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Abstract— We prove that virtual friction control can stabilize
a power grid containing several virtual synchronous machines
(VSMs), connecting line impedances and loads. Virtual friction
is a torque added to the swing equation of each VSM,
proportional to the deviation of its frequency from the overall
center of inertia (COI) frequency. Our analysis is based on
the network reduced power system (NRPS) model. We support
our results with simulations for a two-area network of four
VSMs, looking at the transients induced by a change of tie-
line impedance and an asymmetric load change. We compare
the results for the NRPS model with the corresponding results
using detailed models of synchronverters and line impedances.
We find that virtual friction has a strong stabilizing effect both
for the NRPS model and for the full grid model.

I. INTRODUCTION

Virtual synchronous machine (VSM) are switched power
converters that are controlled such that they mimic (towards
the power grid) the behaviour of synchronous generators,
providing frequency and voltage droop as well as (virtual)
inertia. They seem to be a very promising way for the de-
velopment of inverters for the grid integration of distributed
power generators, see for instance [3], [6], [16], [18], [19],
[20], [25], [32], [39], [40]. VSMs are more flexible than
synchronous generators (SGs), as their parameters can be
tuned and even changed on-line. Moreover, the frequency
and voltage droops can act instantly, while in SGs connected
to prime movers, they have large time constants. The main
advantage of VSMs, as compared to current source inverters
common in renewable energy sources, is that they can form
stable grids, just like SGs. Their potential of providing grid
frequency support by means of virtual inertia and frequency
droop is shown, for instance, in [2], [14], [20], [21] and
[30]. Of course, the stability of a (micro)grid comprising
VSMs, loads and transmission lines is not guaranteed, a
careful analysis and parameter tuning are needed to achieve
a stable grid. Thus, the stability analysis of power grids is
an important and timely topic, see for instance [1], [4], [8],
[9], [11], [13], [15], [17], [25], [28], [31], [36].

Investigating a single inverter connected to an infinite bus,
[29] and [30] have proven global asymptotic stability based
on hybrid angle control, a combination of DC-matching
control and a non-linear angular damping feedback, based on
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angular differences evolving on a circle with radius 4π . This
type of control allows the phase differences of connected
VSMs to reach and exceed 180◦. The paper [26] investigates
the stability of grids where several VSMs are operated in
parallel, by means of µ-analysis. The paper [5] investigates
the stability of a power network employing VSMs based
on the singular perturbation method, separating the system
dynamics into slow, fast and very fast dynamics. It derives
sufficient stability conditions for the inverter parameters to
guarantee stability of such a network.

A major issue with VSMs employing frequency droop
control is that they have to inject large excess power dur-
ing disturbances where the grid frequency drops below its
nominal value. Hardware power ratings of the electronic
components and/or the limited availability of excess DC
power impose an upper bound for the frequency droop
constant and/or they force the droop torque to saturate, which
is bad for stability. To avoid reaching saturation frequently,
the frequency droop constant (per unit) employed in inverters
is typically much smaller than that imposed on the prime
mover of an SG [19].

In order to decouple stability requirements from hardware
requirements, we propose to introduce virtual friction (VF),
as an additional viscous friction torque, acting on the virtual
rotors of the connected VSMs. This torque employs the
center of inertia (COI) frequency as a reference. (The concept
of COI has been introduced in [27] and has been used
extensively, see for instance [38]). VF has been introduced in
[7] and [35] but only for two VSMs (or two areas), so that the
friction torque is proportional to the difference in frequency
between these two, without the need for the COI frequency.
Simulation experiments in [7] show that VF greatly enhances
the stability of a two-area power system with weak links
between the two areas. In damping oscillations, the effect
of VF is similar to that of the frequency droop, but without
the need to inject large excess power if the grid frequency is
below the nominal value. The paper [12] has extended this
concept and implemented a PID-controller based on VF.

It is important to state that the calculation of the COI
frequency requires the transmission of angular velocity in-
formation of the VSMs across the power network. The
transmission time delays that occur in the communication
infrastructure complicate the stability analysis of such sys-
tems. In particular, time delays may not be constant over
time and may have different values for each communication
link, see for example [23] for a stochastic modelling of time
delays. In a real grid, time delays may be due to (see [37]):
• Transmission delay: Time a packet needs for trans-



mission via the employed protocol, dependent on the
bandwidth.

• Propagation delay: Time for the data to propagate
through the medium (copper wire or fiber optic cable).

• Processing delay: Time required by the data acquisition
unit to prepare and send a frame + time required by the
VSM to receive and decode the received data.

In order to bypass time delays, a decentralized approach
was proposed in [9], where an additional control loop is
implemented in the VSM algorithm, based on angular accel-
eration and active power output. A small-signal approach is
used to tune the control parameters. In order to understand
the impact of time delay on the VF mechanism, we have
conducted exhaustive simulations. Our surprising conclusion
is that the system behaviour remains largely unchanged for
constant but not necessarily equal time delays up to around
100ms, at least for the simple two area grid with 4 VSMs
studied in this paper.

The stability analysis of larger power grids must of course
involve simplified models of the generators, transmission
lines and loads, because working with full models (high
order non-linear systems) makes any analysis intractable,
see for instance [24], [33]. An important and successful
direction of research in this field has been the study of
the network reduced power system (NRPS) model (see
[11], [15] and [27]) and its inertia-less limit version, the
nonlinear Kuramoto (NK) model. In the NRPS model, each
generator is represented by a system of order two (the swing
equation) and the transmission lines and loads are static
and are represented by complex impedances without state
variables. Stability results for the NK and NRPS models
have been derived in [15] and improved in [34]. They
give - under reasonable assumptions on the impedances of
the power network and for small enough inertias - a local
exponential stability result on the grounded rotor angles of
the synchronous generators in the network.

In this paper we extend the NRPS model by incorporating
VF. In [15] and in the stronger version of the main result that
is in [34], it was proven that, under suitable assumptions, the
NRPS model becomes stable if the inertias of the generators
are sufficiently small. However, making the inertias very
small comes at a price: The system frequency will vary a
lot more and much faster. The advantage of VF is that we
no longer have to make the inertia terms small, instead, to
achieve stability, it suffices to increase the VF coefficients.

We test VF in simulations of a micro grid, using full mod-
els for every component, and we also test the corresponding
reduced model which is the NRPS model. For each of the
two models (the full and the reduced one) we simulate a
change of tie-line impedance between two areas, as well as
an asymmetric change of load, and we observe the resulting
transients with and without VF. Our results show that indeed,
the addition of VF stabilizes the system even if the network is
chosen such that it is unstable without the additional damping
term. Moreover, with VF, the transients decay much faster.

This paper is structured as follows: In Section II we recall
the NK and NRPS models and we introduce the new model

that has VF. We also state the stability result for the model
with VF. Section III contains the proof for the main theorem
of this paper, in which we consider separately the dynamics
of the COI frequency and then we show that, on a different
time scale, the new model with VF reduces to the NRPS
model. This allows us to perform a singular perturbation
analysis, as in [34]. In Section IV we report our simulations,
that show the influence of the VF torques on the second order
SG models and compare the evolution of the grounded rotor
angles for the same scenarios of the grid. In addition, a more
realistic simulation based on the synchronverter detailed in
[22] is performed on the same grid, also employing the full
model for the transmission lines and loads.

II. POWER FLOW MODEL WITH VIRTUAL FRICTION

Notation. We follow the notation from [34] (see also
[15]). We represent all angles on the unit circle T by
numbers in (−π,π] (modulo 2π). Addition and subtraction
are performed modulo 2π . For two angles θ1,θ2 ∈ T the
geodesic distance between them is

|θ1−θ2|g = min{|θ1−θ2|, 2π−|θ1−θ2|} .

Let n ∈ N be fixed. For any γ ∈ (0,π] we define

∆(γ) =
{

θ ∈ Tn ∣∣ ∃θ0 ∈ T
∣∣ |θ j−θ0|g <

γ

2
, 1≤ j ≤ n

}
.

The above equation means that there exists an open arc of
the length γ in T that contains all angles θ j, and θ0 is the
midpoint of this arc. For γ ∈ (0,π] we define ∆(γ) as the
closure of ∆(γ) in Tn. As in [15], we introduce the mapping
grnd : Tn→Rn−1 as δ = grnd(θ) where:

δ j = θ j−θn , 1≤ j ≤ n−1 . (1)

The above representation of angle differences loses one
degree of freedom, since for n angles n− 1 differences are
defined. Where required in the following, δn = 0. For any
γ ∈ (0,π] the grounded set ∆grnd(γ)⊂ Rn−1 is defined as:

∆grnd(γ) =

{
δ ∈ Rn−1

∣∣∣∣ |δ j|< γ,
|δ j−δk|< γ,

1≤ j,k ≤ n−1
}
.

We denote the closure of this grounded set by ∆grnd(γ).

Parameters of the models. The matrix [a jk] ∈ Rn×n is
such that

a jk = ak j > 0 for 1≤ j,k ≤ n, j 6= k

and a j j = 0 for j ∈ {1, ... n}. We define an array of phase
shifts ϕ jk ∈ T that satisfies

ϕ jk = ϕk j ∈
(
−π

2
,

π

2

)
for 1≤ j,k ≤ n, j 6= k .

The diagonal values ϕ j j are not relevant. We also introduce
four sets of n real numbers: M j > 0,D j > 0,Fj > 0 and p j ∈
R, j ∈ {1,2, . . . n}.

The NK model is a collection of n first order differential
equations on Tn, defined for 1≤ j≤ n. It has been proposed
in [15] as an extension to the Kuramoto model, describing



synchronization between a set of coupled oscillators con-
nected through a lossy network:

D jθ̇ j = p j−
n

∑
k=1

a jk sin(θ j−θk−ϕ jk) .

The state of this system is θ = (θ1, ...θn), which evolves in
the state space Tn. We denote ω j = θ̇ j.

As a simplified model describing a power network, the
NRPS model has been derived in [27] (see also Chapter 6
in [10] and [34]). In this model, n SGs are connected via
a passive network and θ1, . . .θn are the rotor angles of the
generators. The model consists of n second order differential
equations on T: for 1≤ j ≤ n,

M jθ̈ j +D jθ̇ j = p j−
n

∑
k=1

a jk sin(θ j−θk−ϕ jk) . (2)

We will refer to M j as inertia terms, to D j as damping
coefficients and to p j as power terms. The precise connection
between these parameters and the parameters of an electric
grid is derived in Section 3 of [34]. Let us denote ω j = θ̇ j.
The state of the dynamical system (2) is:

(θ ,ω) = (θ1, ...,θn,ω1, ...,ωn) ∈ Tn×Rn, (3)

where, again, ω j = θ̇ j. Let ωc be the center of inertia
frequency, defined as in [27]:

ωc =

n
∑

k=1
Mkωk

n
∑

k=1
Mk

. (4)

In this paper we are interested in a modification of the
NRPS model, where a new viscous friction term Fj(ω j−ωc)
is added to the left-hand side of (2). This leads to:

M jθ̈ j +(D j +Fj)θ̇ j = p̃ j−
n

∑
k=1

a jk sin(θ j−θk−ϕ jk) ,

where
p̃ j = p j +Fjωc . (5)

We will refer to Fj as a virtual friction coefficient. We assume
that the ratios of damping and virtual fricion coefficients
over inertia terms are the same for all the generators in the
network. This enables us to define the parameters d and f
as:

d =
D j

M j
, f =

Fj

M j
, 1≤ j ≤ n. (6)

Note that the actual values of d and f would be defined
beforehand and individual inverters would be configured to
fulfil this requirement prior to their integration into the grid.
With the above, we define the following model that we shall
call the friction enhanced power system (FEPS) model for
convenience:

M jθ̈ j +M j(d + f )θ̇ j = p̃ j−
n

∑
k=1

a jk sin(θ j−θk−ϕ jk) . (7)

The state of the system (7) is again defined as in (3).

In the following, we show the improved stability properties
of this model over the NRPS model. For this, we impose the
exact same assumptions on the parameters D j, p j, a jk and
ϕ jk as in the main result of [34].

Theorem 2.1: Consider the system (7), with state (θ ,ω),
where ω = θ̇ , with p̃ defined as in (5). Denote

ε =
1

(d + f )2 (8)

and define:

Γmin = nmin
j 6=k

{
a jk

D j
cosϕ jk

}
, ϕmax = max

j 6=k

{
|ϕ jk|

}
,

Γcrit =
1

cosϕmax

(
max

∣∣∣∣ p j

D j
− pk

Dk

∣∣∣∣+2 max
1≤ j≤n

n

∑
k=1

a jk

D j
sinϕ jk

)
.

(9)
Assume that Γmin > Γcrit . Define γmin ∈ [0, π

2 −ϕmax) as
the unique solution of

sinγmin =
Γcrit

Γmin
cosϕmax ,

and set γmax = π − γmin. Then there exists a unique point
with δ ∗ = (δ ∗1 , ...δ

∗
n−1) ∈ ∆grnd(γmin) with the following

properties:
For every γ0 ∈ (γmin,γmax) and every ωmax > 0 there exists

a constant ε∗ > 0 such that if 0 < ε < ε∗, then for any initial
state (θ(0),ω(0)) satisfying

θ(0) ∈ ∆(γ0) , ‖ω(0)‖ ≤ ωmax , (10)

the following holds for all j ∈ {1,2, ...n−1} :

lim
t→∞

[θ j(t)−θn(t)] = δ
∗
j , lim

t→∞
ω j(t) = ω

∗,

where

ω
∗ =

1
D j

(
p j−

n

∑
k=1

a jk sin(δ ∗j −δ
∗
k −ϕ jk)

)
.

This theorem shows that for the FEPS model, if the same
assumptions hold as in the main result of [34], then the
model can be made stable by increasing the virtual friction
coefficients (instead of reducing the inertia terms).

III. THE PROOF OF THEOREM 2.1

Step 1. The COI frequency is a function of the frequencies
ω j. In order to analyse the system stability, we have to
investigate the stability of ωc. By differentiating (4) and
using (7), we obtain that(

n

∑
k=1

Mk

)
ω̇c =

n

∑
k=1

Mkω̇k

=
n

∑
j=1

M j

[
−dω j + f (ωc−ω j)

]
+

n

∑
j=1

[
p j−Pe, j(θ)

]
,

(11)

where Pe, j(θ) is defined by

Pe, j(θ) =
n

∑
k=1

a jk sin(θ j−θk−ϕ jk), (12)



and its interpretation is the electrical power output of gen-

erator j. By the definition of ωc,
n
∑
j=1

M j(ωc−ω j) = 0. Thus

(11) can be written as:(
n

∑
k=1

Mk

)
ω̇c = −d

n

∑
j=1

M jω j +
n

∑
j=1

[
p j−Pe, j(θ)

]
.

Dividing by
n
∑

k=1
Mk gives a first order linear differential

equation:

ω̇c = −dωc +

n
∑
j=1

[
p j−Pe, j(θ)

]
n
∑

k=1
Mk

,

which shows that ωc converges to some limit ω∗c if the
functions Pe, j(θ) converge to some limits.

Step 2. The FEPS model (7) corresponds to the NRPS
model with the additional disturbance term f ωc and an
enhanced damping coefficient M j( f +d) (in place of M jd).

Lemma 3.1: Let (θ ,ω) be a solution of (7). Let (θ 0,ω0)
be the solution of the related equation

M jθ̈
0
j +M j(d + f )θ̇ 0

j = p j−Pe, j(θ
0), (13)

where Pe, j(θ
0) is defined as in (12) and ω0

j = θ̇ 0
j , starting

from the same initial conditions:

ω
0
j (0) = ω j(0), θ

0
j (0) = θ j(0).

Denote ζ = ω j−ω0
j . Then the function ζ is independent of

j and it is the unique solution of

ζ̇ +(d + f )ζ = f ωc, (14)

starting from ζ (0) = 0, where ωc is defined in (4).
Notice that the only real difference between the equations

(7) and (13) is that p̃ j has been replaced with p j.
Proof of Lemma 3.1 Let ζ be the solution of (14) for the

given function ωc, starting from ζ (0) = 0, i.e.,

ζ (t) =
∫ t

0
e−(d+ f )(t−σ) f ωc(σ)dσ .

Let (θ 0,ω0) be the solution of (13) starting from the same
initial condition as (θ ,ω), as defined in the lemma. We define
(θ 1,ω1) by

ω
1
j = ω

0
j +ζ , θ

1
j (t) = θ

0
j (t)+

∫ t

0
ζ (σ)dσ . (15)

Note that θ 1
j (t)−θ 1

k (t) = θ 0
j (t)−θ 0

k (t), so that for all j,k ∈
{1,2, ...n},

Pe, j(θ
1) = Pe, j(θ

0). (16)

It follows from (13), (14), (15) and (16) that

ω̇
1
j = ω̇

0
j + ζ̇

= − (d + f )ω0
j +

p j

M j
−

Pe, j(θ
0)

M j
− (d + f )ζ + f ωc

=−(d + f )ω1
j +

p j

M j
−

Pe, j(θ
1)

M j
+ f ωc,

(17)

i.e., ω1 and θ 1 satisfy (7). Moreover, since ω1(0) = ω(0)
and θ 1(0) = θ(0), we obtain that

ω
1(t) = ω(t) θ

1(t) = θ(t) ∀t ≥ 0.

Hence, we have indeed ζ = ω j − ω0
j , for all j ∈

{1,2, . . . n}.�
Step 3. We introduce new variables x j ( j ∈ {1,2, ...n})

and a new timescale τ as follows:

τ =
1
β

t, x j = βω
0
j , β > 0 .

Substituting for t and ω0
j in (13) gives:

M j

β 2
d

dτ
ẋ j +M j

d + f
β

x j = p j−Pe, j(θ) .

We choose β = d + f so that ε = 1
β 2 by (8). This allows

rewriting equation (13) in the form of a standard perturbation
problem with ε as the singular perturbation parameter:

εM j
d

dτ
ẋ j = −M jx j + p j−

n

∑
k=1

a jk sin(θ 0
j −θ

0
k −ϕ jk) ,

d
dτ

θ
0
j = x j.

For ε→0, the reduced system dynamics are given by:

M jx j = p j−
n

∑
k=1

a jk sin(θ 0
j −θ

0
k −ϕ jk) .

Writing the above using the grounded angles from equation
(1) gives

M jε
d

dτ
ẋ j = −M jx j + p j−

n

∑
k=1

a jk sin(δ 0
j −δ

0
k −ϕ jk) ,

d
dτ

δ
0 = x j− xn,

(18)
where δ 0

j = θ 0
j −θ 0

n and δ 0
n = 0. The equations (18) are now

of the same form as the equations (19), (20) from [34], with
x j in place of ω j, and with M j in place of m j and also in
place of D j from [34]. Thus we can apply Theorem 4.1 from
[34] to conclude that there exist suitable conditions (as stated
in Theorem 2.1) for which the following holds:

ω
0
j →ω

0∗, δ
0
j →δ

0∗
j .

It follows thus with (16) and the fact that θ 1 = θ , that
P̃e, j(δ ) = P̃e, j(δ

0) , whence

P̃e, j(δ )→ P̃e, j(δ
0∗).

According to (11) the COI frequency converges to a constant
value, ωc→ω∗c , and therefore also the solution of (14)
converges:

ζ (t)→ζ
∗

and with Lemma 3.1 we get

ω j→ω
∗ . �



Fig. 1. Simulated two area grid with four generators (3 phase grid). Switch
S1 is used to change the line impedance between the two areas and S2 is
used to connect load L3.

IV. SIMULATION RESULTS

This section presents simulation results for a two area
network where each area consists of two generators and one
load (See Fig. 1). An additional load L3 in parallel with
load L2 serves to introduce a load step change in area 2.
The line impedance between the two areas can be changed
by operating switch S1, (dis-)connecting transmission line
Y5. We present the simulations based on the full VSM
algorithm from [18], [22] as well as results for the NRPS
and FEPS model. All simulations were conducted in the
MATLAB/Simulink (R) environment.

A. The full model

The VSM algorithm was run at 10kHz while the power
part is simulated at a step size corresponding to 100kHz.
We use the ode4 (Runge-Kutta) solver for these simulations.
Loads are modelled as constant impedance and transmission
lines as RL circuits. Switches in the model have negligi-
ble breaker resistance and snubber resistance of 1kΩ and
snubber capacitance of 200nF. All synchronverters have
nominal power 9kW and have identical parameters with
M j = 188.5Ws2 and D j = 94.2Ws and Fj = 3141.6Ws. The
set powers of all inverters were Pset = 5kW and Qset = 0kVar.

A 1ms round trip time delay for the COI frequency to
the synchronous machines is used. The transmission network
admittances Y1 to Y5 consist of R = 0.1Ω and L =1mH and
Y6 is equivalent to R = 10Ω and L =100mH. The inverter
output are connected to symmetric LCL-filters YF with each
coil L = 1.1mH, R = 0.1Ω and a capacitor of C = 20µF.
These filters YF are parts of our network. Loads 1 and 2
consume 12kW active power, while load L3 consumes 5kW.
No reactive power is consumed by the loads. We use a
reactive power control loop as in [18], [22] and we inject
random current and voltage measurement errors of a realistic
size and power spectral density, see [18] for the details. As
the transmission line impedance between the two generators
within the same area is relatively low, their coupling is
strong. Simulation results show that the effect of VF has
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Fig. 2. The plots of active power output (in W) following the disconnection
of load L3 starting at t = 30s. Subfigure (a) shows the plots without VF,
while subfigure (b) shows the much smoother transition with VF.

a beneficial impact when the load imbalance between the
two areas is large and a strong tie line current is required
to balance the two areas. In the case where the two areas
are relatively balanced and therefore almost zero power flow
is required between the two areas, a change in tie line
impedance has little effect, as expected. We thus describe
our results for the following two scenarios:
• The tie line impedance is high and a sudden change in

load occurs in one of the two areas.
• The tie line impedance sees a step change at a high load

imbalance.
1) Step down change in load at high tie line impedance:

Figures 2 and 3 show simulation results for the four genera-
tors after a sudden disconnection of load L3 leading to a step
change of the active power consumption in area 2 at t = 30s.
This change occurs when switch S1 is open, thus at a weak
tie line between the two areas. When the VF is inactive, the
active power output of the two generators in area 2 suddenly
decreases by about 900W. Strong oscillations between the
two areas are induced (See Fig. 2a). These oscillations do
not occur when the VF is active (see Fig. 2b). Instead, within
3 seconds, the power output of the 4 generators converges
without oscillations to equal values. In both cases, the overall
active power output of all four generators has a transient
lasting for about 7s, an effect that is due to the reactive
power control loop [22].

Fig. 3 shows the generator frequencies for the same
experiment with and without VF. In both cases, the frequency
of the four generators increases at a slower rate dictated again
by the rate of change of the excitation current control. The
inter area oscillations show as modulations of the generator
frequencies with an initial amplitude of 1 rad. These are fully
damped when VF is active.

Fig. 4 shows the grounded angles of generators G2 to G4
with respect to generator G1. The oscillations initially reach
an amplitude of ±0.35rad.

2) Step down change in tie line impedance at high load
imbalance: Data is shown for a sudden change of the tie line
impedance between area 1 and area 2 (closing of S1 at t =
40s). Fig. 5 shows the active power output of the generators.
The change in tie line impedance from a high value to a
low value triggers strong power oscillations between the two
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Fig. 3. The plots of frequencies (in rad/s) following the disconnection of
load L3 starting at t = 30s. Subfigure (a) shows the plots without VF, while
subfigure (b) shows the much smoother transition with VF.
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Fig. 4. The plots of grounded rotor angles (in rad) with respect to generator
G1, following the disconnection of load L3 starting at t = 30s. Subfigure (a)
shows the plots without VF, while subfigure (b) shows the much smoother
transition with VF.

areas which slowly increase as long as the load imbalance
persists. When the VF is activated, the active power output
of the generators converge within 1s with no oscillations.

In Fig. 6 we see that the amplitude of the frequency
oscillations reaches ±1rad/s. A slow decay of the system
frequency is observed over the course of 10s. Again VF
efficiently damps the oscillations.

The grounded angles of the four generators can be seen
in Fig. 7 to have an angular difference of 0.35rad before
the reconnection of tie line Y5, which is due to the high
phase shift induced by the weak inter area link between the
two areas. In the absence of VF control, oscillations vary by
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Fig. 5. The plots of active power output (in W) following a tie-line
impedance step down starting at t = 40s. Subfigure (a) shows the plots
without VF, while (b) shows the smoother transition with VF.
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Fig. 6. The plots of frequencies (in rad/s) following a tie-line impedance
step down starting at t = 40s. Subfigure (a) shows the plots without VF,
while subfigure (b) shows the much smoother transition with VF.
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Fig. 7. The plots of grounded rotor angles (in rad) with respect to
generator G1, following a tie-line impedance step down starting at t = 40s.
Subfigure (a) shows the plots without VF, while subfigure (b) shows the
much smoother transition with VF.

±0.35rad. With VF, the grounded angles converge to zero
within 2 to 3 seconds.

Note that the steady state power output of the VSMs
only depends on Pset and ω . With Pset being equal for all
4 generators, the active power outputs of the synchronized
generators reach equal values even if the load is not balanced
between the areas (see [22]). Note also, that the value for D
is chosen relatively low and that stronger damping of course
can also be achieved by increasing D. This however comes
at the cost of requiring the VSMs to supply large excess
power in the case of ω deviating from its nominal value.
An adequate choice of d and f should be made such that
for a given (micro)grid d can stabilize the grid in normal
operation, while f helps improving speed of convergence
and decreases oscillations.

The above simulations show frequency oscillations of
0.55−0.65Hz in the case of a high tie-line impedance and
twice faster oscillations for lower tie line impedance.

We mention that we did simulations with different commu-
nication time delays and we found that the behaviour remains
good for non-uniform time delays up to 100ms. The details
of this will be reported in the journal version of this paper.

B. The simplified model

In order to see if we get comparable results for the
simplified model (the FEPS model), we have computed
the Y -matrices of the grid by network reduction from the
parameters of the full model. In order to calculate ai j, ϕi j
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Fig. 8. The plots of frequencies (in rad/s) following the disconnection of
load L3 (starting from steady state). Subfigure (a) shows the plots without
VF, while subfigure (b) shows the much smoother transition with VF.
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Fig. 9. The plots of grounded rotor angles (in deg) with respect to generator
G1 following the disconnection of load L3 (starting from steady state).
Subfigure (a) shows the plots without VF, while subfigure (b) shows the
much smoother transition with VF.

and p j, using the formulas in [34, Sect. 5], the generator
output voltages were obtained from the stable equilibrium
state of the VSM model used in the previous subsection, for
each of the four states of the grid: S1 open/closed and S2
open/closed.

Load step changes and tie line step changes were simulated
by switching between the corresponding Y -matrices accord-
ing to the 2 scenarios shown in the previous subsection. Note
that the simplified model does not contain time delays.

The stability criterion in Theorem 2.1 predicts stable
operation of the model for a low tie line impedance. For
L3 disconnected, Γmin = 564s−1 and Γcrit = 394s−1, while
for L3 connected, Γmin = 549s−1 and Γcrit = 368s−1. This
gives γmin = 42.7◦ and γmax = 137.3◦ and γmin = 40.8◦

and γmax = 139.2◦ respectively. At high tie line impedance,
Γmin <Γcrit . This shows that the stability and synchronization
criterion shown in the theorem is conservative, because the
NRPS model shows stable behaviour even at high tie-line
impedance. Note however, that the full model was unstable
at low tie-line impedance and high load imbalance.

1) Step down change in load at high tie line impedance:
Fig. 8 shows the frequency of the 4 generators for a load
step change of −5000W in area 2. Startingt at t = 30s,
the generator frequency increases from below 300rad/s to
310rad/s. Inter area oscillations appear with a period of
1.5s. VF efficiently damps these oscillations. (Note that the
convergence of the frequencies to the new higher value is
faster than in in the full model.)
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Fig. 10. The plots of frequencies (in rad/s) following a tie-line impedance
step down (starting from steady state). Subfigure (a) shows the plots without
VF, while subfigure (b) shows the much smoother transition with VF.
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Fig. 11. The plots of grounded rotor angles (in deg) with respect to
generator G1 following a tie-line impedance step down (starting from steady
state). Subfigure (a) shows the plots without VF, while subfigure (b) shows
the much smoother transition with VF

Fig. 9 shows grounded rotor angles relative to G1. Here the
NRPS model exhibits slightly higher amplitude than the full
model. Note that the grounded angles of G3 and G4 converge
to approximately +0.14rad/s, whereas in the full model this
difference is close to zero.

2) Step down change in tie line impedance at high load
imbalance: We show results for the simplified model switch-
ing at t = 40s from high to low tie line impedance while S2
is closed. As in the full model, the change entails strong
oscillations with frequencies around 3Hz. VF damps the
oscillations of the network efficiently as seen in Fig. 10b
and Fig. 11b. A small overshoot can be observed shortly
after t = 40s.

V. CONCLUSION

This paper provides a proof of the stability of the NRPS
model when employing VF, leading to the FEPS model. A
singular perturbation analysis of the FEPS model shows that
the same stability boundaries apply as in [34], however, the
new result does not require to work with very small inertia.
Our theoretical results are supported by simulations of the
NRPS and FEPS models for a small groid comprising four
VSMs of 9kW each. Comparison with the simulations for
the full model of the grid shows good agreement between the
behaviours, both with and without VF. In both cases VF was
highly effective in damping oscillations. For a VF coefficient
of Fj = 3141.6Ws, the system showed transients decaying
within 1-2 seconds.
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