, which we define as

q∗i = limk→∞ qki for all i ∈ [n] where q∗i ∈ {s∗i , e∗i , x∗i , r∗i }. We use the following result given in [18] on the conditions for

discrete-time consensus models.

Lemma 2. Let a discrete-time system defined by the transition matrix Lk satisfy the following properties, where lkij is the

corresponding entry in the ith row and jth column at time step k ∈ Z≥0:

(i) The graph G = (V,∪k≥0Ek), where the edge weights at time step k are given by Lk, is K-strongly connected.
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(ii) There exists a positive constant y ∈ R>0 such that for all i, j ∈ [n] and k ∈ Z≥0 we have

(a) lkii ≥ y

(b) lkij ∈ {0} ∪ [y, 1]

(c)
∑n

j=1 l
k
ij = 1.

Then, the system dynamics defined by Lk guarantee asymptotic consensus.

We now present results on the asymptotic convergence of the healthy states for the system in (13).

Theorem 1. Consider the model in (13) under Assumptions 1-3. Given that there exists some i ∈ [n] such that x0i ∈ (0, 1]

or e0i ∈ (0, 1], then there exists a set of asymptotically stable equilibria of the form (s∗,0,0, 1 − s∗), where s∗ = α1,

α ∈ [0, 1].

Proof. We prove the result by splitting it into two parts, namely,

1) e∗i = 0 and x∗i = 0, for all i ∈ [n]

2) s∗i = α for all i ∈ [n].

The parts are presented sequentially:

1) We denote Sk =
∑n

i=1 s
k
i ∈ [0, n], Ek =

∑n
i=1 e

k
i ∈ [0, n] and Xk =

∑n
i=1 x

k
i ∈ [0, n] as the sum of the susceptible,

exposed, and infected states of all the sub-populations, respectively. Hence, based on the dynamics of the system states

in (13) and by Assumption 1, we have

Sk+1 = Sk − h
n∑

i=1

βk
i x

k
i s

k
i (16a)

Ek+1 = Ek + h

(
n∑

i=1

βk
i x

k
i s

k
i −

n∑
i=1

σk
i e

k
i

)
(16b)

Xk+1 = Xk + h

(
n∑

i=1

σk
i e

k
i −

n∑
i=1

δki x
k
i

)
. (16c)

By Assumption 2 and Lemma 1, we have that the rate of change of Sk, −h
∑n

i=1 β
k
i x

k
i s

k
i , is non-positive for all k ≥ 0 and

Sk is lower bounded by zero. Hence, by Lemma 1, we obtain that limk→∞ Sk exists, and

lim
k→∞

−h
n∑

i=1

βk
i x

k
i s

k
i = 0. (17)

Accordingly, we can write that limk→∞(Ek+1−Ek) = limk→∞−h
∑n

i=1 σ
k
i e

k
i . From Assumption 2, we know that hσk

i > 0

for all i ∈ [n] and k ∈ Z≥0. Therefore, by Lemma 1, we conclude that limk→∞Ek = 0 and thus limk→∞ eki = 0 for all

i ∈ [n].

Similarly, we acquire that limk→∞(Xk+1 − Xk) = limk→∞−h
∑n

i=1 δ
k
i x

k
i , since limk→∞ eki = 0 for all i ∈ [n]. By

Assumption 2 and Lemma 1, hδki > 0 and xki is well-defined, we acquire that limk→∞Xk = 0 and thus limk→∞ xki = 0

for all i ∈ [n].

2) In order to show that the susceptible states become equally mixed as k →∞, where k ∈ Z≥0, we leverage Lemma 2.

First, we construct dynamics for the susceptible states in (13a) when x∗i = e∗i = 0 for all i ∈ [n], as proven in 1), which

yields

sk+1
i = ski + h

−γki ski +
∑
j 6=i

Nj

Ni
wk

ijγ
k
i s

k
j

 , (18)
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where pT,k
i = γi by (9) and Lemma 1. We can express these dynamics in matrix form as

sk+1 =
(
I + h

(
−Γk +N−1W kΓkN

))︸ ︷︷ ︸
Lk

sk, (19)

where sk = [sk1 , . . . , s
k
n]>, Γk = diag(γk1 , . . . , γ

k
n), N = diag(N1, . . . , Nn), and W k is the matrix defined by entries wk

ij on

the ith row and jth column. In order to guarantee that s∗i is homogeneous for all i ∈ [n], we will apply Lemma 2 to (19).

Property (i) of Lemma 2 holds by Assumption 3. Furthermore, (ii.a) and (ii.b) are true by construction. We now show

(ii.c) is true by computing Lk1, which yields

Lk1 = 1 + h
(
−γk +N−1W kΓkN1

)
, (20)

where γk = [γki , . . . , γ
k
n]>. Computing N−1W kΓkN1 yields

N−1W kΓkN1 = N−1


∑

j 6=1 γ
k
j w

k
1jNj

...∑
j 6=n γ

k
j w

k
njNj

 . (21)

Using (10), we can write (21) as

N−1


∑

j 6=1 F
k
1j

...∑
j 6=n F

k
nj

 =


∑

j 6=1

Fk1j
N1

...∑
j 6=n

Fknj
Nn

 , (22)

which, by Assumption 1 and (7), becomes 
∑

i 6=1
Fki1
N1

...∑
i6=n

Fkin
Nn

 =


γk1
...

γkn

 = γk.

Thus, Lk1 = 1, showing that Lk meets the requirements to guarantee consensus of the susceptible states as stated in

Lemma 2. Therefore, s∗i = α for all i ∈ [n], where by Lemma 1 we have that α ∈ [0, 1].

IV. FEEDBACK CONTROL

We now propose a feedback control strategy for the model in (13) derived from the current infection states. Given that

γki represents the unimpeded flow out of sub-population i at time step k ∈ Z≥0, we can implement a scheme that restricts

travel between all sub-populations proportionally:

γ̃ki = θkγki , (23)

where θk ∈ [0, 1] is the flow restriction penalty. We propose a flow restriction penalty that is a function of the average

infection level:

θk = 1− (x̄k)
1
η , (24)

where x̄k = 1
n

∑
i∈[n] x

k
i is the average proportion of infected individuals across all sub-populations and η ∈ R>0 can be

viewed as a sensitivity parameter, where η > 1 denotes a higher sensitivity and η < 1 denotes a lower sensitivity to the

average infection level in the network. The magnitude of η can also be viewed as the strength of the controller in reaction

to the overall infection. We now show that applying the strategy in (23) still maintains the assumptions imposed in Section
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II, enforcing that the model remains well defined. We define (̃13) as the system with dynamics in (13) including the control

strategy in (23).

Proposition 1. Consider (̃13) under Assumption 2 and with θk ∈ [0, 1] for all k ≥ 0. If with s0i , e
0
i , x

0
i , r

0
i ∈ [0, 1] and

s0i + e0i + x0i + r0i = 1 for all i ∈ [n], then ski , e
k
i , x

k
i , r

k
i ∈ [0, 1] and ski + eki + xki + rki = 1, for all k ≥ 0 and i ∈ [n].

Proof. As control is only applied to γki for all i ∈ [n], we must only verify that Assumption 1 is met under the proposed

control strategy and the rest will follow from Lemma 1. Since θk ∈ [0, 1] we have by (7) that γ̃ki ∈ [0, 1]. Furthermore, by

(10) we have

F̃ k
ij = γ̃j

kwk
ijNj . (25)

Computing the flows in versus the flows out, F̃+ − F̃−, yields

F̃+ − F̃− =
∑
j 6=i

F̃ k
ij −

∑
j 6=i

F̃ k
ji

=
∑
j 6=i

γ̃j
kwk

ijNj −
∑
j 6=i

γ̃i
kwk

jiNi

= θk

∑
j 6=i

γkj w
k
ijNj −

∑
j 6=i

γki w
k
jiNi


= θk(F+ − F−) = 0.

Thus, Assumption 1 is maintained. Therefore, by Lemma 1 ski , e
k
i , x

k
i , r

k
i ∈ [0, 1] and ski + eki + xki + rki = 1, for all k ≥ 0

and i ∈ [n].

By restricting γki , we directly reduce the flow of both infected and non-infected individuals according to (9) as

θk
(
pT,k
i (ski + eki + rki ) + px,ki xki

)
= θkγk

i . (26)

Thus, our controlled flow rates, with respect to the conditional probability parameters, are given by

p̃q,ki = θkpq,ki (27)

where pq,ki ∈ {ps,ki , pe,ki , px,ki , pr,ki }.

The control strategy in (23)-(24) effectively restricts flow between all sub-populations proportionally in the presence of

any amount of system infection. Note that by construction θk = 1 − (x̄k)
1
η ∈ [0, 1] for all k ≥ 0. Thus, by Proposition 1,

the system is well defined.

It should be noted that while proportional restrictions to all flow are not the most precise form of control that can be

applied to this model, this approach is not dissimilar to the travel policies on global and regional flights during the height

of the COVID-19 pandemic [19]. In the following section we apply this control strategy to a simplified model of a travel

network between populous cities based on median flight data, and evaluate its effectiveness on mitigating disease spread.

V. SIMULATIONS

In this section, we detail the methods and parameters used to simulate our model, its limiting behavior, and our proposed

control strategy as described in Sections II-IV. We construct our simulations using population data from the US cities of

Atlanta, Los Angeles, Chicago, and Dallas, and the flights between each city’s primary airport (ATL, LAX, ORD, DFW).
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sk i

k

sk0

sk1

sk2

sk3

FIGURE 1: An illustration of the model in (13) reaching consensus after the infection dies out in the system, indicated by

the vertical black dotted line where x̄ ≤ 10−4.

The infection starts in Los Angeles and propagates through the network, reaching an equilibrium where xki = 0 for all

i ∈ [n].

To simulate the states for the SEIR model we use (13) with fixed homogeneous spread parameters (i.e., the same for

every sub-population and static), (β, δ, σ, h, px) = (0.5, 0.34, 0.19, 0.14, 0.005). The population of each city is given by

(NATL, NLAX, NORD, NDFW) ≈ (0.5, 4, 2.7, 1.3) ∗ 106, where the population sizes are approximated from [20] and [21]. The

population traveling between the cities is approximated by the median number of daily flights between the airports in March

2021 [22]:

F = ξ


0 15 23 19

15 0 22 21

23 22 0 23

19 21 23 0

 ,

where ξ ∈ R≥0 is a scaling factor, which is used to increase or decrease the total volume of population flow. The initial

conditions for the sub-populations are s0 = [1, 0.99, 1, 1], e0 = [0, 0.005, 0, 0], x0 = [0, 0.005, 0, 0], and r0 = [0, 0, 0, 0].

First, we show the consensus behavior from Theorem 1 by simulating (13) using the given initial conditions and model

parameters. In Figure 1, we see that the susceptible proportions of sub-populations reach consensus. The dashed vertical line

in the graph indicates the time step at which the average infected proportion of the population reaches near zero (x̄k ≤ 10−4).

These results suggest that, by the end of the epidemic process, the flow dynamics dominate the behavior of the model and

eventually lead to an equal mixing of susceptible and recovered populations given enough time, as suggested by Theorem 1.

Second, we simulate the control strategy proposed in Section IV with and without an additional heuristic for vaccine

distribution. With no vaccine strategy applied, these simulations show that exclusively implementing a control law that

uniformly reduces travel based on x̄k, namely using (23)-(24), does not have a significant impact on the total number of

people infected. Furthermore, in many cases increasing the strength of the controller will cause the total number of recovered

individuals to increase. This phenomenon is illustrated in the plot at the bottom of Figure 2 by the fact that as the x-axis

increases (recall that the η value corresponds to the strength of the controller), so does r̄∗ (except for very small γ values).

This behavior is the consequence of at least two reasons: 1) the controller does not prevent infections from occurring inside

the sub-populations (i.e. no lock downs), and 2) the controller in some cases ‘flattens the curve’ which prolongs the outbreak
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x̄
k

k

θk

γ

η

r̄∗

FIGURE 2: System response to the controller in (23)-(24) with different strength values (η) and flow rates (γ). (Top) Plot

of x̄k with η ranging from 0 to 1000 and ξ = 100. An η = 0 means the control strategy is not used. The dotted lines of

corresponding color denote the control penalty applied to the flow rates in the system with respect to the total infection

level. (Bottom) The average proportion of recovered individuals r̄∗ for a spectrum of equilibria. The baseline γ = 1.0 is

when ξ = 100.

x̄
k

k

θk

γ

η

δ
∑ k

x̄
k

FIGURE 3: Implementation of a vaccine roll-out. Plots mirror those in Figure 2, with the roll-out starting at k = 500, moving

0.1% of ski → rki until s̄k = 0.01. (Top) Plot of x̄k with η ranging from 0 to 1000 and ξ = 100. An η = 0 means the control

strategy is not used. The dotted lines of corresponding color denote the control penalty applied to the flow rates in the

system with respect to the total infection level. (Bottom) The average proportion of recovered individuals due to infection

δ
∑

k x̄
k, which is equivalent to r̄∗ when there is no vaccine, for a spectrum of equilibria. The baseline γ = 1.0 is when

ξ = 100.
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x̄
k

k

θk

FIGURE 4: System response (solid lines) to the controller in (23) with an on-off flow penalty (dotted lines). The case η = 0

has θk = 1 for all k ≥ 0, the cases η = 1, 2 have θk = 1 for all k ∈ {0, . . . , 49} and set θk = 0 starting at k = 50, the

cases η = 3, 4 have θk = 0 starting from k = 0, cases η = 1, 3 re-open travel (set θk = 1) for all k after x̄k < 0.001, and

cases η = 2, 4 only re-open travel after x̄k ≈ 0.

and increases the integral under the curve (i.e. a higher number of total infections).

On the other hand, a reduction in the peak infected population reduces strain on healthcare systems, improving medical

outcomes and decreasing fatality rates [23], and creates an opportunity for a vaccine to be more impactful. In Figure 3

we simulate the network with the same initial conditions and parameters as Figure 2, adding the distribution of a vaccine,

starting at time step k = 500, which, for each sub-population, moves 0.1% percent of the susceptible proportion directly to

the recovered proportion at each time step. In the bottom of Figure 3, we show the mean infected proportion of the system

for increasing levels of sensitivity as well as the total proportion of the recovered population who were infected by the

disease (δ
∑

k≥0 x̄
k). We see that a combined strategy of restricting flow and vaccine distribution can have a marked effect

on the number of individuals infected while simultaneously reducing the peak infection level of the system.

Lastly, we implement the controller in (23) with θk being strictly binary, that is, θk is either 0 or 1. In Figure 4, control

strategies η = 1, 2 shut down all travel after 50 time steps, imitating a delay in decision making from policymakers while

strategies η = 3, 4 shut down travel immediately when the infection is first detected in any sub-population. A critical note

is that even when travel is eventually completely closed, if it does not happen quickly enough then there will be almost no

discernible impact on infection levels, as seen by comparing control strategies η = 1, 2. These extreme cases illustrate that

unless the infection is completely eradicated (x̄k = 0) prior to reopening travel, it will always spread throughout the network

after travel is reopened. When we tested the binary controller case η = 3 reopening travel after x̄k < 10−9, there was a

second x̄k peak around k = 7000. When a vaccine is distributed, this delayed second wave can be significantly mitigated

as shown in Figure 5. While costly, completely closing all travel between sub-populations can enable a vaccine to have a

tremendous impact but only if the initial response is not delayed.
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x̄
k

k

θk

FIGURE 5: System response to the controller in (23) with an on-off flow penalty combined with a vaccine roll-out. The

on-off controller is identical to Figure 4 and the vaccine roll-out is identical Figure 3.

VI. CONCLUSION

In this paper, we have constructed a networked discrete-time SEIR epidemic model that incorporates population flows,

presented conditions under which the model is well-defined, and shown asymptotic convergence to the healthy states, the

set of equilibria. Additionally, we have proposed a control policy for restricting population flow which can be interpreted as

implementing travel restrictions/bans, showed it is well defined, and illustrated its behavior via simulation. We have found

that only restricting the flow of the population is typically insufficient to reduce the total number of infections over the

course of an epidemic. More severe restrictions on the population flow can decrease the peak infection level, which can

alleviate stress on healthcare facilities. Further, applying population flow restrictions together with a vaccination strategy can

significantly reduce the total number of infections.

For future work we plan to incorporate the possibility of infections occurring while individuals are traveling (i.e., infections

occurring on the edges of the graph) as well as using real travel and infection data from the COVID-19 pandemic to learn the

model parameters. Finally, note that our model does not capture asymptomatic transmission of the virus, a key component

of the infectious behavior of COVID-19, therefore, developing a similar SAIR formulation remains open to future work.
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