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Qualitative Planning in Imperfect Information Games with Active Sensing

and Reactive Sensor Attacks: Cost of Unawareness

Abhishek N. Kulkarni, Shuo Han, Nandi O. Leslie, Charles A. Kamhoua, and Jie Fu∗

Abstract— We consider the probabilistic planning problem
where the agent (called Player 1, or P1) can jointly plan the
control actions and sensor queries in a sensor network and
an attacker (called player 2, or P2) can carry out attacks on
the sensors. We model such an adversarial interaction using a
formal model–a reachability game with partially controllable
observation functions. The main contribution of this paper is
to assess the cost of P1’s unawareness: Suppose P1 misinter-
prets the sensor failures as probabilistic node failures due to
unreliable network communication, and P2 is aware of P1’s
misinterpretation in addition to her partial observability. Then,
from which states can P2 carry out sensor attacks to ensure,
with probability one, that P1 will not be able to complete
her reachability task even though, due to misinterpretation,
P1 believes that she can almost-surely achieve her task. We
develop an algorithm to solve the almost-sure winning sensor-
attack strategy given P1’s observation-based strategy. Our
attack analysis could be used for attack detection in wireless
communication networks and the design of provably secured
attack-aware sensor allocation in decision-theoretic models for
cyber-physical systems.

Index Terms— Cyber-physical security; Formal methods;
Games on graphs; Sensor Attack.

I. INTRODUCTION

Security of Cyber-Physical Systems (CPS) has been stud-

ied extensively in the systems and control community (see

a survey in [1]). In these control-theoretic approaches, the

system under consideration is modeled as a linear or nonlin-

ear dynamical system. The malicious attacker on sensors and

actuators can inject errors into the sensor measurement (such

as spoofing attacks or false data injection attacks), block or

delay signals (as in denial of services and jamming attacks)

[2], [3]. Detection and secured estimation and control under

malicious attacks have been investigated to ensure resilience,

stability, and robustness of the control system. Secured state

estimation under sensor and/or actuator attacks has been

studied for linear time-invariant systems [4]–[6].

While a plethora of work analyze CPS security from a

systems and control perspectives, discrete event systems and

stochastic games have also been employed to analyze secured

control under attacks. The authors in [7] model the attacker-

defender interaction as a turn-based stochastic Stackelberg
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game, where the attacker observes the defender’s strategy

before deciding how to carry out attacks and the defender

is to maximize the probability of satisfying a temporal logic

formula. They assume that both players have complete obser-

vations and the game state is controlled by the joint attacker

and defender actions. In supervisory control, the supervisor

aims to control the behaviors of a DES to be within a

desired language while an attacker can add, delete, or replace

symbols (sensor inputs or actuator outputs). The authors in

[8] propose finite-state transducers as attack models, which

are known to the supervisor. A composition of the plant

and the attack transducers is generated to evaluate, whether

the supervisor can still control the plant’s outputs within the

desired language despite of the malicious attacks. In [9], the

authors do not assume that attacker’s policy is known but

instead introduce a class of multi-adversary games where the

supervisor is played against multiple possible attackers on

sensors. They proposed the condition for controllability and

observability under such attacks and the supervisory control

design to achieve the control objective robustly. Besides

mitigating sensor/actuator attacks, opacity in DESs [10]–[12]

is to mitigate attacks on confidentiality of the systems.

Our work is motivated by the development of networked

robotic systems and the security issues. Networked robots

are a class of CPSs that focus on the seamless integration

of robots to assist humans in difficult tasks such as security

paroling and contested search and rescue. For these appli-

cations, the robots operate in an uncertain and potentially

adversarial environment, subject to malicious attacks in cyber

and physical spaces. In this scope, we focus on sensor attack

in networked robots and employ decision-theoretic models

to nvestigate how the sensor attack can affects an intelligent

agent’s information states, beliefs, and consequentially its

decisions. Consider a robot is to achieve a task in a stochastic

environment with partial observations. At run-time, the robot

can actively query a subset of sensors in a wireless network

to update his belief about the state and the progress with

respect to the task. However, the attacker can choose unsafe

sensor nodes and carry out reactive jamming attacks [3].

Such an attack will target the active communication and

block the sensor information from reaching the agent. Our

key questions are, if the robot mistakes sensor failures as

probabilistic node failures in the wireless network [13], how

would the robot compute its active sensing and control policy

to reach a goal state with probability one, i.e.almost-surely

win? How shall the attacker exploit the robot’s misinter-

pretation of the sensor failures for carrying out successful

sensor attacks that manipulate the robot’s information states?
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With the knowledge about attacker’s almost-sure winning

region given the naive robot, we can understand how the

physical task completion is coupled with the vulnerabilities

in the cyber network and gain critical insight about hard-

ening network security with task-oriented sensor allocation

and attack-aware active sensing strategies. Our technical

approach employs a formal model called stochastic game on

graphs [14]–[16]. The key contributions are the following:

1) We formulate a class of partially observable Markov

decision process (POMDP)s with reachability objectives. The

model generalize from regular POMDPs to include both

actions and sensor queries as the decisions for the robot.

2) We extend probabilistic model checking in POMDPs

to answer, from which set of information states, the robot

has an observation-based control and active sensing strategy

that ensures the task can be achieved with probability one

given probabilistic action outcomes and probabilistic sensor

failures. 3) We analyze the adversary’s game to compute,

given the naive robot’s strategy, when to attack which sensors

so that the robot cannot achieve the task with probability

one, even from the robot believes it can do so. The solution

approach is illustrated using a running example.

Our modeling and design approaches differ from existing

literature on secured control design in three key aspects: 1)

In our model, the system dynamics is probabilistic instead

of nondeterministic (as studied in DESs) or linear, time-

invariant (as studied in secured control in CPSs). 2) Our

objective is to synthesize the almost-sure winning strategy

for the robot and use it to assess the almost-sure winning

region for the attacker who exploits the robot’s unawareness

of attacks. This criteria of performance is different from

controllability and observability in DESs. Due to the model-

ing and objective differences, our solution approaches differ

greatly from that being used in DESs and linear systems. 3)

We do not assume the knowledge of attack strategies. Instead,

we analyze the game and compute the attack strategy given

the attacker’s information and assumption of the agent’s

perception. This formal synthesis provides security insights

considering the worst-case attacker strategy. 4) In relation

to other game-theoretic based secured control in CPSs,

we focus on sensor attacks given partial observations and

active sensor queries, instead of actuator attacks with perfect

observations [7].

II. PROBLEM FORMULATION

We consider the probabilistic planning of an autonomous

agent (called Player 1, or P1, pronoun ‘she’) in an adversarial

environment, where an attacker (called player 2, or P2,

pronoun ‘he’) can carry out attacks on the sensors of P1.

The objective of P1 is to reach a set of goal states. Such

an interaction between P1 and P2 is captured using the

following model, where P1’s observation function is partially

controllable.

Definition 1 (Zero-sum Stochastic Reachability Game with

Partially Controllable Observation Function). A two-player

stochastic game with partially controllable observation func-

Algorithm 1 GETOBSERVATION

Inputs: s, σ, β
Outputs: V

1: V = S
2: for all i ∈ σ \ β do

3: if vi = ⊤ then

4: V ← V ∩ γ(i)
5: else

6: V ← V ∩ (S \ γ(i))

7: return V

tion in which P1 has a reachability objective is a tuple

G = 〈S,A, P, s0,Γ,Σ× A2,O,Obs, o0, F 〉

where

• 〈S,A, P, s0〉 is a Markov decision process (MDP) where

S is a finite set of states; A is a finite set of actions; s0
is an initial state; P : S×A×S → [0, 1] is a transition

probability function such that
∑

s′∈S P (s, a, s′) = 1 for

any state s ∈ S and action a ∈ A;

• Γ = {0, 1, . . . , N} is a set of indexed sensors. Sensor

i covers a subset of states. The function γ : Γ → 2S

maps a sensor to a set of states covered by that sensor.

• Σ ⊆ 2Γ is a set of sensor query actions of P1, each of

which requests a sensor reading from a unique subset

of sensors from Γ;

• A2 ⊆ 2Γ is a set of sensor attack actions of P2, each

of which jams a sensor reading of a subset of sensors

from Γ;

• O ⊆ 2S is a finite set of observations;

• Obs : S × Σ × A2 → O is a deterministic observation

function, which maps a state s ∈ S, a sensor query

action σ and a sensor attack action β into an obser-

vation o = Obs(s, σ, β) ∈ O. Two states s, s′ ∈ S
are said to be observation equivalent given the sensing

action and sensor attack action σ, β if Obs(s, σ, β) =
Obs(s′, σ, β). The observation o includes the set of

observation-equivalent states.

• o0 = {s0} ∈ O is an initial observation;

• F ⊆ S is a set of final states that P1 must reach to

complete her task.

To simplify the exposition of concepts in this paper, we

consider the sensors in Γ to be Boolean sensors. That is,

each sensor i returns a Boolean value, denoted vi: vi = ⊤
if the states covered by the sensor contains the current state

of G and vi = ⊥ otherwise. Whenever a sensor is attacked,

it returns a special value vi =? denoting a sensor failure.

Given a set Γ of sensors, the set of observations O can be

constructed by using GETOBSERVATION in Alg. 1 for each

state s ∈ S, sensing action σ ∈ Σ and β ∈ A2.

It is noted that in the absence of sensing attacks, the game

is a POMDP with active sensing actions. With sensor attacks,

the observation of P1 is partially controllable.

Game Play. The game play in G is constructed as follows.

From the initial state s0, P1 obtains the initial observation



o0. Based on the observation, P1 selects a control action

a0 ∈ A and a sensor query action σ0 ∈ Σ. The system

moves to state s1 with probability P (s0, a0, s1). At state

s1, P2 selects an attack action β0 ∈ A2. The system

generates a new observation o1 = Obs(s1, σ0, β0). This

process repeats until P1 knows, with probability one, that

a state in F is reached. We denote the resulting play as

ρ = s0a0σ0β0s1a1σ1β1 . . .. The set of infinite plays in G
is denoted by Plays(G) and the set of finite prefixes of

plays is denoted by Prefs(G). We say a state s ∈ S to be

reachable in G if there exists a prefix ρ ∈ Prefs(G) such

that s ∈ ρ. We denote the set of possible reachable states

given a state-action pair (s, a) by PostG(s, a). Formally,

PostG(s, a) = {s′ ∈ S | P (s, a, s′) > 0}. Abusing the

notation, we define PostG(B, a) =
⋃

s∈B PostG(s, a) where

B ⊆ S is a subset of states.

Strategies. Given the fact that P1 must determine, simul-

taneously, an action a ∈ A and a sensor query action σ ∈ Σ,

we denote A1 = A×Σ as the action space of P1 and A2 = A2

as the action space of P2. A history-dependent, randomized

(resp., deterministic) strategy for player j ∈ {1, 2} is a

function πj : Prefs(G) → D(Aj) (resp., πj : Prefs(G) →
Aj). We say that player j follows strategy πj if for any prefix

ρ ∈ Prefs(G) at which πj is defined, player j takes the action

πj(ρ) if πj is deterministic, or an action a ∈ Supp(πj(ρ))
with probability πj(ρ, a) if πj is randomized. The set of all

strategies of player j is denoted by Πj .

A strategy π1 ∈ Π1 is said to be almost-sure winning

for P1 over a reachability objective to visit F if, for any

π2 ∈ Π2, P1 is guaranteed to visit F with probability 1.

Similarly, a strategy π2 is almost-sure winning for P2 against

P1 if, for any π1 ∈ Π1, P2 ensures with probability one that

no state in F can be visited. A state is called an almost-

sure winning state for a player, if there exists an almost-sure

winning strategy for the player at that state.

Observation Equivalence. Given the observation func-

tion Obs, an observation of a play ρ is defined as

Obs(ρ) = o0(a0, σ0, β0)o1(a1, σ1, β1) . . . where oi+1 =
Obs(si+1, σi, βi) for all i ≥ 0 and o0 is the initial ob-

servation. Two plays (or play prefixes) ρ, ρ′ are said to be

observation-equivalent, denoted by ρ ∼ ρ′. A strategy is said

to be observation-based if πj(ρ) = πj(ρ
′) whenever ρ ∼ ρ′.

We denote the set of all observation-based strategies of P1

by ΠO
1 .

Information Structure. In this paper, we consider a

game with one-sided partial observation, in which P1 has

partial and P2 has perfect observations. Thus, the adversarial

interaction in game G is characterized as follows. During her

turn, P1 uses the sensing action to reduce the uncertainty in

her belief about the current state. Whereas P2, who knows

the current state, uses attack actions to control how much

information P1 gains about the current state of the game. To

make the problem nontrivial, we also consider that the attack

actions can be limited.

We assume the information about the game is asymmetric

and incomplete for P1. Specifically, P1 considers the failures

of a subset of sensors β ∈ A2 to be probabilistic failures.

s0start s2

s1

s3

s4 s5

a0, a1

a0

a0
a1

a1

a2

a3

a0

a1

a0

a1

a0 a1

Fig. 1. A two-player stochastic game with partially controllable observation
function. The dashed region represent the sensors: 0 (red), 1 (blue), 2
(green), 3 (violet).

Only P2 has the correct, complete information of the game.

Hereafter, we refer to such P1 as a naı̈ve P1. Our main goal is

to understand the cost of such unawareness of sensor attacks:

whether it is possible that P2 can win from a state that P1

believes to be almost-surely winning for her? We formalize

our problem as follows.

Problem 1. Given the stochastic game G with partially

controllable observation function in which P1 has partial

and P2 has perfect observability, determine when (for which

prefix in Prefs) there exists an observation-based strategy

π1 ∈ ΠO
1 using which the naı̈ve P1 believes that she can

satisfy a reachability objective over F with probability one,

no matter which strategy P2 plays. Also, determine when

there exists a P2’s best attack strategy that prevents the naı̈ve

P1 from satisfying her reachability objective.

III. MAIN RESULT

In this section, we present a qualitative analysis of game

G, in which we show how to compute the almost-sure

winning strategies of naı̈ve P1 who has partial observability.

We start by introducing a running example to illustrate the

advantage of sensing actions and the effect of sensor attacks.

Example 1 (Part I). Fig. 1 represents a two-player stochastic

game with partially controllable observation function in

which s0 is the initial state and s4 is the final state. The set

Γ consists of 4 sensors 0 (red), 1 (blue), 2 (green), 3 (violet)

covering states {s0, s1}, {s1, s2}, {s0, s2, s3} and {s4, s5},
respectively. P1 has three control actions, A = {a0, a1, a2}
and three sensing actions σ0, σ1 and σ2 which query the

sensors {0, 1}, {0, 2} and {2}, respectively. P2 has three

attack actions, β0, β1 and β2 that jam the sensors 0, 1 and

2, respectively. The initial observation o0 = {s0}. Given our

focus is on qualitative analysis, the probabilistic transitions

are labeled with actions only. For instance, at state s0, the

action a0 can be taken and reach any of the states s1, s2,

and s0 with a positive probability. The edges from s0 labeled

a0 are the probabilistic outcomes given that action.



To illustrate the advantage of sensing actions, we first

analyze the game in Fig. 1 when P1 has no sensing actions

and P2 has no attack actions, P1 has no almost-sure winning

strategy at s0. This is because choosing the action a2 at s0
is unsafe as it may lead the game to the losing state s5 with

positive probability. And, by choosing a0 or a1, P1’s new

belief state would be B = {s0, s1, s2}, at which she does

not have a consistent winning action, i.e. if the true game

state is s1 then P1 should choose action a0 and consider

action a1 to be unsafe. However, if the true game state is s2
then action a0 is unsafe. Not knowing which state is the true

state, P1 cannot select any action without risking running

into the sink state s5.

On the contrary, when P1 can query sensors but P2 cannot

attack any of them (the game is still a POMDP), she has an

almost-sure winning strategy at s0 by selecting, say, a0 as

control action and σ0 as sensing action. This is because the

sensing action σ0 allows P1 to determine the resulting state

after choosing the action a0.

Next, we analyze how P1 can synthesize her almost-sure

winning active sensing and control strategies when she thinks

the sensors may have probabilistic failures.

A. The Game Perceived by P1

We are interested to synthesize P1’s active sensing and

control strategies to reach F with probability one, when she

mistakes sensor failures as probabilistic node failures. Due

to P1’s incorrect interpretation of sensor failures, from P1’s

perspective, G is a POMDP with active sensing actions.

Definition 2. The game G as perceived by naı̈ve P1 is the

tuple,

G1 = 〈S,A1 = A× Σ, P,O,Obs1, o0, F 〉,

where P is the same probabilistic transition function as in

game G. The probabilistic observation function Obs1(s, σ, o)
is defined such that, given a state s ∈ S and P1’s sensing

action σ ∈ Σ, the probability of obtaining an observation

o ∈ O is strictly positive, if there exists an attack action

β ∈ A2 enabled at the state s, such that Obs(s, σ, β) = o.

To derive an almost-sure winning strategy for P1 in G1,

we construct an MDP with perfect observation, in which

the belief of P1 about the current state is made explicit. Our

construction is adopted from reachability analysis in POMDP

[17]. Also, for qualitaitive planning, we only need to know

the support of a distribution for the next state given a state-

action pair, but need not to know the exact distribution.

Definition 3. Given G1, the perfect-observation MDP of P1

is a tuple,

H = 〈Q ∪ {qF },A1, δ, q0, qF 〉,

where

• Q = {(s,B) | ∃o ∈ O s.t. B ⊆ o and s ∈ B} is the

set of states;

• qF is a single final state. It is also a sink state.

• q0 = (s0, {s0}) is the initial state;

(s0, {s0})start

(s1, {s1, s2})

(s2, {s1, s2})

(s5, {s4, s5})

qF

(a0, σ0), β0

(a0, σ0), β0

(a0, σ0), β0

(a
0 , ·), ·

(a1, ·), ·

(a 0
, ·)
, ·

(a1, ·), ·

⊤⊤

Fig. 2. A subset of perfect-observation MDP constructed by P1 in her mind.
The figure shows the relevant states and edges when P1 chooses (a0, σ0)
at the initial state (s0, {s0}) and sensor 0 fails.

• Given a state (s,B) and action (a, σ), the transition

function δ is defined by,

– If PostG(s, a) ∩ F = ∅ then

δ((s,B), (a, σ), (s′, B′)) > 0 if and only if

s′ ∈ PostG(s, a) and there exists an o ∈ O with

Obs1(s′, σ, o) > 0 such that B′ = PostG(B, a) ∩ o;

– If PostG(s, a) ⊆ F then δ((s,B), (a, σ), qF ) = 1;

– If PostG(s, a) ∩ F 6= ∅ and PostG(s, a) \
F 6= ∅, then δ((s,B), (a, σ), qF ) > 0 and

δ((s,B), (a, σ), (s′, B′)) > 0 for each s′ ∈
PostG(s, a) such that there exists an o ∈ O with

Obs1(s′, σ, o) > 0 such that B′ = PostG(B, a) ∩ o.

The transition function can be understood as follows.

Given a state (s,B) and action (a, σ), if PostG(s, a) ⊆ F ,

then the game reaches the final state qF with probability

one. If none of the states s′ ∈ PostG(s, a) is a final state,

then with a sensing action σ and an observation o, the game

reaches each state (s′, B′) with a positive probability for

which P (s, a, s′) > 0 and the belief B′ is consistent with

the observation o. Lastly, if there exists s′ ∈ PostG(s, a)\F
and PostG(s, a) ∩ F 6= ∅, then the game reaches qF and all

(s′, B′) where s′ is reachable from s with a positive proba-

bility, and the belief B′ is consistent with some observation.

As the belief is constructed only using observations, P1,

after observing two observation-equivalent play ρ and ρ′ will

generate the same belief B. Thus, we say two states q =
(s,B) and q′ = (s′, B′) are (observation-)equivalent to P1

whenever B = B′. We denote the equivalence of two states

by q ∼ q′ and the set of all states equivalent to q by [q]∼. A

memoryless1 randomized strategy of P1 π : Q→ D(A×Σ)
is said to be equivalence-preserving if and only if π(q) =
π(q′) whenever q ∼ q′.

Example 1 (Part II). Fig. 2 shows a subset of perfect-

observation MDP that P1 constructs in her mind when she

chooses the action (a0, σ0) at initial q0 = (s0, {s0}) and

the sensor 0 (corresponding to attack action β0) fails. The

game may reach any of the states (s0, {s0}), (s1, {s1, s2}) or

(s2, {s1, s2}) with a positive probability. For instance, if the

true state transitions from s0 to s1, then P1 would obtain

1Memoryless strategies are sufficient for qualitative analysis of POMDPs
[17].



an observation o = {s1, s2} as sensor 0 is attacked and

the belief of P1 is updated to B′ = PostG(s0, a0) ∩ o =
{s0, s1, s2} ∩ {s1, s2} = {s1, s2}. When P1 chooses an

action (a0, ·) at (s1, {s1, s2}), where · can be any sensing

action, the game is ensured to reach the final state regardless

of any sensor failure (because PostG(s1, a0) = {qF }).
Similarly, when P1 chooses an action (a1, ·) at (s1, {s1, s2}),
the game reaches the state (s5, {s4, s5}).

However, it is noted that P1 cannot distinguish whether

she is in (s1, {s1, s2}) or (s2, {s1, s2}). We observe that

the action (a0, σ0), which was winning for P1 at the initial

state (s0, {s0}) when no sensor failures are considered (see

Example 1 Part I), is no longer winning for her. This is

because the sensor failure results in P1’s belief state to be

{s1, s2}, at which she does not have an action that almost-

surely reaches qF —as P1 cannot distinguish whether the

state is (s1, {s1, s2}) or (s2, {s1, s2}).

Next, we present Alg. 2 to synthesize P1’s almost-

sure winning belief-based strategy. We denote by

PostH(q, (a, σ)) = {q′ | δ(q, (a, σ)) > 0}. Given a

state q ∈ Q ∪ {qF }, the set of its predecessors state-action

pairs is denoted by

Pre(q) = {(p, (a, σ)) | q ∈ PostH(p, (a, σ))}.

and generalize this operator to subsets of states, Pre(X) =
∪q∈XPre(q). The algorithm starts by identifying the set

L0 of states from which there does not exist a path (a

sequence of transitions with positive probabilities) to reach

the final state qF . That is, the states in L0 are clearly not

almost-sure winning for P1. L0 can be computed using

standard graph algorithms over H . Subsequently, in k-th

iteration, the algorithm identifies and eliminates those actions

at predecessors q of some u ∈ Lk which visit Lk in one step

with a positive probability. As P1 cannot distinguish between

equivalent states, if she removes an action (a, σ) from the

set of allowable actions π(q) at q then she must also remove

that same action for any state p that is equivalent to q. As P1

does not have an almost-sure winning strategy from any state

q whose allowable actions set π(q) is empty, such a state is

added to Lk+1. The k increments by one. The process repeats

until for some k, Lk+1 = ∅.

Theorem 1. P1 has an almost-sure winning strategy in G1

to visit F if and only if q0 ∈ Win1, where Win1 is the set of

almost-sure winning states computed by Alg. 2.

Proof (Sketch). It is known from [17] that P1 has an almost-

sure winning strategy in G1 to visit F if and only if she has

an almost-sure winning strategy in H to visit qF . Thus, for

the statement to hold, it must be the case that Alg. 2 must

identify every almost-sure winning state in H . This must be

true because Alg. 2 removes q from MDP only if there is no

safe action given P1’s belief B at q = (s,B), i.e. for each

enabled action, there exists a state p ∈ [q]∼ such that by

taking that action, P1 may reach a state from p from which

qF is not reachable with a positive probability.

Algorithm 2 Belief-based Strategy in POMDP Reachability

Inputs: H
Outputs: Win1: Almost-sure winning region of P1, π:

belief-based almost-sure winning strategy of P1

1: L0 ← {q ∈ Q | qF is not reachable from q}
2: For all q ∈ L, π(q) = ∅ and for all q ∈ Q \ L, π(q) =
{(a, σ) | δ(q, (a, σ)) is defined.}

3: k ← 0
4: while Lk 6= ∅ do

5: Lk+1 ← ∅
6: for all u ∈ Lk do

7: for all (q, (a, σ)) ∈ Pre(u) do

8: for all p ∈ [q]∼ do

9: Remove (a, σ) from π(p)
10: if π(p) = ∅ and p /∈

⋃k
i=0

Li then

11: Add p to Lk+1

12: k ← k + 1.

13: return Win1 = Q \
⋃k

i=0
Li, π.

ASW Strategy. Given π : Win1 → 2A1 maps each state

q ∈ Win1 to a set of allowed actions (see Alg. 2), P1’s

almost-sure winning strategy selects each action in π(q)
randomly with a positive probability. It is noted that P1’s

strategy π is indeed a multi-strategy, or an infinite set of

randomized strategies, because different choices of the prob-

abilistic distributions given the set of states yield different

randomized strategies. Again, for qualitative analysis, no

matter which randomized strategy π1 P1 selects, as long as

the support Supp(π1(q)) = π(q) for any q ∈ Win1, P1 can

ensure almost-sure winning in her perceived POMDP with

probabilistic sensor failures.

Example 1 (Part III). Consider the subset of perfect-

observation MDP in Fig. 2. As s4 is unreachable from

s5, all states (s5, B) for any B ⊆ S are contained in

L0. Thus, while investigating the state (s1, {s1, s2}), Alg. 2

identifies action (a1, σ0) to lead to L0. Consequently, the

action (a1, σ0) is removed from states (s1, {s1, s2}) and

(s2, {s1, s2}) as they are equivalent. Similarly, the action

(a0, σ0) is removed from both states, thereby eliminating

them from set of almost-sure winning states. In the next

iteration, the initial state is also removed from set of almost-

sure winning states—concluding that action (a0, σ0) is not

almost-sure winning for P1.

Next, consider Fig. 3, which shows a subset of perfect-

observation MDP when P1 chooses the action (a0, σ1) at ini-

tial q0 = (s0, {s0}) and either the sensor 0 or 2 (correspond-

ing to attack action β0 and β2) fails. These states are not

eliminated by Alg. 2. To understand the winning strategy, ob-

serve the equivalent states (s2, {s0, s2}), at which the action

(a0, σ1) reaches qF with positive probability or visits one

of the states among (s1, {s1}), (s0, {s0, s2}), (s0, {s0, s1}).
For ease of reading, Fig. 3 does not show the outgoing edges

from (s0, {s0, s2}), (s0, {s0, s1}), (s1, {s0, s1}), (s1, {s1})
and (s2, {s2}). However, it can be verified that their outgoing

edges visit qF or a state among the same set of states. Thus,
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Fig. 3. A subset of perfect-observation MDP constructed by P1 in her
mind. The figure shows the relevant states and edges when P1 chooses the
action (a0, σ1) at initial q0 = (s0, {s0}) and either the sensor 0 or 2 fails.

by choosing the action (a0, σ0) within this subset of MDP,

P1 is guaranteed to visit qF with probability 1 [18].

B. The Game Perceived by P2

Unlike P1, P2 has perfect observability and is also aware

of P1’s misinterpretation of the sensor failures. Thus, in

addition to keeping track of the true state of the game, he

can also track P1’s belief state. The resulting game model

for P2 can be represented as follows.

Definition 4. Given P1’s almost-sure winning, observation-

based strategy π in H such that P1 selects any action in

π(s,B) with a positive probability at a belief state B, P2’s

sensor attack strategy can be computed from qualitative

planning in the following MDP given as the tuple,

G2 = 〈Win1,A2, δA, q0,Win1 ∩ ((S \ F )× 2S)〉,

where Win1 is the set of almost-sure winning states of P1

in H . Given states q = (s,B), q′ = (s′, B′) ∈ Win1 and

an attack action β ∈ A2, we have δA(q, β, q
′) > 0 if and

only if there exists (a, σ) ∈ π(q) such that s′ ∈ PostG(s, a)
and B′ = PostG(B, a) ∩ Obs(s′, σ, β). P2’s objective is to

ensure the game staying in the set Win1 ∩ ((S \ F ) × 2S)
with probability one.

A transition in G2 is interpreted as follows. For a given

state (s,B) ∈ Win1, P1 thinks that this belief B is almost-

sure winning for her. Therefore, she chooses any action

(a, σ) ∈ π(s,B) with a non-zero probability. However, a

state (s′, B′) in G2 will be reached probabilistically but

partially controlled by P2: state s′ will be reached with

a positive probability if s′ ∈ PostG(s, a), the belief B′

is decided jointly by the sensing action and attack action,

B′ = PostG(B, a) ∩ Obs(s′, σ, β). It is important to note

that this belief update is controlled partially by P2 given

his choice of attack action. As P2’s game G2 is a perfect-

observation game, the set of his almost-sure winning states

s0start s1

s2s3

a0
a0

a0

a1 a1

Fig. 4. A two-player stochastic game with partially controllable observation
function. The dashed regions represent the sensors: 0 (red), 1 (blue), 2
(green).

to prevent P1 from reaching F can be computed using the

classical algorithm [19, Alg. 46].

Our interest in the P2’s almost-sure winning region is to

identify if there exist any states which P1 misinterprets to

be almost-sure winning for her, but they are in fact almost-

sure winning for P2. This analysis also provides a way to

detect adversarial attacks, for example, policy inference or

behavior cloning algorithms [20] from the observed sensor

failure data can be used to infer the “rule” behind the sensor

failures and compare it with the attack policy.

We illustrate the existence of such a state using a simpler

example shown in Fig. 4. The example consists of 4 states

covered by three sensors indexed 0 (blue), 1 (red) and 2
(green) covering the states γ(0) = {s1}, γ(1) = {s0, s1},
and γ(2) = {s2, s3}, respectively. P1 has two sensing

actions: σ0 and σ1 which query the sensors {1, 2} and

{1, 3}, respectively. P2 has three attack actions: βj which

jams the sensor j, for j = 0, 1, 2. The corresponding P2’s

game is shown in Fig. 5 (edges corresponding to σ2, β2

are omitted for clarity). Consider the states (s0, {s0}) and

(s0, {s0, s1}), at which P1’s strategy is to select the action

(a0, σ0). If P2 always selects β0 at these states, then the

game is restricted within the states (s0, {s0}), (s0, {s0, s1})
and (s1, {s0, s1}), indefinitely. In other words, the states

(s0, {s0}), (s0, {s0, s1}) and (s1, {s0, s1}), which P1 con-

siders almost-sure winning for her, are in fact almost-surely

winning for P2. P1’s task failure is because she mistakes that

sensor failure caused by β1 is possible and sensor failure

caused by β0 cannot be persistent.

IV. DISCUSSION AND CONCLUSION

For the class of stochastic games with partially control-

lable observation function in which P1 has partial and P2

has perfect observation, we presented a method to identify

conditions under which the attacker has an almost-sure

winning, sensor-attack strategy but when the system (a naı̈ve

player) considers to be her almost-sure winning state due to

incorrectly treat sensor failures as probabilistic events.

With such an understanding of sensor-attack strategy, we

will investigate the design of secured sensing and con-

trol strategy for a smart agent (P1) who is aware of the

adversarial sensor attacks. We will also be interested in

strategic sensor design which ensures, despite a naı̈ve P1, the

attacker’s almost-sure winning region is minimized, or does
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Fig. 5. P2’s perfect-observation MDP game corresponding to the game
in Fig. 4. All states in this figure are considered by P1 to be almost-sure
winning. But the shaded, red states are P2’s almost-sure winning states.

not include the initial game state. Quantitative planning under

sensor attacks with formal methods will also be investigated.
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