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Abstract— In this paper, a 3D point feature depth and
camera focal length estimation is proposed, using a partially
calibrated low cost monocular camera. The camera intrinsic
parameters are known, except for the focal length, which may
vary across different views. The camera perspective projection
model is augmented using dynamic extension approach,
then decomposed into two interconnected subsystems. The
subsystems are described as quasi-Linear Parameter Varying
(qLPV) systems with unmeasured premise variables for
which an Interconnected Fuzzy Observer (IFO) is designed.
Necessary and sufficient conditions to ensure the observer
existence are presented. The error convergence analysis is
performed based on Lyapunov theory associated with Lipchitz
condition. Gains that guarantee the asymptotic stability of
the estimation error are computed in terms of Linear Matrix
Inequalities (LMI) with eigenvalues clustering in LMI region
to improve the estimation performance.

Keywords: Nonlinear Luenberger Observer, quasi-LPV
Systems, Camera Auto-calibration, Structure from Motion,
LMI constraints, Lyapunov Theory

I. INTRODUCTION

Camera images provide a large amount of data. Estimating
the data contained in images is a challenge that extends
through many disciplines. Recovering depth information
using a moving camera can be used to estimate the range (and
hence, a 3D structure) of the feature points from 2D images
which is usually referred to as Structure from Motion (SfM).
This problem has been the central focus in computer vision
community, motivating a large number of research work.
Researchers in the field have proposed several solutions
exploiting filtering tools as in [12] where the problem of
SfM is addressed using a finite-dimensional approximation
to the optimal filter. Also, in [2] an Unscented Kalman
Filter is implemented for depth estimation and in [1], the
authors implemented an extended Kalman filter to solve the
3D reconstruction problem. These tools have proved to be
efficient, however, they assume linearized structures and lack
a convergence guarantee. Besides, such solutions necessitate
prior knowledge of the noise. Accordingly, other approaches
propose deterministic nonlinear observation based frame-
work. For instance in [3], an active structure from motion
scheme of a feature point is addressed by optimizing the
convergence rate of the estimation error to impose a desired
transient response. And along similar lines, application to
include other geometrical primitives as lines [4], spherical
and cylindrical targets [5] and moments [6] were introduced.
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However, the observer synthesis of all the previously cited
works is based on neglecting a disturbance term which may
have a big impact on the state estimation.
The vast majority of existing approaches assume that the
camera is calibrated beforehand, such that all the intrinsic
parameters remain constant across various views. This can
be very restrictive since it excludes adjusting the focal length
to zoom or focus.

The camera calibration plays an essential role in the accu-
racy of the scene reconstruction task. Many works, as in [7],
have demonstrated that uncertainties in camera calibration
parameters will affect the accuracy of 3D reconstruction.
Furthermore, An analysis of the impact of the assumptions
on camera intrinsic parameters upon the scene structure and
camera motion parameters is discussed in [9]. In [13], it has
been shown that an accurate focal length calculation is consi-
dered to be the most important components in the camera
calibration model when calculating surface point coordinates
via triangulation. This led to an intensive research on the
possibility to obtain the Euclidean 3D reconstruction without
using a fully calibrated camera. Among these research works,
a few handled the problem of estimating the unknown focal
length in the context of 3D reconstruction. One can cite [10]
where a method for incremental Non-Rigid Structure-from-
Motion (NRSfM) with unknown focal length is presented
by employing a searching scheme that checks for the focal
length preserving the highest possible isometric reconstruc-
tion accuracy across views. Moreover, in [11], the authors
proposed a method to reconstruct 3D scene from collection
of images with known (in principle single image with known
focal length) and unknown focal lengths, by providing a mi-
nimal solution to finding the relative pose between a fully ca-
librated camera and a camera with an undefined focal length.
This paper extends our previous work proposed in [8], that
solves the problem of 3D structure reconstruction, assuming
a precise knowledge of the camera calibration parameters.
In this work we investigate the depth reconstruction of a
feature point observed by a partially calibrated camera with
varying focal length assuming square-shaped pixels. The
main idea is to immerse the camera perspective model into an
augmented system in order to obtain an appropriate structure
to design the Interconnected Fuzzy Observer (IFO). The
augmented system is decomposed into two interconnected
quasi-Linear Parameter Varying (qLPV) systems. Both sub-
models are transformed into Takagi-Sugeno (T-S) form with
unmeasurable premise variable. An IFO is designed in order
to estimate the depth of the feature point and the camera
focal length. The stability of the observer is investigated
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based on Lyapunov theory and sufficient conditions for the
convergence of the estimation error are established using
Linear Matrix Inequality (LMI) formalism. The paper is
organized as follows: Section II recalls basic definition and
notations to be used throughout the paper and describes the
vision system model. In section III, the quasi-LPV system is
described and conditions to ensure the observer existence
are discussed. While section IV addresses the design of
the non-linear observer to estimate the unknown depth and
the camera focal length. Simulation results using synthetic
data are provided in section IV, followed by conclusions in
section V.

II. BACKGROUND

Before formulating the problem, notations, and basic lem-
mas are given to be used later to prove the main results.

A. Notations and basic definitions

In the sequel, matrices are represented in upper case bold
letters X and vectors in lower case bold letters x. X =X⊺ is
the definition of the symmetric matrix. (.)−1 is the inverse of
a given square matrix. X ≻ 0 (resp.X ≺ 0) denotes that X is
a definite positive (resp. negative) matrix. 0 and I refers
to zero and identity matrices with appropriate dimensions.
[.]× denotes the skew-symmetric matrix of a given vector
and ∥(.)∥ represents the Euclidean norm. And R denotes the
real part of a given complex number and finally, to simplify
notation, we omit function arguments when possible.

Lemma 1: For every matrix G=GT > 0, X and Y with
appropriate dimensions, the property below holds:

XTY +YTX ≤ XTGX +YTG−1Y (1)

Lemma 2 (Schur complement lemma): Consider the fol-
lowing convex nonlinear inequalities:

R > 0, T − SR−1ST > 0 (2)

where the matrices T = TT , R = RT and S are of
appropriate dimension. Hence, the previous inequalities can
be written in the following form:

[ T S
ST R

] > 0 (3)

Note that the previous mathematical properties hold for
Linear Time Invariant (LTI) systems and also for the case of
qLPV systems when considering frozen parameter vectors.

B. Conventional Camera Model
Let the 3D point feature p represented in the camera frame

with the coordinates p = (X Y Z)
⊺. The homogeneous

coordinates of its projection onto the image plane is defined
by:

m = (x y 1)⊺ = ( λ
Z
X λ

Z
Y 1)⊺ (4)

The relative motion of p, as observed in the camera coordi-
nate system, can be expressed by the following kinematics:

ṗ = −υ + p × ω = (−In [p]×) u (5)

where u = (υ⊺ ω⊺)
⊺

with υ = (υx υy υz)
⊺ and ω =

(ωx ωy ωz)
⊺ are respectively the instantaneous linear and

angular velocities of the origin of the camera expressed in
its local frame.
Consequently, one can derive from (4) and (5) the following
expression:

(ẋ
ẏ
) = (−

1
Z

0 x
Z

xy −(1 + x2) y
0 − 1

Z
y
Z

(1 + y2) −xy −x) u (6)

The transition of the 2D feature point m from the image
coordinates to the pixel coordinates f is obtained by the
following expression:

f = (u v 1)⊺ = Km (7)

where K represents the calibration matrix that contains the
camera intrinsic parameters:

K =
⎛
⎜
⎝

λku s u0

0 λkv v0
0 0 1

⎞
⎟
⎠

(8)

where (u0 v0)
⊺ is the vector representing the pixel coordi-

nates of the principle point, ku and kv are respectively the
density of pixels in the horizontal and vertical direction of
the pixel axis expressed in number of pixels per millimeter, s
is called the skew factor and the focal length λ is the distance
between the optical center and the image plane expressed in
millimeters.

In this paper, we deal with cameras that have orthogonal
pixel axis (s = 0) and square-shaped pixels (ku = kv = k).
After converting the physical focal length λ to pixel unit
(f = λk), the camera calibration matrix becomes:

K =
⎛
⎜
⎝

f 0 u0

0 f v0
0 0 1

⎞
⎟
⎠

(9)

We assume, in this work, a partially calibrated camera where
only the coordinates of the principle point (u0 v0) are known.
Taking into account the equation (7) and by defining fu =

u − u0 and fv = v − v0, the expression in (6) takes the
following form:

(ḟu
fv

) =
⎛
⎜
⎝
− f
Z

0 fu
Z

fu fv
f

−(f + f2u
f
) fv

0 − f
Z

fv
Z

f + f2v
f

− fu fv
f

−fu

⎞
⎟
⎠

u (10)

In order to estimate the 3D Euclidean coordinates of the
feature point and the camera focal length, we expand the
system (10) to include the dynamics of the depth information
1
Z

denoted by χ and the focal length f .
The dynamics of χ, deduced from the equation (5), is

given by:

χ̇ = (0 0 χ2 y χ −xχ 0) u (11)

The system in (10) is augmented using the dynamic ex-
tension approach by generating auxiliary dynamics. This
results in a larger new system with relaxed dependency on
the unmeasurable premise variables in order to reduce the
number of subsystems when considering the TS form. Thus:

⎛
⎜⎜⎜⎜
⎝

ḟu
ḟv
χ̇

ḟ

⎞
⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−f χ 0 fuχ
fufv
f

−(f + f2u
f
) fv

0 −f χ fvχ f + f2v
χ

− fufv
f

−fu
0 0 χ2 fu

χ
f

−fv χf 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

u

(12)



Where: fu and fv are the measurable states, computed from
the extracted feature point from the image and the depth
information χ and the focal length f are the unmeasurable
data to be estimated.

III. MODEL DESCRIPTION

The objective of this section is to decompose the system
(12) into two suitably defined interconnected systems. Fur-
ther, we discuss the observer existence conditions that are
highly correlated with the way of splitting the system into
two subsystems.

A. Quasi-LPV representation
The system (12) is devided into two sub-models, dynami-

cally coupled, described in qLPV form by:

Σ1

⎧⎪⎪⎨⎪⎪⎩

ẋ = Ā (x,z,u)x + B̄(y) ω + D̄(yz) z

yx = C̄x
(13)

Σ1

⎧⎪⎪⎨⎪⎪⎩

ż = Ă(x,z,u)z + B̆(y) ω + D̆(yx) x

yz = C̄z
(14)

where Ā (x,z,u), Ă (x,z,u) ∈ R2×2. B̄(y), B̆(y) ∈ R3×2

and D̄(yz), D̆(yx) ∈ R2×2 . The following vectors x, z ∈ R2,
ω ∈ R3, and yx, yz ∈ R are respectively the state vectors for
the first and the second subsystem, the angular velocity, and
the output vectors for the first and the second subsystem.
The matrices defined in the system above are represented as
follows:

Ā(x,z, υ) = (
fv
f
ωx − fu

f
ωy χυx − ωy

0 0
) B̄(y) = (0 0 fv

0 0 0
)

Ă(x,z,u) =
⎛
⎝

fv
f
ωx − fu

f
ωy + χυz −fυy

0 fv
f
ωx − fu

f
ωy + χυz

⎞
⎠

D̄(u,y) = (0 fuυz
0 0

) B̆(y) = (0 0 −fu
0 0 0

) D̆(u) = (0 ωx
0 0

)

B. T-S Exact Model
The subsystems (16) and (14) can be expressed in T-S

fuzzy structure following the sector nonlinearity approach
[14].

Σ1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ =
8

∑
i=1
µi(x,z,u)(ĀiZ + B̄i ω + D̄i z)

yx = C̄x
(15)

Σ2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż =
8

∑
i=1
σi(x,z,u)(ĂjX + B̆j ω + D̆j x)

yz = C̆z
(16)

where µi(x̂,x), i = 1, . . . ,8 (respectively σi(x,z,u), i =
1, . . . ,8) are the weighing functions satisfying the convex
sum property stated in (17) with 8 being the number of sub-
models [15].

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ⩽ µi(x, z, u) ⩽ 1
8

∑
i=1
µi(x, z, u) = 1

(17)

In our case each of the subsystems has 3 nonlinearities,
which makes 23 = 8 subsystem. The nonlinearities are
defined for each interconnected model as:

Σ1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h1 = fv
f
ωx − fu

f
ωy

h2 = χυx − ωy
h3 = fuυz

(18)

Σ2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h1 = fv
f
ωx − fu

f
ωy + χυz

h2 = −fυy
h3 = ωx

(19)

After expressing the system in TS form, in the next section
we address the interconnected observer design.

IV. OBSERVER DESIGN

In this section, we address the problem of designing
nonlinear observers for Takagi-Sugeno (TS) interconnected
models with unmeasurable premise variable. The following
assumptions are considered to ensure the observer existence.

Assumption 1: For a frozen values of the measured and
unmeasured variables, we consider that:

1) The state vector and the system inputs are bounded.

2) Each subsystem is observable or at least detectable.

The proposed nonlinear interconnected observer includes
two subsystems and it is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x =
3

∑
i=1
µi(x̂, ẑ,u)(ĀiX̂ + L̄i(yx − ŷx) + B̄i ω + D̄i z)

ŷx = C̆x̂

˙̂z =
3

∑
i=1
σi(x̂, ẑ,u)(Ăj ẑ + L̆j(yz − ŷz) + B̆j ω + D̆j x)

ŷz = Cẑ
(20)

The estimated state for the first and the second sub-model
are denoted respectively by x̂ and ẑ.

Let us consider the state estimation errors: ex = x − x̂
and ez = z − ẑ The dynamics of the estimation errors are
expressed by the following form:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ėx =
3

∑
i=1
µi(x̂, ẑ,u)(Φ̄i ex + D̄i ez +∆x)

ėz =
3

∑
i=1
σi(x̂, ẑ,u)(Φ̆iez + D̆j ex +∆z)

(21)

where: Φ̄i = Āi− L̄iC̄, Φ̆i = Ăj − L̆jC̆, ∆x =
3

∑
i=1

(µi(x,z,u)−

µi(x̂, ẑ,u))Āix and ∆z =
3

∑
i=1

(µi(x,z,u) − µi(x̂, ẑ,u))Ăiz .
Taking into consideration the assumption 1, since all the
state vector and the inputs are bounded, we can say that ∆z

and ∆x are also bounded and fulfill the following Lipschitz
conditions:

∆T
x∆x =∥(∆x)∥

2 < αx∥X̂ − X∥2 = αx∥ex∥2 (22)

∆T
z∆z =∥(∆z)∥

2 < αz∥ẑ − z2∥ = αz∥ez∥2 (23)

The Theorem stated below, establishes LMI constraints to
guarantee the asymptotic stability of the estimation errors.



Theorem 1:
The state estimation error converges asymptotically to-
ward zero, if there exists positive definite symmetric
matrices P,Q ∈ R2×2, symmetric positive matrices
Ω2,Ω1,Kz,Kx,Sz,Sx ∈ R2×2 such that for a given scalars
α1, α2 , β1 and β2, the following LMIs constrains with pole
clustering, defined in (25) and (24) are satisfied.

⎛
⎜
⎝

−Γi +Kx +Ω2 D̄⊺

iP P
PD̄i −Ω1 0
P 0 −Sx

⎞
⎟
⎠
< 0 (24a)

( β1P PĀi − W̄iC̄
Ā⊺

iP − C̄⊺⊺W̄ β1P
) > 0 (24b)

Ā⊺

iP − C̄⊺W̄⊺

i +PĀi − W̄iC̄ + 2α1P < 0 i = 1, . . . ,8 (24c)

⎛
⎜⎜
⎝

−Γ̆j +Kz +Ω1 D̆⊺

jQ Q

QD̆j −Ω2 0
Q 0 −Sz

⎞
⎟⎟
⎠
< 0 (25a)

⎛
⎝

β1Q QĂj − W̆jC̆

Ă⊺

jQ − C̆⊺W̆⊺

j β1Q

⎞
⎠
> 0 (25b)

Ă⊺

jQ − C̆⊺W̆⊺

j +QĂj − W̆jC̆ + 2α2P < 0 j = 1, . . . ,8 (25c)

where: Γ̄i = Ā⊺

iP − C̄⊺W̄⊺

i + PĀi − W̄iC̄ and
Γ̆j = Ă⊺

jQ − C̆⊺W̆⊺

j +QĂj − W̆jC̆

The resulting gains of the interconnected observer are given
by: L̄i = P−1W̄i , i = 1, . . . ,8 and L̆j = Q−1W̆j , j = 1, . . . ,8

Proof
Considering the quadratic Lyapunov function given by:

V = ex
⊺Pex + ez

⊺Pez (26)

where: P = PT > 0 and Q = QT > 0
The time derivative of Lyapunov function yields:

V̇ (t) = ėx(t)⊺Pex(t) + ex(t)⊺Pėx(t) + (27)
ėz(t)⊺Qez(t) + ez(t)⊺Qėz(t)

Substituting the error dynamics equation (21), one obtains:

V̇ (t) =
3

∑
i=1

µi(x̂, ẑ,u)((Φ̄i ex + D̄i ez +∆x)⊺ Pex (28)

+ex
⊺P(Φ̄i ex + D̄i ez +∆x)) +

3

∑
i=1

σi(x̂, ẑ,u)((Φ̆jez + D̆j ex +∆z)⊺ Qez +

ez
⊺Q(Φ̆jez + D̆j ex +∆z))

with: Φ̄i = Āi − L̄i C̄ and Φ̆j = Ăj − L̆j C̆
Hence, the equation (28) is equivalent to:

V̇ (t) =
8

∑
i=1

µi(x̂, ẑ,u)(ex
⊺(Φ̄iP +PΦ̄i)ex + (29)

ez
⊺D̄iPex + ex

⊺ PD̄iez) +
8

∑
i=1

σi(x̂, ẑ,u)(ez
⊺(Φ̆j Q +QΦ̆j)ez +

ex
⊺D̆j Qez + ez

⊺ QD̆iex) +∆⊺

xPex +
ex

⊺ P∆x +∆⊺

z Qez + ez
⊺ Q∆z)

Using Lemma 1 the resulting inequalities hold:

∆⊺

xPex + ex
⊺ P∆x ⩽ ex

⊺PHxPex +∆⊺

xHx
−1∆x (30)

∆⊺

z Qez + ez
⊺ Q∆z ⩽ ez

⊺QHzQez +∆⊺

zHz
−1∆z (31)

ez
⊺D̄iPex + ex

⊺ PD̄iez ⩽ PD̄iG1D̄i
⊺

P + ez
⊺G1

−1ez (32)

ex
⊺D̆j Qez + ez

⊺ QD̆iex ⩽ QD̆iG2D̆⊺

j Q + ex
⊺G2

−1ex (33)

It yields:

V̇ (t) ≤
8

∑
i=1

µi(x̂, ẑ,u)(ex
⊺(Γ̄i +PD̄iG1D̄i

⊺

P))ex + (34)

ez
⊺G1

−1ez +
8

∑
i=1

σi(x̂, ẑ,u)(ez
⊺(Γ̆i +

QD̆iG2D̆⊺

j Q )ez)) + ex
⊺G2

−1ex + ex
⊺PHxPex +

∆⊺

xHx
−1∆z + ez

⊺QHzQez +∆⊺

zHz
−1∆z

with: Γ̄i = Φ̄⊺

iP + PΦ̄i and Γ̆j = Φ̆⊺

jQ + QΦ̆j . Taking into
account the Lipschitz condition represented in the equations
(23) and (22), then, the following inequality is satisfied:

V̇ (t) ≤
8

∑
i=1

µi(x̂, ẑ,u)(ex
⊺(Γ̄i +PD̄iG1D̄i

⊺

P + (35)

αxH
−1
x +PHxP +G2

−1)ex) +
8

∑
i=1

σi(x̂, ẑ,u)(ez
⊺(Γ̆i +QD̆iG2D̆⊺

j Q +

αzH
−1
z +QHzQ +G1

−1)ez)

The derivative of Lyapunov function is definite negative
(V̇ ≤ 0) if the following equations fulfilled:

8

∑
i=1

µi(x̂, ẑ,u)(ex
⊺(Γ̄i +PD̄iG1D̄i

⊺

P + αxH−1
x (36)

+PHxP +G2
−1)ex) +

8

∑
i=1

σi(x̂, ẑ,u)(ez
⊺(Γ̆i +

QD̆iG2D̆⊺

j Q + αzH−1
z +QHzQ +G1

−1)ez) ≤ 0

Thus, the inequality (37) is readily obtained:
⎧⎪⎪⎨⎪⎪⎩

Γ̄i +PD̄iG1D̄⊺

i P + αxH−1
x +PHxP +G2

−1 ≤ 0

Γ̆i +QD̆iG2D̆⊺

j Q + αzH−1
z +QHzQ +G1

−1 ≤ 0
(37)

In order to achieve solvable LMIs, the variables must appear
linearly in the constraints derived. As a consequence, we
adopt the following change of variable: Ω1 = G1

−1, Ω2 =
G2

−1, Kz = αz H−1
z , Kx = αxH−1

x , Sz = H−1
z and Sx =

H−1
x

Then, using Schur complement lemma 2, the inequalities 37
can be expressed as:

⎛
⎜
⎝

−Γ̄i +Kx +Ω2 D̄⊺

iP P
PD̄i −Ω1 0
P 0 −Sx

⎞
⎟
⎠
< 0 (38a)

⎛
⎜⎜
⎝

−Γ̆j +Kz +Ω1 D̆⊺

jQ Q

QD̆j −Ω2 0
Q 0 −Sz

⎞
⎟⎟
⎠
< 0 (38b)

To enhance the observer performance, and accelerate the
rate convergence, the gain should be adjusted using pole
clustering technique. The allocated region for pole placement



is defined by the combination of a disk of radius β centered
at (0,0) and the half plane delimited by the value αi.e:

S(α,β) = {z ∈ C, R(z) < −α, ∣z∣ < β}

The pole clustering, considering two subsystems is governed
by the following LMI formalism.

( β1P PĀi − W̄iC̄
Ā⊺

iP − C̄⊺W̄ β1P
) > 0 (39a)

Ā⊺

iP − C̄⊺W̄⊺

i +PĀi − W̄iC̄ + 2α1P < 0 i = 1, . . . ,3 (39b)

⎛
⎝

β1Q QĂj − W̆jC̆

Ă⊺

jQ − C̆⊺W̆⊺

j β1Q

⎞
⎠
> 0 (40a)

Ă⊺

jQ − C̆⊺W̆⊺

j +QĂj − W̆jC̆ + 2α2P < 0 j = 1, . . . ,3 (40b)

with α1 and β1 are the region parameters of the first
subsystem and β2 and α2 are for the second subsystem.

Combining the LMIs constraints in 38, 39 and 40, we
obtain the LMIs stated in the theorem 1 and this ends the
proof.

V. SIMULATION RESULTS

Simulations are conducted in this section to test the
performance of the observer taking into consideration two
cases: a constant and a varying camera focal length. An
image of an AprilTag, taken from MathWorks website, is
warped using homography to create a sequence of images
for both cases in order to evaluate the stability and precision
of the observer. The homography is calculated and applied to
every point in the image to generate different scenes, at a rate
of 100 fps, comprising the AprilTag marker. Each dataset
simulating a camera with a resolution of 2016×1512 pixels.

a) Case 1: considering a constant focal length: For
the first simulation, we consider the constant focal length
f = 1000. The detected feature point is selected to be the
point of the edge of one of the tag markers in the image as
shown in Fig. ?? with the blue dot. The camera calibration
matrix is set to:

K =
⎛
⎜
⎝

1000 0 1008
0 1000 756
0 0 1

⎞
⎟
⎠

(41)

The camera linear and angular velocities are given by:

υx = 0, υy = −0.0005 t, υz = −0.05 e−0.02 t,

ωx = 0.02, ωy = −0.07 sin ( π
10
t), ωz = 0.01. (42)

The initial conditions of the interconnected observer are:
x̂ = (253, 200)⊺ and ẑ = (10, 2)⊺.

Fig 2 reports the evolution of the real and estimated
depth information during the simulation. And Fig. 3 depicts
the behavior of the real and estimated focal length. The
figures shows a fast convergence rate (around 3 seconds)
of the estimated states to the real ones. And that is
basically due to adjusting the interconnected observer gains
using pole clustering (as represented in equations 39 and 40).

(a) (b)

(c) (d)

Fig. 1: (a) is the initial image, (b) image at t = 1s, (c) image at
t = 3s and (d) image at t = 6s for the first case.
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Fig. 2: Real (solid bleu line) and estimated (dashed red line) depth
information (χ) for the first generated set of images

b) Case 2: considering a varying focal length: In order
to show the observer performance, we analyse the case of a
varying focal length The camera calibration matrix at t = 0
is selected as:

K =
⎛
⎜
⎝

800 0 1008
0 800 756
0 0 1

⎞
⎟
⎠

(43)

The generated linear and angular velocities of the camera
are given by:

υx = −0.02 e−0.02 t, υy = −0.05 sin (π
5
t) − 0.0005 t,

υz = −0.05 − cos (π
5
t) ωx = 0.02 cos (π

4
t),

ωy = 0.06 cos (π
5
t), ωz = 0.01 e−0.05 t. (44)

The observer initial conditions are set to: x̂ = (−188, 200)⊺
and ẑ = (−200, 2)⊺.

Fig. 1 and Fig. 4 show the synthetic images of the first
and second sequence at different times during the simulation
where the tracked point is represented by the blue dot. In
Fig. 6 the solid blue line shows the changes the real focal
length across the views and it can be seen that the observer
is still accurate even in case of varying focal length. The
observer shows robust performance in estimating the actual
values of the depth information χ and the camera focal length
f as it can be shown in Fig. 5 and Fig. 6. It’s worth noting
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Fig. 3: Real (solid bleu line) and estimated (dashed red line) focal length
(f ) for the first generated set of images

(a) (b)

(c) (d)

Fig. 4: (a) is the initial image, (b) image at t = 2s, (c) image at
t = 5s and (d) image at t = 10s for the second case .

that the behaviour of the depth information χ in the case of
varying focal length seems to be a little inconsistent when
the focal length changes abruptly and this is directly related
to the dynamics coupling between the two sub-models (the
estimated state in one subsystem is the input for the other
subsystem).

VI. CONCLUSIONS

We have demonstrated, in this paper that the proposed
interconnected observer produce very accurate results for the
3D structure estimation in case of partially calibrated camera.
An interconnected observer design for nonlinear systems is
investigated for qLPV systems with unmeasured premise
variables, to estimate the 3D depth information and the
camera focal length. In order to reduce the conservativeness
of the LMIs, the considered system is obtained using a
dynamic extension of a vision camera system and splited
into two submodels. Necessary and sufficient conditions
are provided to ensure the existence of the observer. The
convergence of the estimation error is investigated based on
Lyapunov theory. The observer gains are obtained by solving
an LMI feasibility problem. Finally, simulations are carried
out using synthetic data to validate the proposed observer.
The presented approach gives an interesting solution for the
3D reconstruction using a partially calibrated camera.
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Fig. 5: Real (solid bleu line) and estimated (dashed red line)depth
information (χ) for the second generated set of images
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Fig. 6: Real (solid bleu line) and estimated (dashed red line) focal length
(f ) for the second generated set of images
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