
Learning Accurate Long-term Dynamics
for Model-based Reinforcement Learning

Nathan Lambert1, Albert Wilcox1, Howard Zhang1, Kristofer S. J. Pister1, and Roberto Calandra2

Abstract— Accurately predicting the dynamics of robotic
systems is crucial for model-based control and reinforcement
learning. The most common way to estimate dynamics is by
fitting a one-step ahead prediction model and using it to
recursively propagate the predicted state distribution over long
horizons. Unfortunately, this approach is known to compound
even small prediction errors, making long-term predictions
inaccurate. In this paper, we propose a new parametrization
to supervised learning on state-action data to stably predict
at longer horizons – that we call a trajectory-based model.
This trajectory-based model takes an initial state, a future
time index, and control parameters as inputs, and directly
predicts the state at the future time index. Experimental
results in simulated and real-world robotic tasks show that
trajectory-based models yield significantly more accurate long
term predictions, improved sample efficiency, and the ability to
predict task reward. With these improved prediction properties,
we conclude with a demonstration of methods for using the
trajectory-based model for control.

I. INTRODUCTION

Model-based reinforcement learning (MBRL) has emerged
as a compelling approach for control across multiple domains
of robotics by using a learned forward dynamics model for
planning [1], [2], [3]. At the base of most current MBRL
algorithms is the idea of learning one-step ahead forward
dynamics models – that is, given a state and an applied
action the model will predict the future state. Once a one-
step ahead model is learned, it can subsequently be used
for planning or control by recursively applying the model
to the state to unroll long-horizon trajectories. While this
approach has proved successful in many domains and is well-
motivated from the related field of optimal control [4], [5],
it is well understood that a major limit of current MBRL
algorithms is the insufficient accuracy of the predictions
over long-horizons. In fact, one-step models critically suffer
from compounding errors of the dynamics [2], [6], [7], and
recent work has shown that the performance of one-step
ahead prediction models is not necessarily correlated with
downstream control performance [8].

In this work, we propose and study a new class of feed-
forward dynamics models focused on capturing not the
behavior of single steps, but the long-term time dependant
evolution of a trajectory as a whole. The main intuitions
behind this model are that: 1) sequences of actions and
states are usually strongly correlated with their neighbors
across time (i.e., across a trajectory) and 2) in quantifying

Corresponding author: Nathan O. Lambert, nol@berkeley.edu
1Department of Electrical Engineering and Computer Sciences, Univer-

sity of California, Berkeley, USA.
2Facebook AI Research, Menlo Park, CA, USA.

1 2

3
4

...

L

(a) One-step models:
st+1 = fθ(st, at)

t=L

st+h

st

(b) Trajectory-based models:
st+h = fθ(st, h, θπ)

Fig. 1: The model formulation for one-step models (a) and
our new trajectory-based models (b).

the quality of long-horizon predictions, it might be preferable
to have higher uncertainty over the single steps, if the
predication of the trajectory as a whole is more accurate. This
is particularly crucial when the dynamics models are used
for planning, where the relative ranking of the trajectories
will directly impact the decision making (e.g., it might be
relatively unimportant to know how we reach a location as
long as we know that we can reach it accurately).

Our contribution is to propose a new class of deep pre-
dictive models, trajectory-based models, that are focused
on capturing the long-term, time-dependant nature of dy-
namics. The new models re-frame the supervised learning
problem to predict future states from the parameters of a
controller parameters and a time index, rather than actions.
The trajectory-based prediction steps is compared visually to
individual steps in Fig. 1.

This provides several benefits compared to traditional
one-steps ahead models: improved data-efficiency, better
computational complexity which can be further parallelized,
a more principled treatment of uncertainty over trajecto-
ries, the capability of modeling continuous time steps, and
finally more accurate long-term predictions. We evaluate
our trajectory-based approach on simulated and real-world
data, and demonstrate the advantages of this approach for
tasks with a long-horizon to: a) accurately predict long-term
behaviors of stable robot dynamics, and clearly outperforms
the one-step models after about 50 time-steps; b) improve
the sample efficiency; c) accurately predict downstream task
reward. With these benefits, we show how the model can
be used in an iterative learning task and planning via model
predictive control. We believe that this approach is a small
but significant step towards understanding and overcoming
the limitations of the dynamics models in current model-
based reinforcement learning algorithms.

ar
X

iv
:2

01
2.

09
15

6v
2

 [
cs

.L
G

]
 1

 S
ep

 2
02

1

mailto:nol@berkeley.edu

II. RELATED WORKS
A. Model Learning for Control

The foundation of trajectory-based models is the context
of using predictions for control [5] and learning dynamics
for unknown systems [9]. In robotics, combining these two
directions is the method of data-driven model predictive
control (MPC), which directly leverages a dynamics model
to choose an action [10], [11], [12]. In recent years, data-
driven approaches for model learning and control have
become more prevalent. Model-based reinforcement learning
(MBRL) is the iterative framework of an agent acting to
collect data, modeling the transition function with said data,
and leveraging the model for control. MBRL has shown im-
pressive performance and sample efficiency on many robotics
tasks [13], [1], [2], [14]. Model-based planning approaches
have been successfully using one-step predictions and model
predictive control (MPC) to select best actions [1], [15],
[16]. This paper proposes a new technique of predicting tra-
jectories for data-driven modeling of unknown dynamics in
hopes to improve robotic learning tasks in MBRL, especially
with MPC. System identification (SI) has a large history for
learning models for control, but generally is not formulated
as a iterative learning problem [17].

B. Predicting with Single Steps Ahead

Single-step dynamics models are effective across many do-
mains, but they suffer from compounding errors. [2] showed
excellent downstream control performance with probabilistic
neural network (NN) ensembles, and similar approaches
have been applied to many robotic tasks [1], [16]. Methods
mitigating the compounding error of multi-step predictions
include re-framing the prediction in the lens of imitation
learning [18], using a multi-step value prediction model [6],
and leveraging a model with flexible prediction horizon [7].
Additionally, single-step Gaussian Processes (GPs) have
been applied to multiple lower-dimensional robotic learning
tasks [13]. GP models have been studied in many contexts,
such as the long term predictions of pedestrians [19].

C. Predicting Trajectories

Predicting long-term trajectories has a long-history, dat-
ing back to autoregressive-moving-average models (AR-
MAX) [9], and has been a growing area of research as
robotic complexity outgrew the performance of historical
approaches. A common approach is to modify one-step
prediction training to account for correlation across a tra-
jectory with NNs or GPs. Specifically, [20] proposes a time-
weighted loss function to learn unstable state-space systems,
but does not apply it to high-dimensional, nonlinear systems.
[8] showed increased correlation between model-accuracy
and downstream reward when training with batches sampled
from a single-trajectory instead of random transitions, but
predictions still suffer from compounding errors.

Other related methods have attempted to create direct,
structural links between models and trajectory training data.
With high dimensional images (rather than states) [21] uses
an auto-regressive, recurrent network to predict observations

in a latent state-space. [22] proposes a multi-step Gaussian
Process for learning robotic control and the approach is
studied further using the correlation between prediction steps
in [23]. [24] suggests using a new kernel in GPs to correlate
across trajectory data and using simulated model rollouts to
predict reward as a prior GP mean function. These methods
all leverage one-step models to create long-term dynamics,
which we differentiate from by including time-dependence.
Other exciting avenues of long-term prediction of dynamical
systems are with neural ordinary differential equations [25]
and long short-term memory blocks (LSTMs) [26], but both
are yet to be successfully applied to prioperceptive (i.e., not
vision based) robotics control tasks. We baseline our method
against LSTMs which have implicit time dependance, where
our method includes it explicitly in the input.

III. BACKGROUND

Markov Decision Process In this work, we formulate
the prediction problem in the context of a Markov Decision
Process (MDP) [27]. An MDP is defined by the state st ∈
Rds , the action at ∈ Rda , the reward function r(st, at) ∈ R,
and the transition function f ∶ Rds×da ↦ Rds . In this work,
we look to learn a parametrized dynamics model fθ(st, at) to
approximate the true transition function. We consider agents
utilizing a control law π(⋅) to act in the environment for re-
peated trajectories τk. Aggregating the tuples of experience,
the agent receives a dataset D = {(si, ai, si+1)}Ni=1.

One-step Dynamics Models Given the state st, and
the action at, one-step dynamics models predicts the next
state st+1 (or often a delta compared to the current state) as

st+1 = fθ(st, at) . (1)

For the prediction of trajectories the dynamic model is then
recursively applied such that

st+h = fθ(. . . fθ(fθ(st, at), at+1) . . . , at+h) . (2)

For any model used to represent f (including deep neural
networks), there will inevitably be a prediction error εt =
∥ŝt − st∥. Unfortunately, this error is not well studied can
grow in a multiplicative manner with each recursion of the
function evaluation as

st+h = fθ(. . . fθ(fθ(st, at)+εt, at+1)+εt+1 . . . , at+h)+εt+h .
(3)

Hence, even small numerical errors will ultimately make pre-
dictions over long trajectories inaccurate. This error growth
with one-step models is often referred to as the compounding
error problem in MBRL.

Recurrent Dynamics Models (RNN) RNN models pre-
dict the next state, st+1, as a function of the current hidden
state of the network, st+1 = fθ(ζt). The hidden state is
outputted from the recurrent nodes of the network: given the
current hidden state, ζt, state, st, and action, at, the network
passes information, as ζt+1 = gθ(st, ζt, at). In this paper,
we study the ability of LSTMs, which are often used to
mitigate the vanishing gradient problem [26], but they are
also difficult to train in practice.

IV. TRAJECTORY-BASED DYNAMICS MODELS

A. Prediction Formulation

We now describe our new trajectory-based dynamics mod-
els (which we refer in the rest of the manuscript as T) which
focus on modeling trajectories over time rather than individ-
ual steps. The are two main intuitions behind the adoption of
this type of model: 1) for control purposes it is often more
valuable to have an accurate overall trajectory prediction
compared to accurately predict single steps (which might
compound error over long-term). This is even more important
when planning, since for planning the relative ranking of the
trajectories is what determines the eventual actions applied
by control scheme such as MPC. 2) trajectories are often
strongly correlated in space and time; however, single-step
models do not have efficient mechanism to enforce that.

To address the error compounding, an idea would be to
replace the recursive call of Eq. (2) with a nth step prediction

st+h = fθ(st, at, at+1 . . . , at+h) , (4)

which does not requires recursion, and is thus more likely to
produce stable long-term predictions. However, here we can
observe how the dimensionality of the model to be learned
depends on the length of the prediction into the future h,
and that in addition, this model is generally only capable
of predicting the resulting n

th step ahead prediction, but
not its intermediate steps (this is not true for RNNs, but
their formulation is more similar to Eq. (2)). A first variant
of this n

th step ahead formulation would be to observe
that the sequence of action at, at+1, . . . at+h is typically
generated by a generic, but single controller π(⋅) determined
by parameters θπ , and thus we can rewrite as

st+h = fθ(st, θπ) . (5)

As long as the dimensionality of θπ is smaller than the
dimensionality of at, at+1, . . . at+h, this would result in an
effective reduction of the dimensionality of our dynamics
model and thus improved data-efficiency. However, once
again this model only allows us to predict the final state
but not the trajectory that led us there. Adding the notion
of dynamic time-prediction is the final conceptual change to
attempt to accurately predict long-term system dynamics in a
data-efficient manner, by which we index the starting state at
time t and directly predict to the future, variable horizon of
h steps with one forward pass. The trajectory-based models
predict the evolution from a starting state st, subject to the
control parameters θπ , to a future-time index t + h, as

st+h = fθ(st, h, θπ) . (6)

Compared to the traditional recursive one-step ahead formu-
lation of Eq. (1), this formulation provides several benefits
that we now detail.

B. Benefits of Trajectory-based Models

Data-efficiency One advantage of this formulation is that
we can perform a re-labeling trick over the dataset of col-
lected trajectories, to significantly augment the dataset used

True Trajectory (-) Probabilistic Traj. Model (◦)
One-step Probabilistic Model (♢)

Sa
m

pl
e

st
at

e
va

lu
e

Time

(a) Uncertainty sketch. (b) Experimental uncertainty.

Fig. 2: The trajectory-based models have prediction un-
certainty proportional to the epistemic uncertainty in the
training dataset. (Left) a sketch of the uncertainty mechanism.
Trajectory-based models have uncertainty that can shrink
when more confident in the dynamics, which is opposed
to one-step models that have predicted uncertainties that
diverge at long horizons. (Right) an example trial of a robotic
prediction (from the reacher task in Sec. V-A) highlights this
uncertainty propagation with a probabilistic trajectory-based
model and an one-step probabilistic model (P).

to train the trajectory-based model. We assume a dataset D
of n collected trajectories D = {τn}, each of fixed length L.
For each collected trajectory τ

j
= [s0, . . . , sL] we can

now extract L − 1 subtrajectories τ
j
i = [si, . . . , sL] for

i = 0 . . . L − 1, and use them all for training the trajectory-
based model. By training on all sub-trajectories, the model
gains two strengths: 1) it can predict into the future from any
state, not just those given as initial states from a environment,
and 2) the number of training points grows proportional to
the square of trajectory length, as

Ntrain = n
L

∑
t=1

t = n
(L)(L − 1)

2
≈ nL

2
. (7)

This results in models that better exploit the temporal struc-
ture of the systems, while using less data.

Computationally Efficient Planning The trajectory-
based models have a useful property of directly predicting
entire trajectories instead of imagined roll-outs composed
of repeated model evaluations. For prediction propagation,
by only passing in a vector of time horizons h from a
current state, a planner can evaluate the future with one
forward pass, alleviating the computational burden (as well
as the compounding, multiplicative error) associated with
evaluating sequentially many steps of one-step models. In
our model the predictions in a trajectory do not depend on
the prediction at the previous step, which can dramatically
increase the control frequency when planning online.

Capturing Empirical Distribution over Trajectories
One-step models commonly suffer from the issue of un-
certainty explosion, where the predicted uncertainty over
a trajectory typically keep increasing, and does not match
the empirical uncertainty from the data. By propagating
time directly, our probabilistic trajectory-based model can

(a) Cartpole. (b) Reacher. (c) Quadrotor.

Fig. 3: Experimental platforms.

instead capture the uncertainty of variation in dynamics in
the training set (i.e., the model is more uncertain in areas
of rapid movement and can become confident when motion
converges), and the empirical uncertainty over trajectories.
The uncertainty propagation is drawn in Fig. 2a and an
example experiment is shown in Fig. 2b; both are compared
to one-step models that have diverging uncertainty as the
predicted states leave the training distribution. Stable uncer-
tainty estimates convey promise when planning on robotic
hardware, where action choices are balanced against model
uncertainty due to high cost-per-test.

Continuous Time Traditional one-step ahead models as-
sume a discrete quantization of time such that the sampling
frequency is constant. Instead, our model is agnostic to the
use of discrete or continuous time, since the model can make
use of data collected at arbitrary h and explicitly interpolate
between them. While this property is not employed in the
following experiments, this is a very desirable property that
we aim to explore in future work.

V. EXPERIMENTAL RESULTS

We now evaluate the proposed trajectory-based models. In
particular, we investigate the long term prediction accuracy,
the ability for the trajectory-based model to predict unstable
or periodic data, the sample efficiency benefit of the new
parameterization, and using the new model for predicting
experimental reward. Code and an expanded manuscript
are available on the website: https://sites.google.
com/view/trajectory-prediction/.

A. Experimental Setting

Model Training Using the same notation and model
training formulations in [2], we use four model types:
D,P,DE,PE. The deterministic model, D, and determinis-
tic ensemble, DE, minimize the mean squared error (MSE)
of predictions. The probabilistic model, P , and probabilistic
ensemble, PE, minimize the negative log likelihood (NLL)
of a Gaussian distribution of state transitions.

All models normalize the input states and actions to a
standard normal distribution N (0, 1) in each dimension, and
bounded control parameters are mapped to [−1, 1]. The
feedforward models have two hidden layers of width 250, are
optimized with Adam [28], with batch sizes of 32 for D,P
and 64 for T, and learning rates of 2.5 × 10

−5 for P models,
5 × 10

−5 for D and 8 × 10
−4 for T. Due to the rapid accruing

of labeled data for the trajectory-based models, we cap the
training set size at 1 × 10

5 by random downsampling. The
LSTMs are trained with Adam with a learning rate of 0.1,

Re-compute at from ŝt (X) Oracle Provides at (�)

0 50 100 150 200
2

5
0.001

2

5
0.01

2

5
0.1

2

5
1
2

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Fig. 4: The prediction accuracy of a PE on Cartpole with and
without re-computing the action at each step (Ntraj = 100)
shows the increased error from re-computing actions.

with batches of sequences matching the trajectory length, L,
and with normalization following [29].

Cartpole (Simulated) We evaluate our models thoroughly
on the cartpole task where the goal is to balance a mass
over a sliding cart (ds = 4, da = 1), shown in Fig. 3a.
To have a continuous reward for prediction, we introduce
a new reward function r(st, at) = −(x2 + θ

2) and the
remaining details are outlined in [2]. We evaluate predictions
of state and reward of cartpole agents conditioned on a Linear
Quadratic Regulator (LQR) control policy. LQR solves the
optimization minu J(u) = ∫∞

0
s
⊤
Qs + a

⊤
Ra dt for the

dynamics ṡ = Ãs+B̃u. LQR control minimizes the expected
cost based on a linearized dynamical system, Ã, B̃. The
control policy, π(⋅), of LQR takes the form of state feedback,
a = −Ks, where K ∈ Rda×ds . For all experiments we use
the following cost matrices to generate a optimal controller,
K

∗: Q = diag(.5, .05, 1, .05), R = [1], and then sample
a random vector m ∈ R4×1 uniformly from the interval
[0.5, 1.5] to create a variety of controllers Ki =mi ⋅K

∗∀i.
Reacher (Simulated) For a higher dimensional task, we

examine the 5 joint, three-dimensional, reacher manipulation
task (ds = 15, da = 5) in the Mujoco, OpenAI Gym
environment [30], [31], shown in Fig. 3b. The task associated
with the environment is to maneuver the end-effector of the
arm from an initial position state to an end position state. To
create a diverse set of data for prediction, our experiments
control the agent using a Proportional-Integral-Derivative
(PID) controller with randomly generated parameter vectors
K ∈ R15. The parameters of a PID control are defined by a
vector of joint angle targets, zd ∈ R5, proportional constants,
Kp ∈ R5, integrative constants, KI ∈ R5, and derivative
constants, KD ∈ R5, for each rotatory joint. We set KI = 0
for all experiments. Given the joint angle zi and the current
error ei = zi − zd, the control command at the ith joint is
ui = KP ⋅ ei +KD ⋅ ėi.

Quadrotor (Simulated & Real Hardware) We validated
the prediction accuracy of trajectory-based models on a
simulated and experimental low-level attitude control of a
quadrotor (ds = 5, da = 4). The quadrotor model is
based off the Crazyflie [32], shown in Fig. 3c, an 27 g,

https://sites.google.com/view/trajectory-prediction/
https://sites.google.com/view/trajectory-prediction/

Deterministic, one-step: D (◦) Trajectory-based: T (�)

Probabilistic, Ensemble one-step: PE (⧖) Long Short-term Memory : LSTM (2)

0 50 100 150 200 250 300 350 400
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r Trained on H=200

(a) Cartpole (Simulated).

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Trained on H=500

(b) Reacher (Simulated).

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Trained on H=500

(c) Quadrotor (Simulated)

0 200 400 600 800 1000
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step
M

ea
n

Sq
ua

re
d

Er
ro

r

(d) Quadrotor (Real Hardware)

Fig. 5: The log-scale, mean-squared prediction error for the tested environments. The simulated environments are tested on
250 validation trajectories and the experimental data is tested on 16 training trajectories due to experimental restrictions.
Highlighted is the median error with the 65

th and 95
th percentile of errors. These figures highlight two properties: 1) 5×

to 10× gain in long term prediction accuracy via trajectory-based models for h > 50 and 2) the uncertainty in one-step
prediction continues to growth with the prediction step while trajectory-based error remains stable. The vertical line indicates
the length of trajectories in the training distribution.

open-source micro-aerial vehicle. The 12 state Euler-step
simulation follows [33] and has uniform Gaussian noise
on all state variables sampled from σ ∼ N (0, 0.01). The
simulated controller is a linear, pitch and roll PD controller
with randomly sampled parameters. For experimental data,
we collected 180 s of aggressive flight data with default PID
rate-controllers. This data was broken down into trajectories
of length 1000 randomly, which we used to validate our
prediction mechanism.

B. Long-term Prediction Accuracy

We now demonstrate the ability of the trajectory-based
models (T) to more accurately predict long-horizon robotic
dynamics by measuring the mean-squared error of the pre-
dicted trajectory versus the measured state, ∑H

t=1 ∥ŝt−st∥
2.

We evaluate the ability to predict horizons of over 100 steps
and trajectories longer than the original training distributions.
An advantage of trajectory-based models over one-step mod-
els is that T models lack a need to be given a time-series of
actions from an oracle or to compute a new action from the
current state. When predicting to long horizons with one-step
models, the error can compound and diverge rapidly if the
predicted state is used to re-compute the action, shown in
Fig. 4. For a more competitive baseline in the remainder

of our experiments, the one-step models predict the next
state given the original action sequences, {at}Lt=0, and the
trajectory-based models given only θπ .

The prediction accuracy for D, PE, LSTM, and T models
with error 65

th, 95th percentiles (tested on 100 trajectories)
is shown for the cartpole trained on 100 trials of 200 time-
steps, Fig. 5a, 100 reacher trials of 500 time-steps, Fig. 5b,
100 simulated quadrotor trials of 500 time-steps, Fig. 5c,
and 16 experimental quadrotor trajectories of 1000 time-
steps, Fig. 5d. The experimental quadrotor trajectories all
have the same control parameters, which the model could use
to better generalize across trajectories, showing that adding
time-dependence alone can improve long-term prediction
accuracy. All states are normalized to a range of [0, 1] before
computing the MSE to match error across different states
(i.e., the scale of a velocity is matched to the scale of an an-
gle). The trajectory-based models are less accurate for short
horizons (h < 25), but converge to an improvement of up to
10× reduction in MSE for long horizons both in simulation
and experiment. In practice, it is expected that some testing
trajectories will extend beyond the expected length, which
we evaluate by testing on trajectories of greater length than
the training set. Even with out of distribution time indices,
the trajectory-based models maintain their improvement in

D model T model

Training trajectories length (L)

N
um

be
r o

f t
ra

in
in

g
tra

je
ct

or
ie

s (
N

)

M
ea

n
sq

ua
re

d
pr

ed
ic

tio
n

er
ro

r

Fig. 6: The median, cumulative prediction error of 5 models
sweeping over the number N and length L of reacher training
trajectories given on a constant validation set of trajectories
of length 100. The trajectory-based model achieves substan-
tially better prediction accuracy with both shorter and fewer
trajectories in the training set. In the context of MBRL,
the trajectory based model has better sample efficiency by
having lower cumulative prediction error when trained on
fewer trajectories N (a slice at a specific length L).

accuracy over one-step models, removing any need for T
models to be trained on equal-length trajectories.

C. Accelerated Data Efficiency

Having sufficient labeled data is frequently a limiting
factor in deep-learning tasks. Recall from Sec. IV that the
labelled data for trajectory-based models grows at a rate of
the trajectory length squared, L2. Leveraging this accelerated
accruing of data, we evaluate the ability of trajectory-based
models to predict accurately in the low-data regime. In
the reacher environment, we trained models on a grid of
trajectory lengths, L ∈ [5, 100], and number of trajectories,
N ∈ [1, 20], to predict a validation set of 10 trajectories of
length 100. Given an initial state, st, we can predict a set
horizon, h, into the future to obtain a simulated trajectory of
states, τ̂ = {ŝi}t+hi=t , and measure the mean-squared error
(MSE) across all normalized state dimensions. In Fig. 6,
the trajectory-based models show improved performance for
both a) shorter trajectories (L) (another link to predicting
beyond the initial training length in Sec. V-B) and b)
fewer samples (N). The regime of low number of training
trajectories (N) represents an area of high value to robotic
tasks via its potential for reduced evaluations on a real robot.

D. Predictive Episode Reward

Predicting reward is tied to planning actions for robotic
systems because if one can accurately predict rewards for an
action set, then one can correctly rank actions. The trajectory-
based models predict rewards in a simulated task by coupling
reward prediction to stable long-term predictions. In this sec-
tion we compare the predicted reward, r̂, of an initial state,
s0, and control parametrization K to the true cumulative
reward, r = ∑L

t=0 r(st).
We consider five methods for predicting the reward of

an episode from an initial state and control parameters: 1)
the trajectory-based models, 2) the one-step models given

the action sequence from true-states (oracle), 3) the one-
step models with actions computed from predicted states
(predicted-actions), 4) Gaussian Processes (GPs), and 5)
neural networks (NN) predicting directly from the initial state
and control parameters to sum of reward. Each candidate
method is a different mapping in the following function-
space: h ∶ (s0,K, θ) ↦ r, where θ carries different model
formulations. The dynamics models are used to predict future
states via ŝt+1 = fθ(⋅), with the one-step models taking in
the previous predicted state and the trajectory-based models
updating the time index. The predicted trajectory reward uses
the environment-defined reward function r(st, at) summed
over time (the reward functions are action independent). A
Gaussian process (GP), defined by a mean vector, µθ(x), and
a covariance matrix, k(x1,x2), or a neural network (NN) can
predict the reward with no structured dynamics model. for the
GP and the NN, the target rewards are normalized uniformly
to [−1, 1] before prediction to aid in model training.

For both the cartpole and the reacher tasks, the trajectory-
based model outperforms other methods in predicted reward
accuracy. The mean-squared predicted reward error across
100 trajectories is shown in Tab. I. We hypothesize that
the structured learning of a dynamics model accurate across
a trajectory improves reward prediction with knowledge of
each step over predicting directly to the cumulative reward.

E. Iterative Learning of Control Parameters

We now compare the trajectory-based model against black-
box optimization algorithms for the iterative learning of con-
trol parameters. At each iteration, we retrain the trajectory-
based model and then use it to simulate rollouts of different
control parameters. Finally, we execute the best control pa-
rameters found on the real system, and a new iteration starts.
Ideally, a more accurate dynamics model over the trajectory
will result in faster convergence and better performance. In
our experiments, we indicate this approach as Trajectory
Optimization and use covariance matrix adaptation evolu-
tion strategy (CMA-ES) to optimize the simulated rollouts.
However, CMA-ES can be replaced with any optimizer that
does not require gradients on the reward function. Trajectory
Optimization generates new control parameters within the
population of CMA-ES and simulates a trajectory of the
trial length 200 for cartpole. The simulated reward r̂ is the
sum over the predicted states, as in Sec. V-D. We compare
this approach to the data-efficient black-box optimization
algorithm Bayesian Optimization (BO) which iteratively
optimize the control parameters without knowledge of the
dynamics [34], [35]. The results of the experiments in Fig. 7
show that on the toy cartpole benchmark task Trajectory
Optimization converge to excellent performance faster than
Bayesian Optimization. This demonstrates that we can learn
in an iterative manner trajectory dynamics model, and that
they can successfully be applied for control.

F. Model Predictive Control with Trajectory-based Models

We now demonstrate how to use the trajectory-based
model in a common control architecture – model predictive

Prediction Mechanism Prediction Mapping Cartpole MSE (r − r̂)±σ Reacher MSE (r − r̂)±σ

Direct mapping (GP) (K, s0) ↦ r̂ 0.884 ± 1.873 0.127 ± 0.192
Direct mapping (NN) (K, s0) ↦ r̂ 0.446 ± 1.189 0.074 ± 0.112
One-step; oracle (D) (fθ(⋅),at=0∶L, s0) ↦ r̂ 0.057 ± 0.100 0.485 ± 2.048
One-step; pred. actions (D) (fθ(⋅),K, s0) ↦ r̂ 0.979 ± 1.725 0.072 ± 0.0932
Trajectory-based (T) (fθ(⋅),K, s0) ↦ r̂ 0.010 ± 0.033 0.005 ± 0.006

TABLE I: The mean-squared predicted reward error across 100 simulated trajectories show the strength of learning long
term dynamics for predicting episode reward. The 100 trajectories have different initial states s0, and control parameters K.
The rewards are normalized per the number of trial step – 200 steps for the cartpole task and 500 for the reacher task.

Bayesian Optimization (�) Trajectory Optimization (◦)

4 6 8 10 12 14
0.7

0.75

0.8

0.85

0.9

0.95

1

Trial Number

Av
er

ag
e

R
ew

ar
d

pe
r S

te
p

0 2

Fig. 7: The cumulative maximum reward for iterative learn-
ing on cartpole. The Trajectory Optimization with CMA-ES
consistently solving the task in 2-4 trials (1 is the maximum
normalized reward per step) – faster than the baseline of
Bayesian Optimization. The 66

th and 95
th percentiles over

25 trials are shaded.

control (MPC) [10], [11]. MPC is a common tool for model-
based reinforcement learning [2], [1], [15], and originated in
the study of optimal control leveraging predictions to make
decisions [4], [5]. MPC with learned one-step dynamics
models is formulated as

a
∗
t = argmax

ut∶t+τ

τ

∑
i=0

r(ŝt+i, at+i), ŝt+1 = fθ(ŝt, at). (8)

With the trajectory-based model, the control formulation
needs a modification in how the candidate solutions are
selected. Sampling over control policies and computing the
action from the current state, the new MPC formulation is

θ
∗
π,t = argmax

θπ,t∶t+τ

τ

∑
i=0

r(ŝt+i, at+i) , (9)

ŝt+τ = fθ(st, θπ,t, t + τ) , a
∗
t = θ

∗
π(t) . (10)

MPC is known to be computationally intensive – where some
robots lack the computing infrastructure to run recent MBRL
methods online – so we compare leveraging the trajectory-
based optimization only from the first state, and running
that policy through the remaining of the trial. This is a
starting point, and re-planning online with varying update
frequencies (holding the chosen policy for T steps) would
allow flexibility in control.

Open Loop, D Open Loop, T Closed Loop, D
0

0.05

0.1

0.15

0.2

0.25

C
os

t p
er

 S
te

p

Fig. 8: Comparison between trajectory-based and one-step
ahead models planning from the initial state (i.e., open-
loop) and the one-step model re-planning after each step
(i.e., closed loop). The trajectory-based planning improves
performance compared to the one-step ahead in open-loop.
However, the one-step model used in closed-loop performs
the best, at the expense of increased computational complex-
ity for re-planning. The mean and standard deviation of the
reward per step in the cartpole task are reported for 25 trials.

As a comparison to iterative learning of one set of control
parameters, as in Sec. V-E, we compare the performance of
MPC to that if the optimization is only run on the first time-
step. In this case we maintain random sampling to mirror
common applications of MPC in MBRL, while the Trajectory
Optimization in Sec. V-E leveraged the CMA-ES optimizer.
The preliminary results for the planning methods on the
cartpole task are shown in Fig. 8. The trajectory-based model
is limited by aggregating labelled data with MPC because it
requires the sub-trajectories that it is labelled on to have
constant control parameters. This can be partially overcome
by re-planning at a lower frequency, but is an important
direction for future work to better integrate the new models
into existing MBRL literature.

VI. DISCUSSION AND FUTURE WORK

There is no free lunch with respect to numerical dy-
namics modelling. The trajectory-based model’s accurate
long-term prediction and rapid data accruing is valuable to
data-driven methods with parametrized controllers. One-step
models will likely remain useful for other algorithms less
focused on the long-term future, such as MBPO [14], or in
situations where data is non-episodic, so applying the time-
dependant structure could be forced. Another limitation of
the trajectory-based model relative to the entire space of

MRBL is that this model is designed for scenarios where
the generalization across similar trajectories is useful, likely
limiting the potential generalization of the model to one type
of task instead of an entire state space. By setting training
structures and input-output pairs, any dynamics modeling
algorithm is prioritizing its model capacity on a certain task.
Finally, our approach was demonstrated mainly on modeling
low-dimensional parametrized controllers. Future work will
focus on evaluating and extending this approach with high-
dimensional neural network policies, as well as applying
it in online model-based reinforcement learning scenarios,
including real-world hardware.

VII. CONCLUSION

While one-step models have been successful across numer-
ous robotic applications, this paper re-evaluates the paradigm
of one-step models to better match the prediction mechanism
with that of predicting and controlling trajectories. In this
paper, we introduce a new framework for the learning of
trajectory-based dynamics for iterative tasks. Trajectory-
based models have some limitations, such as the need to
access to policy parameters instead of just actions that
can be gathered with multiple controllers. However, our
trajectory-based models also present several theoretical ad-
vantages, such as data-efficiency, computational cost, paral-
lelization, continuous time predictions, and better handling
of uncertainty. The experimental results demonstrate strong
performance in long-horizon prediction for simulated and
real-world systems. We believe that better understanding of
trajectory-based models is an important step to overcome the
current limitations of MBRL.

REFERENCES

[1] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in International Conference on Robotics and
Automation, 2017, pp. 1714–1721.

[2] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Neural Information Processing Systems, 2018.

[3] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[4] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
theory and practice—a survey,” Automatica, vol. 25, no. 3, 1989.

[5] D. E. Kirk, Optimal control theory: an introduction. Courier
Corporation, 2004.

[6] K. Asadi, D. Misra, S. Kim, and M. L. Littman, “Combating the
compounding-error problem with a multi-step model,” arXiv preprint
arXiv:1905.13320, 2019.

[7] C. Xiao, Y. Wu, C. Ma, D. Schuurmans, and M. Müller, “Learning to
combat compounding-error in model-based reinforcement learning,”
arXiv preprint arXiv:1912.11206, 2019.

[8] N. Lambert, B. Amos, O. Yadan, and R. Calandra, “Objective mis-
match in model-based reinforcement learning,” Learning for Dynamics
and Control (L4DC), pp. 761–770, 2020.

[9] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319–340, 2011.

[10] D. H. Shim, H. J. Kim, and S. Sastry, “Decentralized nonlinear model
predictive control of multiple flying robots,” in IEEE International
Conference on Decision and Control, vol. 4, 2003, pp. 3621–3626.

[11] P.-B. Wieber, “Trajectory free linear model predictive control for
stable walking in the presence of strong perturbations,” in IEEE-RAS
International Conference on Humanoid Robots, 2006, pp. 137–142.

[12] G. Klančar and I. Škrjanc, “Tracking-error model-based predictive
control for mobile robots in real time,” Robotics and autonomous
systems, vol. 55, no. 6, pp. 460–469, 2007.

[13] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search,” in International Confer-
ence on Machine Learning, 2011, pp. 465–472.

[14] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” in Neural Information Processing
Systems, 2019, pp. 12 498–12 509.

[15] A. Nagabandi, G. Yang, T. Asmar, R. Pandya, G. Kahn, S. Levine,
and R. S. Fearing, “Learning image-conditioned dynamics models for
control of underactuated legged millirobots,” in IEEE International
Conference on Intelligent Robots and Systems, 2018, pp. 4606–4613.

[16] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra,
and K. S. Pister, “Low-level control of a quadrotor with deep model-
based reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4224–4230, 2019.

[17] L. Ljung, “System identification,” Wiley encyclopedia of electrical and
electronics engineering, pp. 1–19, 1999.

[18] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving multi-
step prediction of learned time series models,” in AAAI Conference
on Artificial Intelligence, 2015.

[19] E. J. Heravi and S. Khanmohammadi, “Long term trajectory prediction
of moving objects using gaussian process,” in IEEE International
Conference on Robot, Vision and Signal Processing, 2011.

[20] K. Nar, Y. Xue, and A. M. Dai, “Learning unstable dynami-
cal systems with time-weighted logarithmic loss,” arXiv preprint
arXiv:2007.05189, 2020.

[21] N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh, and
D. Batra, “Learning dynamics model in reinforcement learning by
incorporating the long term future,” arXiv preprint arXiv:1903.01599,
2019.

[22] A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, T. Marc,
and S. Trimpe, “Optimizing long-term predictions for model-based
policy search,” in Conference on Robot Learning, 2017, pp. 227–238.

[23] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger, “On
simulation and trajectory prediction with gaussian process dynamics,”
in Learning for Dynamics and Control, 2020, pp. 424–434.

[24] A. Wilson, A. Fern, and P. Tadepalli, “Using trajectory data to improve
bayesian optimization for reinforcement learning,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 253–282, 2014.

[25] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Neural Information Processing
Systems, 2018, pp. 6571–6583.

[26] D. Ha and J. Schmidhuber, “World models,” arXiv preprint
arXiv:1803.10122, 2018.

[27] R. Bellman, “A Markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[29] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Neural Information Processing Systems,
2014, pp. 3104–3112.

[30] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in IEEE International Conference on Intelligent
Robots and Systems, 2012, pp. 5026–5033.

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[32] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and
P. Kozierski, “Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering,” in IEEE International
Conference on Methods and Models in Automation and Robotics
(MMAR), 2017, pp. 37–42.

[33] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor,” IEEE Robotics and
Automation magazine, vol. 19, no. 3, pp. 20–32, 2012.

[34] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
LQR tuning based on gaussian process global optimization,” in Inter-
national Conference on Robotics and Automation, 2016, pp. 270–277.

[35] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence, vol. 76, no. 1-2, pp. 5–23, 2016.

VIII. APPENDIX

A. Predicting With All Models

A summary of the explored model-configurations is shown
in Tab. II. In the cartpole and the reacher environments
with one-step models there are trends of probabilistic models
being more accurate then deterministic and ensembles being
more accurate than single models (PE > P > DE > D). For
the trajectory-based models, the advantage of ensembling re-
mains, but the probabilistic models do not have a significant
improvement over deterministic models (PE > P, DE > D, P
≈ D), potentially due to the better uncertainty management
in the trajectory-based formulation. An example with the
median error for all 8 model types is shown in Fig. 9.

Current Models New Models
Single D P T TP

Ensembles DE PE TE TPE

TABLE II: left: models used in various robotic learning tasks
to capture different types of predictive uncertainty [2]; right:
the new Trajectory-based models with different training
variants we propose in Sec. IV.

D (◦) PE (♢) T () True Trajectory (-)

0 200 400 600 800 1000
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Fig. 9: Median prediction error for the 8 model types shown
in Tab. II on Reacher task. The trajectory models (red,
yellow) perform better than one step-models (blue, purple)
for long term predictions.

B. Model Accuracy Versus Epoch

To test our training methods, we show the prediction error
of our trajectory based models versus different number of
training epochs. The mean error per step is shown in Tab. III
and visualized in Fig. 10.

C. Additional Cartpole Details

a) Cartpole Environment Modifications: In order to
create more diverse data, we made the stop-conditions in
the environment less strict and increased the randomness
of initial states. We increased the stop condition on the
pole angle by 2 to 24◦ and the x-position by 2 to 9.6.
Additionally, we increased the randomness of the initial
values of x, θ by a factor of 20.

100 200 300 400 500 600 700 800 900
2

3
4
5
6
7
89

0.01

2

3
4
5
6
7

T, trained 1 epochs

T, trained 3 epochs

T, trained 5 epochs

T, trained 8 epochs

T, trained 12 epochs

T, trained 16 epochs

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

Fig. 10: The prediction accuracy of the trajectory-based
model when trained for different numbers of epochs, and
evaluated on the test set used in Fig. 5. Note, the y-axis
scale is changed to show the slight change in performance
when tuning these models. The mean error per step is shown
in Tab. III

Epochs Trained Avg. Prediction Error per Step (Test Set)

1 1.25 × 10
−2

3 1.15 × 10
−2

5 1.12 × 10
−2

8 1.02 × 10
−2 ∗

12 1.07 × 10
−2

16 1.09 × 10
−2

TABLE III: Prediction Error on Test Set versus Training
Epochs. (∗ indicates minumum cumulative error on the test
set of 100 trajectories).

b) Cartpole Linearization Equations: This section in-
cludes the details needed to implement the LQR controller
used in Sec. V. Modeling the cartpole as a nonlinear dynami-
cal system in 4 states and 1 input takes the form ẋ = f(x, u).
By taking the Jacobian of the dynamics function near the
unstable equilibrium of θ = 0 yields a linear system of the
form.

ẋ = Ãx + B̃u (11)

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0

gmp

mc
0 0

0 0 0 1

0 0
g(mc+mp)

lmc
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

B̃ = [0 1
mc

0 −1
lmc

] (13)

D. State Predictions

We include visualizations of the state-predictions for the
reacher environment, Fig. 11, the cartpole environment,
Fig. 12, and the real quadrotor, Fig. 13.

Ground Truth (−) Trajectory-based Prediction (2)

0 100 200 300 400 500
Timestep

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(a) State 0.

0 100 200 300 400 500
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(b) State 1.

0 100 200 300 400 500
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(c) State 2.

0 100 200 300 400 500
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(d) State 3.

0 100 200 300 400 500
Timestep

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
St

at
e

Va
lu

e
Predictions on one dimension

Groundtruth
Trajectory Based Deterministic

(e) State 4.

0 100 200 300 400 500
Timestep

1.0

0.8

0.6

0.4

0.2

0.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(f) State 5.

0 100 200 300 400 500
Timestep

1.0

0.8

0.6

0.4

0.2

0.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(g) State 6.

0 100 200 300 400 500
Timestep

1.0

0.8

0.6

0.4

0.2

0.0

0.2

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(h) State 7.

0 100 200 300 400 500
Timestep

1.0

0.8

0.6

0.4

0.2

0.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(i) State 8.

0 100 200 300 400 500
Timestep

1.0

0.8

0.6

0.4

0.2

0.0

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(j) State 9.

0 100 200 300 400 500
Timestep

4

3

2

1

0

1

2

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(k) State 10.

0 100 200 300 400 500
Timestep

4

3

2

1

0

1

St
at

e
Va

lu
e

Predictions on one dimension

Groundtruth
Trajectory Based Deterministic

(l) State 11.

0 100 200 300 400 500
Timestep

3

2

1

0

1

2

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
Trajectory Based Deterministic

(m) State 12.

0 100 200 300 400 500
Timestep

5

4

3

2

1

0

St
at

e
Va

lu
e

Predictions on one dimension

Groundtruth
Trajectory Based Deterministic

(n) State 13.

0 100 200 300 400 500
Timestep

4

3

2

1

0

St
at

e
Va

lu
e

Predictions on one dimension

Groundtruth
Trajectory Based Deterministic

(o) State 14.

Fig. 11: The T model’s predictions on each of the state
vector’s dimensions for a Reacher episode of length 500.
It achieves impressive short and long term accuracy for all
of the states.

Ground Truth (−) T (2) TP (D) D (◦) P (♢)

0 25 50 75 100 125 150 175 200
Timestep

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
One Step Deterministic
One Step Probabilistic
Trajectory Based Deterministic
Trajectory Based Probabilistic

(a) State 0: x position.

0 25 50 75 100 125 150 175 200
Timestep

0.3

0.2

0.1

0.0

0.1

St
at

e
Va

lu
e

Predictions on one dimension

Groundtruth
One Step Deterministic
One Step Probabilistic
Trajectory Based Deterministic
Trajectory Based Probabilistic

(b) State 1: x velocity.

0 25 50 75 100 125 150 175 200
Timestep

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
One Step Deterministic
One Step Probabilistic
Trajectory Based Deterministic
Trajectory Based Probabilistic

(c) State 2: pole angle.

0 25 50 75 100 125 150 175 200
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

St
at

e
Va

lu
e

Predictions on one dimension
Groundtruth
One Step Deterministic
One Step Probabilistic
Trajectory Based Deterministic
Trajectory Based Probabilistic

(d) State 3: angular velocity.

Fig. 12: Cartpole state predictions for the following models:
D,P, T, TP . This highlights two properties of the cartpole
dataset: 1) the damped response of versions of LQR control
and 2) the end behavior of the trajectories varies and does
not always converge to 0, where the trajectory-based models
are more accurate.

D (◦) PE (♢) T () True Trajectory (-)

Fig. 13: Predicting on real hardware.

E. Predicting Unstable and Periodic Dynamics

Important to the application of dynamics models to robotic
tasks is the ability to accurately model dynamics when a)
trained on imperfect data (e.g. data with noise and divergent
modes) and b) evaluated on different modes of data. In
this section, the evaluation of predicting stable dynamics is
extended onto unstable and periodic dynamics. Representa-
tive stable, unstable, and periodic trajectories are shown in
Fig. 14a,b,c. Unstable dynamics are designed to be diverging
through the trajectory and periodic dynamics have consistent
cyclic motion of various frequencies.

To test this, we collect 3 training and testing datasets
(Ntraj = 100) for each datatype above in the cartpole

pole-angle, θ (⧖) x position (◦)

0 50 100 150 200

−0.2

0

0.2

0.4

0.6

Timestep

N
or
m
al
iz
e 
St
at
e

(a) A stable trajectory.

0 50 100 150 200

0
10
20
30
40
50
60
70

Timestep

N
or
m
al
iz
e 
St
at
e

(b) An unstable trajectory.

0 50 100 150 200

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2

Timestep

N
or
m
al
iz
e 
St
at
e

(c) A periodic trajectory.

Deterministic, one-step: D (◦) Trajectory-based: T (�)

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(d) Train: stable, test: stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(e) Train: unstable, test: stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(f) Train: periodic, test: stable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(g) Train: stable, test: unstable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(h) Train: unstable, test: unstable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(i) Train: periodic, test: unstable.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(j) Train: stable, test: periodic.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(k) Train: unstable, test: periodic.

0 50 100 150 200
2
5

100μ
2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

Prediction Step

M
ea

n
Sq

ua
re

d
Er

ro
r

(l) Train: periodic, test: periodic.

Fig. 14: Above: representative trajectories for the stable, unstable, and periodic datasets. Below: the evaluation error when
using a model trained exclusively on one-variety of data (e.g. unstable) to predict all types of data. This figure represents 6
models (D and T trained on 3 different datasets) and 18 evaluations (the 6 models evaluated on the 3 testing sets).

environment via different tunings of LQR control. The stable
data is the same used in Sec. V-B where the majority of
trajectories converge towards s = 0. The one-step models
maintain similar performance to trajectory-based models
when trained on stable data, shown in Fig. 14d,g,j. In the
unstable-data trained models (Fig. 14e,h,k) and the periodic-
data trained models (Fig. 14f,i,l), the trajectory-based models
demonstrate an impressive performance in modelling dynam-
ics motion across long horizons. Except when trained and
tested on unstable data, the one-step models diverge rapidly
– suggesting two potential modes of training for the one-step
models: a) they may be memorizing the unstable trajectories
and b) when training on stable data, the majority of the delta-
state predictions are around 0, so when predicting out of
distribution data the model may predict no change, slowing

divergence. Conversely, when trained on unstable or periodic
data, and testing elsewhere, the one-step models diverge
rapidly due to the constant change in state in the training
set, shown in Fig. 14e,f,i,k,l. The ability for trajectory-based
models to generalize from periodic data to stable dynamics
confers a substantial improvement over the one-step model.

F. Optimizer Details for Sec. V-E

The sample spaces for optimization are important to
convergence (too broad of a space and the algorithms will not
converge), and they follow Sec. V-A. For the cartpole task,
the sample space of the optimization is from c ∈ [−0.1, 2]
for c ⋅K where K is the optimal LQR controller. For the
reacher task, the sample space is the range of PID and target
parameters sampled.

a) Bayesian Optimization: For Bayesian Optimization,
we used the open source platform Ax https://ax.dev/.
All targets (rewards) were normalized during training to [0,1]
to aid in GP fitting.

b) CMA-ES: For covariance matrix adaptation evolu-
tion strategy (CMA-ES) we use the open source python im-
plementation https://pypi.org/project/cma/. In
order to constrain the sample space, any proposed parameter
set outside the bounds is given a reward of -10000 (same for
all tasks).

G. Parameter Tuning

A table of the limited hyperparameter tuning done in this
paper is shown in Tab. IV.

Parameter Final Value Swept values

Standard Feed-forward Models
Optimizer Adam Adam, SGD
Hidden width 250 250,300, 500
Hidden depth 2 2,3
Batch Size 32 16,32,64,128, 256
Learning Rate 5E-5 1E-4, 1E-5, 5E-5
Test Train Split 0.9 0.8, 0.9, 1.0

Trajectory Feed-forward Models
Optimizer Adam Adam, SGD
Hidden width 250 250,300, 500
Hidden depth 2 2,3
Batch Size 64 16,32,64,128, 256
Learning Rate 8E-4 1E-4, 4E-4, 8E-4
Test Train Split 0.8 0.8, 0.9, 1.0
Max training set size 1E5 5E4,1E5,2E5,5E5,1E6

Recurrent Models
Optimizer Adam Adam, SGD
Hidden width 250 250,300, 500
Hidden depth 2 2,3
Batch Size 1 1,2,4
Learning Rate 1E-3 1E-3, 1E-4, 8E-5
Test Train Split 0.8 0.8, 0.9, 0.5
Training trajectory length L 100, 200, L

TABLE IV: Model training hyperparameters

https://ax.dev/
https://pypi.org/project/cma/

	I INTRODUCTION
	II RELATED WORKS
	II-A Model Learning for Control
	II-B Predicting with Single Steps Ahead
	II-C Predicting Trajectories

	III BACKGROUND
	IV TRAJECTORY-BASED DYNAMICS MODELS
	IV-A Prediction Formulation
	IV-B Benefits of Trajectory-based Models

	V EXPERIMENTAL RESULTS
	V-A Experimental Setting
	V-B Long-term Prediction Accuracy
	V-C Accelerated Data Efficiency
	V-D Predictive Episode Reward
	V-E Iterative Learning of Control Parameters
	V-F Model Predictive Control with Trajectory-based Models

	VI Discussion and Future Work
	VII Conclusion
	References
	VIII Appendix
	VIII-A Predicting With All Models
	VIII-B Model Accuracy Versus Epoch
	VIII-C Additional Cartpole Details
	VIII-D State Predictions
	VIII-E Predicting Unstable and Periodic Dynamics
	VIII-F Optimizer Details for Sec. V-E
	VIII-G Parameter Tuning

