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Abstract— This paper studies the problem of finding the
median of N distinct numbers distributed across networked
agents. Each agent updates its estimate for the median from
noisy local observations of one of the N numbers and in-
formation from neighbors. We consider a undirected random
network that is connected on average, and a noisy observation
sequence that has finite variance and almost surely decaying
bias. We present a consensus+innovations algorithm with clipped
innovations. Under some regularity assumptions on the network
and observation model, we show that each agent’s local esti-
mate converges to the set of median(s) almost surely at an
asymptotic sublinear rate. Numerical experiments demonstrate
the effectiveness of the presented algorithm.

I. INTRODUCTION

The past decades have seen increasing interests in decen-
tralized control and coordination of large scale networked
systems. A canonical problem in decentralized control is
consensus. The objective of the consensus problem is to
ensure that networked agents reach agreement on a common
decision. This paper focuses on dynamic median consensus,
where the local observations are dynamic and noise cor-
rupted, and the considered network is random and connected
on average.

The problem of consensus over multi-agent networks has
a rich literature. In particular, the problem of average (or
mean) consensus, i.e., finding the mean of the initial states
of network agents has been investigated in [1]–[3]. The
convergence of average consensus algorithms have been
studied in switching topology and networks with time-delays
[2], networks with random link failures [4]; and [3], [5] study
topology and weight matrix designs for fast convergence
respectively. However, average consensus protocols can be
vulnerable to attacks in large scale networks like IoT [6],
e.g., a single attack on the initial state of one agent can
arbitrarily manipulate the network average.

As a result, consensus on a more robust statistical measure,
like median, has been of research interest [7]–[10]. Median
consensus also finds applications in multi-robot systems [11].
Specifically, [8], [12] propose a continuous time protocol
that finds the median value of networked agents, whereas
[9] studies median consensus problem in the presence of
matching perturbations to the agents’ dynamics. The paper
[10] studies dynamic median consensus where agents have
locally time-varying signals and the network is open in the
sense that agents may come and leave during the protocol
execution.
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In this paper, we consider a local observation model in
which the network agents obtain noisy measurements of N
real numbers (local values or parameters) with decaying bias
(expected observation error) and white noise. This obser-
vation model arises in scenarios where local measurement
perturbations are believed to be decaying sublinearly in
expectation while the white noises from measuring devices
or environment perturbations are unavoidable. This model
also subsumes static or white noise corrupted observations
as special cases. The inter-agent communication network we
consider is undirected, random, independently and identically
distributed (i.i.d.) and only required to be connected on
average.

Our contributions are as follows. We present an algorithm,
under the above observation and network model, that con-
verges to the set of median(s) almost surely and characterize
the asymptotic sublinear convergence rate. Moreover, we
tackle the observation noise by a carefully designed recursive
averaging scheme, and develop a technical lemma of inde-
pendent interest to show diminishing local averaging errors
by carefully balancing the effects of decaying bias and white
noise.

To the best of our knowledge, existing works that are
most similar to this paper are references [9] and [10]. The
authors of [9] study median consensus in static networks.
They consider a setup where each agent perfectly observes
its local value, and the agents collaborate to compute the
median of all local values. The agents’ interactions are
subject to disturbances that are deterministically bounded in
magnitude. Reference [10] proposes an algorithm to track the
instantaneous median of a set of local reference signals over
time-varying graphs. Agents perfectly observe their local
reference signals, the reference signals have determinstically
bounded time-derivatives, and, the graph must be connected
at (almost) all times.

In contrast to [9] and [10], in this paper, we consider the
scenario where agents are unable to perfectly observe their
local values. Each agent instead makes a measurement of its
local value, subject to measurement noise, which, unlike [9]
and [10], is not determinstically bounded in magnitude. Fur-
ther, unlike [10], we present a median consensus algorithm
that does not require the network’s graph topology to be
connected at all times.

The rest of the paper is organized as follows. In section II,
we formulate the median consensus problem with assump-
tions. In section III we present our algorithm and the main
result. Section IV is concerned with intermediate lemmas and
is concluded with the proof of the main result. In section IV
we provide some numerical experiments on networks with
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varying connectivity.
Notation: We specify the communication network of

agents. Agents may exchange messages over a time-varying
network denoted as G(t) = (V,E(t)) at discrete time t. The
set of agents V is fixed and |V |=N, and we use [N] to denote
all indices in the sequel. The set of communication links E(t)
is time-varying. For each agent n, Ωn(t) denotes the set of
neighbors at time t. We denote the Laplacian of network G(t)
as L(t) = D(t)−A(t) where D(t) is a diagonal matrix whose
i-th diagonal entry is the number of neighbors of agent i and
Ai, j(t) = 1 if there exists a link between node i and node j at
time t, otherwise Ai, j(t) = 0. A network is connected if and
only if the second largest eigenvalue of its Laplacian matrix
is positive [13]. We use ‖·‖2 to denote Euclidean norm for
vectors. The term 1N represents an N-dimensional column
vector whose elements are all 1.

II. PROBLEM FORMULATION

We consider the problem that a set of N agents aim to find
the median(s) of a set of N distinct numbers {θ1,θ2, . . . ,θN}
through local time-sequential observations and and neighbor-
ing information exchange over a random network. Each agent
n can only access noisy observations of θn. We consider a
dynamic observation model for each agent n,

θn(t) = θn +wn(t)+νn(t) (1)

where {wn(t)}n∈[N],t≥0 is an i.i.d. noise sequence with zero
mean and finite variance, and the νn(t) is decaying almost
surely in that P

(
|νn(t)|≤ v0(t +1)−δ

)
= 1 for some positive

constants δ and v0.
This formulation subsumes several models of local obser-

vations. Generally, this model considers observation errors
with decaying bias and white noise. The decaying bias
may be a result of local computation, or when the local
observations are a result of another underlying iterative
and convergent computational process, whereas, white noise
is due to unavoidable measurement errors from physical
devices, environment, etc. Moreover, by taking δ to be
arbitrarily large we recover the special model corresponding
to unbiased local observations, whereas, by setting wn(t) to
be 0 almost surely the problem is reduced to the simplest
static case.

For convenience of notation, let us assume θ1 < θ2 < .. . <
θN , and define dmin as the minimal gap between distinct
elements in {θn}n=1,...,N ,

dmin = min{|θi−θ j|: i 6= j, i, j ∈ [N]}> 0. (2)

We define the set of medians Θ

Θ =




{θ N+1

2
}, N is odd,[

θ N
2
,θ N

2 +1

]
, N is even,

and the distance function dist(x,Θ) := minθ∈Θ|x−θ |.
We now formally state our assumptions on the inter-agent

communication network and the observation model.

Assumption 1. The time-varying inter-agent communication
network is given by a random graph sequence {G(t)}. For all

t, G(t) is an undirected graph and the Laplacian sequence
{L(t)} associated with {G(t)} is an i.i.d. sequence whose
expectation, denoted as L̄, exists and satisfies λ2(L̄)> 0.

Remark. The assumption clearly subsumes the typical case
of a static network G = (V,E) where G is connected. The
above assumption is quite general and subsumes phenomena
such as random link failures, i.e., in which the links in G have
failure probabilities in [0,1), which models many practical
networks such as wireless networks. Again, this assumption
contrasts this work with [10] in that this assumption allows
models such as gossip based protocols in which no network
instance (the stochastic realization) is connected, while [10]
requires each network instance to be connected.

Assumption 2. The observation noise wn(t) is i.i.d. dis-
tributed over time and independent across agents. For any n
and t, E(wn(t)) = 0 and Var(wn(t))< ∞. For any n, the per-
turbation vn(t) decays a.s. in that P

(
|vn(t)|≤ v0(t +1)−δ

)
=

1 for some positive constants δ and v0.

Let (Ω,F ) be the probability space where random vari-
ables L(t),wn(t) are defined, and let {F (t)} be the corre-
sponding natural filtration, i.e., F (t) is the sigma algebra
σ
(
{L(t ′)}t ′=0,...,t ,{wn(t)}n∈[N]

)
. In this paper, unless other-

wise stated, all inequalities involving random variables hold
almost surely (a.s.).

III. ALGORITHM AND MAIN RESULT

We present the following algorithm to estimate Θ. Let
xn(t) be the estimate of agent n at time t, we update its
estimate as follows,

xn(t +1) = xn(t)−βt ∑
m∈Ωn(t)

(xn(t)− xm(t)))

−αtkn(t)(xn(t)− θ̄n(t)),
(3)

where θ̄n(t) is some recursive weighted average of observa-
tions {θn(t ′)}0≤t ′≤t given by, for some 0< cµ ≤ 1,0< µ < 1,

θ̄n(t +1) = (1− cµ

(t +1)µ
)θ̄n(t)+

cµ

(t +1)µ
θn(t), (4)

and the step sizes

αt =
α0

(t +1)τ1
, βt =

β0

(t +1)τ2
, (5)

satisfy α0,β0 > 0,0 < τ2 < τ1 < 1. The term kn(t) in (3) is
the clipping operator, defined as,

kn(t) =

{
1, if |xn(t)− θ̄n(t)|≤ γt ,

γt |xn(t)− θ̄n(t)|−1, otherwise,
(6)

for
γt =

γ0

(t +1)τ3
, (7)

with γ0 > 0 and

τ3 < min{1− τ1,0.5δ0}, (8)

where δ0 = 1− ε̄ and µ = δ0 for any 0 < ε̄ < 1 if δ ≥ 1,
otherwise δ0 = δ and δ ≤ µ < 1.



We next refer to the algorithm given by (3)-(8) as DMED
for short, a Distributed Median Estimator for Dynamic ob-
servations, which is a consensus+innovations type estimator
[14] equipped with clipped innovations.

Remark. DMED is similar to the SAGE algorithm in [15].
The computation goal in this paper, however, is different from
that of [15]. SAGE is an algorithm for resilient distributed
estimation, where a network of agents measure the same
underlying parameter θ and attempt to recover its value
from these measurements. That is, in [15], the value of θ

is the same for each agent. In contrast, this paper addresses
distributed dynamic median consensus, where the agents
have different local values of θn. As such, the analysis of the
convergence of the DMED algorithm requires new techniques
not found in [15], which we will present in Section IV.

Remark. The DMED algorithm essentially mimics the be-
havior of decentralized subgradient descent with errors for
an l1 minimization problem minθ ∑

N
n=1|θn−θ | whose optimal

solution set is Θ.

We present the main result on the convergence of DMED.

Theorem 1. Under Assumptions 1-2, the local median
estimate of every agent n ∈ [N] in Algorithm (3) converges
to Θ a.s. in that P(limt→∞(t +1)τ3dist(xn(t),Θ) = 0) = 1 for
all n simultaneously.

Theorem 1 states that, when N is odd, i.e., when the
median is unique, all local estimates simultaneously converge
to the same unique median almost surely. When N is even,
simultaneously, the distances between each local estimate
and the set of medians will converge to 0 almost surely.
However, when N is even, local estimates are not guaranteed
to converge to a particular point in the set of medians in
that the estimates may wander within the set of medians
asymptotically. Even when N is even, as Lemma 2 suggests,
all local estimates are still guaranteed to reach consensus
almost surely. The sample wise convergence rate we obtain
is O ((t +1)−τ3); for instance, if |vn(t)|≤ (t + 1)−1, δ0 can
be taken to be 1, and by choosing τ1 = 0.5,τ2 = 0.3, we can
set τ3 = 0.4, to ensure a O

(
(t +1)−0.4

)
convergence rate.

IV. PROOF OF THEOREM 1

To prove Theorem 1, we first bound the local observation
errors in Lemma 1, then bound the consensus errors in
Lemma 2. Lemma 3 shows that there exists a local con-
traction for the distance between network average and the
the set of medians. Lemma 4 states that the network average
will always enter the local contraction region. Combing these
arguments we prove the theorem.

We use the following independent lemma to upper bound
the local observation errors.

Lemma 1. Let {zt} be a R valued discrete time process

zt+1 = (1− r1(t))zt + r1(t)(r2(t)+w(t)) (9)

where the sequence {r1(t)} is deterministic with r1(t) =
a1(t + 1)−µ ≤ 1 for a1 > 0, sequence {r2(t)} is almost

surely bounded |r2(t)|≤ a2(t +1)−δ for a2 > 0, and {w(t)}
is i.i.d. random noise with E(w(t)) = 0 and Var(w(t)) =
σ2 < ∞. For δ ≥ 1, define δ0 = 1− ε̄ for any 0 < ε̄ < 1
and take µ = δ0; for 0 < δ < 1, define δ0 = δ and take µ

such that δ ≤ µ < 1. Then, for any 0 < ε0 < δ0, we have
P
(
limt→∞(t +1)δ0−ε0z2

t = 0
)
= 1.

Proof. We consider sample paths where |r2(t)|≤ a2(t+1)−δ

holds for all t. We first show that E(|zt |) < ∞. Taking
absolute value on the recursion (9) gives

|zt+1|≤ (1− a1

(t +1)µ
)|zt |+

a1

(t +1)µ

[
a2

(t +1)δ
+ |w(t)|

]
.

By Jensen’s inequality we have E(|w(t)|) ≤
√
E(w2(t)) =

σ . Then, there exists some constant c1 > a1δ such that for
sufficiently large t,

E(|zt+1|)≤ (1− a1

(t +1)µ
)E(|zt |)+

c1

(t +1)µ
.

By Lemma 4.1 in [16] we have E(|zt |)< ∞ for all t. Given
the independence condition of {w(t)}, for sufficiently large
t, there exist constants c2,c3 > 0 such that

E
(
z2

t+1
)
≤ E

(
(1− a1

(t +1)µ
)zt +

a1a2

(t +1)µ+δ

)2

+
a2

1
(t +1)2µ

E
(
w2(t)

)

≤ (1− a1

(t +1)µ
)2E

(
z2

t
)
+

a2
1a2

2

(t +1)2µ+2δ

+(1− a1

(t +1)µ
)

2a1a2

(t +1)µ+δ
E(|zt |)

+
a2

1σ2

(t +1)2µ

≤ (1− c2

(t +1)µ
)E
(
z2

t
)
+

c3

(t +1)µ+δ0
.

(10)

The last inequality is due to the definition of δ0 which implies
µ +δ0 = min{2µ,µ +δ} and 0 < µ < 1. By Lemma 4.2 in
[16], relation (10) leads to that for any 0 < ε0 < δ0, we have

lim
t→∞

(t +1)δ0−ε0E
(
z2

t
)
= 0. (11)

Now we fix ε0. The definition of δ0 implies 0 < δ0 < 1 and
thus (t +1)δ0−ε0 is concave in t. Hence, we have

(t +2)δ0−ε0 ≤ (t +1)δ0−ε0 [1+(δ0− ε0)(t +1)−1].

Combining this fact with relation (10) gives that for suffi-
ciently large t,

(t +2)δ0−ε0E
(
z2

t+1
)

≤
[

1− c2

(t +1)µ
+

δ0− ε0

t +1
− c2(δ0− ε0)

(t +1)µ+1

]

· (t +1)δ0−ε0E
(
z2

t
)
+

c3

(t +1)µ+ε0

(
1+

δ0− ε0

t +1

)

≤ (1− c5

(t +1)µ
)(t +1)δ0−ε0E

(
z2

t
)
+

c6

(t +1)µ+ε0

(12)



for some constants c5,c6 > 0. Define the process

V (t) = (t +1)δ0−ε0z2
t

−
t−1

∑
i=0

[(
Π

t−1
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]
.

An application of Lemma 25 in [14] leads to

lim
t→∞

t−1

∑
i=0

[(
Π

t−1
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]
= 0. (13)

Also note that we can split
t

∑
i=0

[(
Π

t
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]

=

[
1− c5

(t +1)µ

] t−1

∑
i=0

[(
Π

t−1
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]

+
c6

(t +1)µ+ε0
.

Denote the filtration Fz(t) the natural filtration of the pro-
cess {(t + 1)δ0−ε0z2

t }, and note that V (t) is adapted to this
filtration. Then, by the independence condition,

E(V (t +1) |Fz(t))

= E
(
(t +2)δ0−ε0z2

t+1 |Fz(t)
)

−
t

∑
i=0

[(
Π

t
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]

≤ [1− c5

(t +1)µ
](t +1)δ0−ε0E

(
z2

t
)
+

c6

(t +1)µ+ε0

−
t

∑
i=0

[(
Π

t
j=i+1(1−

c5

( j+1)µ
)

)
c6

(i+1)µ+ε0

]

= (1− c5

(t +1)µ
)V (t)

≤V (t).

Therefore, {V (t)} is a supermartingale. By (13), {V (t)} is
bounded below. It follows that there exists a finite random
variable V∗ such that limt→∞ V (t) =V∗ almost surely. Thus,
we have limt→∞(t + 1)δ0−ε0z2

t = V∗ almost surely. Then, by
Fatou’s lemma and (11) we have

0≤ E
(

lim
t→∞

(t +1)δ0−ε0z2
t

)
≤ liminf

t→∞
(t +1)δ0−ε0E

(
z2

t
)
= 0.

Thus, we have P
(
limt→∞(t +1)δ0−ε0z2

t = 0
)
= 1.

We study the behavior of all of the agents’ estimates
together, so, for convenience, we introduce the following
notation. Let Kt = diag([k1(t), . . . ,kN(t)]) ∈ RN×N ,x(t) =
[x1(t), . . . ,xN(t)]> ∈ RN , θ̄θθ(t) = [θ̄1(t), . . . , θ̄N(t)]> ∈ RN ,
then (3) can be rewritten as

x(t +1) = (I−βtL(t))x(t)−αtKt(x(t)− θ̄θθ(t)). (14)

The following result (from [15]) establishes that the agents
reach consensus. Define PN = N−11N1>N .

Lemma 2 (Lemma 1 in [15]). Under Assumption 1, for
every 0≤ ε1 < τ1−τ2 +τ3, the iterates x(t) in (14) satisfies
P(limt→∞(t +1)τ1−τ2+τ3−ε1‖x(t)−PNx(t)‖2= 0) = 1.

Let x̄(t) = N−11>N x(t) denote the network average at time
t. The following lemma analyze the local contraction of x̄(t).

Lemma 3. Define the auxiliary threshold

γ̄t = γt −
cδ

(t +1)δ1
− cη

(t +1)η

where

δ1 = 0.5(δ0− ε0),η = τ1− τ2 + τ3− ε1

for arbitrarily small

0 < ε0 < δ0,0 < ε1 < τ1− τ2.

Then, almost surely, there exists a finite T0 and positive
constants cδ ,cη such that if dist(x̄(T1),Θ) ≤ γ̄T1 for some
T1 ≥ T0, then dist(x̄(t),Θ)≤ γ̄t for all t ≥ T1.

Proof. Substitute (1) into (4), we obtain, for each n ∈ [N],

θ̄n(t)−θn = (1− cµ

(t +1)µ
)(θ̄n(t)−θn)

+
cµ

(t +1)µ
(wn(t)+νn(t)).

Let zt = θ̄n(t)−θn and by applying Lemma 1 for each n∈ [N]

P
(

lim
t→∞

(t +1)δ0−ε0 |θ̄n(t)−θn|2= 0
)
= 1. (15)

By Lemma 2 we have for all n ∈ [N],

P
(

lim
t→∞

(t +1)η |x̄(t)− xn(t)|= 0
)
= 1. (16)

We perform the derivations in a sample path ω ∈Ω such that
there exist positive constants cδ ,ω ,cη ,ω such that

|θ̄n(t,ω)−θn|≤
cδ ,ω

(t +1)δ1
,

|x̄(t,ω)− xn(t,ω)|≤ cη ,ω

(t +1)η

(17)

hold for all n ∈ [N]. As a consequence of (15)(16), the set
of all such sample paths has probability 1. Define

en(t,ω), xn(t,ω)− x̄(t,ω)+θn− θ̄n(t,ω). (18)

Then,

|en(t,ω|≤ cδ ,ω(t +1)−δ1 + cη ,ω(t +1)−η . (19)

Now that we have bounded the consensus errors and the local
observation errors, we start to analyze the dynamics of the
network average x̄(t,ω). Multiplying N−11> on both sides
of (14) leads to

x̄(t+1,ω)= x̄(t,ω)− αt

N

N

∑
n=1

kn(t)(xn(t,ω)− θ̄n(t,ω)). (20)

Step 1, we analyze the net effect of agent n where θn /∈Θ,
i.e., ∑θn 6∈Θ kn(t)(xn(t,ω)− θ̄n(t,ω). Since τ3 < δ1,τ3 <η , we
can take t1 as the least t such that γ̄t,ω > 0. Also, recall the
definition of dmin in (2), we take t2 as the least t ≥ t1 such that



dmin > 2γt and αt <N. For t ≥ t2,θn /∈Θ, if dist(x̄(t,ω),Θ)≤
γ̄t,ω , we have

|xn(t,ω)− θ̄n(t,ω)|
≥ |x̄(t,ω)−θn|−|en(t,ω)|
≥ dist(θn,Θ)−dist(x̄(t,ω),Θ)−|en(t,ω)|
≥ dmin− γt > γt .

(21)

Since xn(t,ω)− θ̄n(t,ω) = en(t,ω)+ x̄(t,ω)−θn, and by the
definition of t1 we have |en(t,ω)|< γt . Combining this with
(21) we have

kn(t)(xn(t,ω)− θ̄n(t,ω)) = γtsign(x̄(t,ω)−θn). (22)

By the hypothesis, dist(x̄(t,ω),Θ)≤ γ̄t < γt < 0.5dmin,

θ N−1
2

< x̄(t,ω)< θ N+3
2
, N is odd,

θ N
2 −1 < x̄(t,ω)< θ N

2 +2, N is even.
(23)

Then, by the definition of median we have zero net effect
from θn /∈Θ, i.e.,

∑
θn /∈Θ

kn(t,ω)(xn(t,ω)−θn) = ∑
θn /∈Θ

γtsign(x̄(t,ω)−θn) = 0.

Step 2, we analyze the effects of all agents n with θn ∈Θ,
i.e., ∑θn∈Θ kn(t)(xn(t,ω)− θ̄n(t,ω). We define m as the index
that θm ∈ Θ and dist(x̄(t,ω),Θ) = |x̄(t,ω)−θm| if it exists.
If N is odd, m = (N + 1)/2; if N is even and x̄(t,ω) /∈ Θ,
m = N/2 or N/2+1. By the hypothesis and (19),

|xm(t,ω)− θ̄m(t,ω)| ≤ |x̄(t,ω)−θm|+em(t,ω)

≤ γ̄t,ω + |em(t,ω|≤ γt .

Thus, km(t,ω) = 1. We next discuss all three cases: N is odd;
N is even and x̄(t,ω) /∈Θ; N is even but x̄(t,ω) ∈Θ.

Step 2a, when N is odd, by step I, (20) reduces to

x̄(t +1,ω) = x̄(t,ω)− αt

N

(
x N+1

2
(t,ω)− θ̄ N+1

2
(t,ω)

)
.

It follows that

dist(x̄(t +1,ω),Θ)

= |x̄(t,ω)−θ N+1
2
− αt

N
[x N+1

2
(t,ω)− θ̄m(t,ω)]|

≤ (1− αt

N
)|x̄(t,ω)−θ N+1

2
|+αt

N
|e N+1

2
(t,ω)|

≤ (1− αt

N
)γ̄t,ω +

αt

N
cδ ,ω

(t +1)δ1
+

αt

N
cη ,ω

(t +1)η
.

(24)

We next show dist(x̄(t +1),ω),Θ)≤ γ̄t+1,ω . Define

∆t = (t +1)τ3 γ̄t,ω = γ0−
cδ ,ω

(t +1)δ1−τ3
− cη ,ω

(t +1)η−τ3
.

Since τ3 < δ1,τ3 < η , ∆t is increasing with t and thus

γ̄t+1,ω =
∆t+1

(t +2)τ3
≥ ∆t

(t +2)τ3
=

(
t +1
t +2

)τ3

γ̄t,ω .

To show that dist(x̄(t+1),ω),Θ)≤ γ̄t+1,ω , it suffices to show
that

(1− αt

N
)γ̄t,ω +

αt

N
cδ ,ω

(t +1)δ1
+

αt

N
cη ,ω

(t +1)η
≤
(

t +1
t +2

)τ3

γ̄t,ω ,

rearranging the above relation gives that

1− αt

N

(
1− cδ ,ω

∆t(t +1)δ1−τ3
− cη ,ω

∆t(t +1)η−τ3
︸ ︷︷ ︸

T1

)
≤
(

t +1
t +2

)τ3

.

As T1 is increasing in t, we can take t3 as the least t ≥ t2
such that T1 ≥ 0. Since 1− x≤ e−x for x≥ 0, it suffices to
show

αt

Nτ3

(
cδ ,ω

∆t(t +1)δ1−τ3
+

cη ,ω

∆t(t +1)η−τ3
−1
)
≤ ln

(
t +1
t +2

)
.

Take t4 as the least t ≥ t3 such that ∆t ≥ γ0/2. Since
ln
( t+1

t+2

)
≥ 1− t+2

t+1 =− 1
t+1 , for t ≥ t4, it suffices to show

αt

Nτ3

(
2cδ ,ω

γ0(t +1)δ1−τ3
+

2cη ,ω

γ0(t +1)η−τ3
−1
)
≤− 1

t +1
,

which rearranges to

2cδ ,ω

γ0(t +1)δ1−τ3
+

2c2

γ0(t +1)η−τ3
+

Nτ3

α0(t +1)1−τ1
≤ 1.

Since the left hand side is monotonically decreasing to 0,
we can take t5 as the least t ≥ t4 such that the above relation
holds. Taking T0 = t5 completes this case.

Step 2b: when N is even and x̄(t,ω) /∈Θ, without loss of
generality, we consider x̄(t,ω)< θN/2, then for t ≥ t2

|x N
2 +1(t,ω)− θ̄ N

2 +1(t,ω)|
≥ |x̄(t,ω)−θ N

2 +1|−|e N
2 +1(t,ω)|

≥ |θ N
2
−θ N

2 +1|−|x̄(t,ω)−θ N
2
|−|e N+1

2
(t,ω)|

≥ |θ N
2
−θ N

2 +1|−γt ≥ γt .

Hence, kN/2+1
(
t,ω)(xN/2+1(t,ω)− θ̄N/2+1(t,ω)

)
= −γt by

the same argument in (21)(22). Then, (20) reduces to

x̄(t +1,ω) = x̄(t,ω)− αt

N

(
x N

2
(t,ω)− θ̄ N

2
(t,ω)− γt

)
. (25)

It follows that |x̄(t + 1,ω)− x̄(t,ω)|≤ 2N−1αtγt . Take t6
as the least t ≥ t2 such that 2N−1αtγt < |θN/2 − θN/2+1|.
Then, for t ≥ t6, we either have x̄(t +1,ω) ∈Θ or dist(x̄(t +
1,ω),Θ)= |x̄(t+1,ω)−θN/2|> 0. In the first case, dist(x̄(t+
1,ω),Θ) = 0. In the second case, x̄(t +1,ω)< θN/2 and

dist(x̄(t +1,ω),Θ)

≤ |x̄(t,ω)− αt

N

(
−γt + x N

2
(t,ω)− θ̄ N

2
(t,ω)

)
−θ N

2
|

≤ |(1− αt

N
)(x̄(t,ω)−θ N

2
)+

αtγt

N
|+αt

N
|e N

2
(t,ω)|

≤max{(1− αt

N
)|x̄(t,ω)−θ N

2
|, αtγt

N
}+ αt

N
|e N

2
(t,ω)|.

(26)

If (1−N−1αt)|x̄(t,ω)−θN/2|≥ N−1αtγt , the above relation
falls into the same pursuit of (24) and thus there exists t7≥ t6
such that dist(x̄(t +1,ω),Θ) ≤ γ̄t+1,ω for t ≥ t7. Otherwise,
to show dist(x̄(t +1,ω),Θ)≤ γ̄t+1,ω it suffices to show

αtγt

N
+

αt

N
|e N

2
(t,ω)|≤ γ̄t+1,ω .



Substitute (19) into the display above, it suffices to show

α0γ0

(t +1)τ1
+

α0cη ,ω

(t +1)η+τ1−τ3
+

α0cδ ,ω

(t +1)δ1+τ1−τ3
+

Ncη ,ω

(t +2)η−τ3

+
Ncδ ,ω

(t +2)δ1−τ3
≤ Nγ0,

The left hand side is decreasing to 0 as τ3 < δ1,τ3 < η , so
we can take t8 as the least t ≥ t7 such that the above relation
holds. Taking T0 as t8 addresses this case.

Step 2c, when N is even and x̄(t,ω) ∈ Θ, we show that
x̄(t +1,ω) ∈Θ. In this case, (20) reduces to

x̄(t +1,ω)− x̄(t,ω)

=−αt

N
k N

2
(t)(x N

2
(t,ω)− θ̄ N

2
(t,ω))

︸ ︷︷ ︸
T2

− αt

N
k N

2 +1(t)(x N
2 +1(t,ω)− θ̄ N

2 +1(t,ω))
︸ ︷︷ ︸

T3

.

(27)

We discuss two possibilities, one is that |T2|≤ γt or |T3|≤
γt , the other is both |T2 > γt and |T2|> γt . First, consider
|T2|≤ γt (|T3|≤ γt is a symmetric case). Since

|x̄(t,ω)−θ N
2
| ≤ |T2|+|e N

2 +1(t,ω)|

≤ γt +
cδ ,ω

(t +1)δ1
+

cη ,ω

(t +1)η
,

and x̄(t,ω) ∈Θ, we obtain

−T3 = θ N
2 +1− x̄(t,ω)− e N

2 +1(t,ω)

≥ θ N
2 +1−θ N

2
−|x̄(t,ω)−θ N

2
|−|e N

2 +1(t,ω)|

≥ dmin− γt −
2cδ ,ω

(t +1)δ1
− 2cη ,ω

(t +1)η
.

Take t9 as the least t ≥ t8 so that the right hand side on
the last line of the above relation is larger than γt . Then,
substituting the values of kN/2(t) and kN/2+1(t) into (27) we
have x̄(t + 1,ω) ≥ x̄(t,ω). Take t10 as the least t ≥ t9 such
that 2N−1αtγt ≤ dmin− (γt +cδ ,ω(t +1)−δ1 +cη ,ω(t +1)−η),
then by (28), for t ≥ t10 we have

x̄(t +1,ω)− x̄(t,ω)

≤ 2αtγt

N
≤ θ N

2 +1−θ N
2
−|x̄(t,ω)−θ N

2
|

≤ θ N
2 +1− x̄(t,ω),

(28)

so we have x̄(t,ω) ≤ x̄(t + 1,ω) ≤ θN/2+1, and thus x̄(t +
1,ω) ∈ Θ. Second, if both |T2|> γt and |T3|> γt , where
it is easy to check that under t ≥ t10, T2 and T3 are of
opposite signs and thus x̄(t + 1,ω) = x̄(t,ω) ∈ Θ. Suppose
both T2,T3 <−γt , then

x̄(t,ω)− x N
2
= T2− e N

2
(t,ω)

<−γt +
cδ ,ω

(t +1)δ1
+

cη ,ω

(t +1)η

=−γ̄t < 0,

which contradicts with x̄(t,ω)∈Θ. Similar argument applies
for T2,T3 > γt . Thus, taking T0 = t10 addresses this case.

Step 3, in all there cases, in the sample path ω such that
(19) holds, there exist some finite T0 such that if for some
T1 ≥ T0 we have dist(x̄(T1),Θ)≤ γ̄T1 for some T1 ≥ T0, then
dist(x̄(T1 + 1),Θ) ≤ γ̄T1+1. Since such sample paths ω has
probability 1, T0 exists a.s.

The following lemma asserts that hypothesis of Lemma 4
will always be true, and thus establishes the global conver-
gence of Algorithm (3).

Lemma 4. For T0, γ̄t established in Lemma 3, there exists a
finite T1 ≥ T0 such that dist(x̄(T1),Θ)≤ γ̄T1 .

Proof. We prove this lemma by contradiction. We work on
sample paths ω as in Lemma 3. Suppose, on the contrary,
for all t ≥ T0,ω , dist(x̄(t,ω),Θ) > γ̄t,ω . We now show that
this leads to limt→∞ dist(x̄(t,ω),Θ) =−∞, a contradiction.

Step 1, we first discuss the value of each clipped inno-
vation kn(t)[x(t,ω)− θ̄n(t,ω)]. We show that there exists
some finite T2 ≥ T0,ω such that ∀t ≥ T2, there exists at most
one n∈ [N] such that |xn(t,ω)− θ̄n(t,ω)|≤ γt , which implies
there exists at most one n ∈ [N] such that kn(t) = 1. Take T2
as the smallest t ≥ T0 such that 2γt < dmin−2cδ (t +1)−δ1−
2cη ,ω(t +1)−η . Suppose there exist two different m,n ∈ [N]
such that for both i = m,n, |xi(t,ω)− θ̄i(t,ω)|≤ γt . Then, for
i = m,n,

γt ≥ |xi(t,ω)− θ̄i(t,ω)|≥ |x̄(t,ω)−θi|−|ei(t,ω)|.

Summing above relations for i = m,n, combining with (19)
we have 2γt ≥ |θm − θn|−2cδ (t +1)−δ1 − 2cη ,ω(t +1)−η ,
which contradicts with the choice of T2. If it exists, for the
agent p that satisfies |xp(t,ω)− θ̄p(t,ω)|≤ γt and θp ∈ Θ,
take T3 as the least t ≥ T2 such that γ̄t,ω ≥ cδ ,ω(t + 1)−δ +
cη ,ω(t +1)−η . Thus, by the contradiction hypothesis,

|ep(t,ω)|≤ γ̄t,ω < dist(x̄(t,ω),Θ) = |x̄(t,ω)−θp|. (29)

Decomposing xp(t,ω)− θ̄p(t,ω) = x̄(t,ω)− θp + ep(t,ω)
and combing with (29) we have

sign(xp(t,ω)− θ̄p(t,ω)) = sign(x̄(t,ω)−θp). (30)

For any agent m such that |xm(t,ω)− θ̄m(t,ω)|> γt , with the
same reasoning in (21)(22) we have

km(xm(t,ω)− θ̄m(t,ω)) = γtsign(x̄(t,ω)−θm). (31)

We next consider t ≥ T3 and assume x̄(t,ω) is smaller than
median(s) without loss of generality. We discuss all three
possible cases.

Step 2a, if there exists p such that |xp(t,ω)− θ̄p(t,ω)|≤ γt
and θp ∈Θ. Then,

x̄(t,ω)−θp−1

= xp(t,ω)− θ̄p(t,ω)+ ep(t,ω)+θp−θp−1 > 0,

since by the definition of T2,

θp−θp−1 ≥ dmin > cδ ,ω(t +1)−δ1 + cη ,ω(t +1)−η + γt

≥ |ep(t,ω)|+|xp(t,ω)− θ̄p(t,ω)|.



Thus, we have θp−1 < x̄(t,ω)< θp. By (31), and the defini-
tion of median

∑
n6=p

kn(t,ω)(xn(t,ω)− θ̄n(t,ω)) =

{
0, N is odd,
−γt , N is even.

(32)

Thus, (20) reduces to

x̄(t +1,ω)− x̄(t,ω)

=

{
−αt

N (xp(t,ω)− θ̄p(t,ω)− γt), N is even,
−αt

N (xp(t,ω)− θ̄p(t,ω)), N is odd.

≥ 0.

(33)

where the last inequality follows from (30) and x̄(t,ω)< θp.
By the contradiction hypothesis,

|xp(t,ω)− θ̄p(t,ω)|
≥ |x̄(t,ω)−θp|−|ep(t,ω|
> γ̄t − cδ ,ω(t +1)−δ − cη ,ω(t +1)−η ,

it follows from (33) that for both even and odd N,

x̄(t +1,ω)− x̄(t,ω)

≥ αt

N
(γt −

2cδ ,ω

(t +1)δ1
− 2cη ,ω

(t +1)η
).

(34)

Step 2b, consider the case that there exists one q such that
|xq(t,ω)− θ̄q(t,ω)|≤ γt , but θq /∈Θ. Since x̄(t,ω) is smaller
than the median(s), θq is also smaller than the median(s),
otherwise |x̄(t,ω)−θq|≥ dmin > γt +cδ ,ω(t+1)−δ +cη ,ω(t+
1)−η by the definition of T2, and implies the contradiction
that

|xq(t,ω)− θ̄q(t,ω)|≥ |x̄(t,ω)−θq|−|eq(t,ω)|> γt .

Then, from (31)

x̄(t +1,ω)− x̄(t,ω)

=−αtγt

N ∑
n6=q

sign
[
xn(t,ω)− θ̄n(t,ω)

]

− αt

N
(xq(t,ω)− θ̄q(t,ω))

=−αtγt

N ∑
n6=q

sign [x̄(t,ω)−θn]

− αt

N
(xq(t,ω)− θ̄q(t,ω).

(35)

Since x̄(t,ω),θq are smaller than the median(s), by counting
θn on both sides of x̄(t,ω) we have

∑
n6=q

sign [x̄(t,ω)−θn]≤−2.

Hence, it follows from (35) that

x̄(t +1,ω)− x̄(t,ω)≥ αtγt

N
. (36)

Step 2c, if for each agent n, |xn(t,ω)− θ̄n(t,ω)|> γt , then
from (31) we have

x̄(t +1,ω)− x̄(t,ω)

=−αtγt

N ∑
n∈[N]

sign
[
xn(t,ω)− θ̄n(t,ω)

]

=−αtγt

N ∑
n∈[N]

sign [x̄(t,ω)−θn] .

(37)

Since x̄(t,ω) is less than the median(s), by counting number
of θn on both sides of x̄(t,ω) we still obtain (36).

Apply similar argument as on (25). There exists finite T4≥
T3 such that x̄(t+1,ω) is still less than the medians as x̄(t,ω)
is less than the medians. Take T5 as the least t ≥ T4 such that
γ̄t−cδ ,ω(t+1)−δ −cη ,ω(t+1)−η ≥ cγ γt for some 0< cγ < 1.
Then in either Step 2a, 2b, 2c, by (34)(36) we obtain

dist(x̄(t,ω),Θ)−dist(x̄(t +1,ω),Θ)≥ cγ αtγt

N
.

Summing over all t ≥ T5 leads to a contradiction in that
dist(x̄(T5,ω))− limt→∞ dist(x̄(t),ω) = cγ N−1

∑
∞
t=T6

αtγt = ∞

by the choice τ3 < 1− τ1, and thus establishes the desired
assertion.

Proof of Theorem 1. By Lemma 3, 4, there exists some
finite T1 such that for all t ≥ T1,dist(x̄(t)) ≤ γ̄(t) a.s. Thus,
we have

P
(

lim
t→∞

(t +1)τ3dist(x̄(t),Θ) = 0
)
= 1.

By Lemma 2 we have

P
(

lim
t→∞

(t +1)τ1−τ2+τ3−ε1‖x(t)−PNx(t)‖2= 0
)
= 1

for every 0 < ε1 < τ1− τ2. For any n ∈ [N], by the triangle
inequality, we have

dist(xn(t),Θ)≤ |xn(t)− x̄(t)|+dist(x̄(t),Θ)

≤ ‖x(t)−PNx(t)‖2+dist(x̄(t),Θ).

Then, it follows that for all n, we have

P
(

lim
t→∞

(t +1)τ3dist(xn(t),Θ) = 0
)
= 1.

V. NUMERICAL EXPERIMENTS

We generate two random geometric graphs Graph 1 and
Graph 2. Both graphs consist of 40 nodes but have different
connectivities measured by the second largest eigenvalue
of the graph Laplacians. The Laplacians of Graph 1 and
Graph 2 are λ2(L1) ≈ 1.8, λ2(L2) ≈ 7.2 respectively, and
from Figs. 1 and 2 below it is clear that Graph 2 is more
densely connected. Additionally, both graphs are undirected
and connected. We simulate random networks by assigning
dropout probability for each link. In our experiments, we use
dropout probabilities 0.1 and 0.5.

Fig. 1. Graph 1, λ2(L1)≈ 1.8 Fig. 2. Graph 2, λ2(L2)≈ 7.2

We consider the problem setting θn = n for n = 1, . . . ,40,
vn(t) = 10/(t + 1), and wn(t) ∼ N (0,4). Note that we



consider perturbations as the sum of a deterministic sequence
and i.i.d. white noises. The deterministic sequence is not
known to the agents as a prior. Since the largest possible
deterministic errors as as tolerable by DMED are used, this
problem is the hardest in the problem class we consider.
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Fig. 3. Iteration count t vs N−1
√

∑
N
n=1 dist2(xn,Θ) with two networks with

different dropout probability

By assigning two different dropout probabilities 0.1 and
0.5 for each link in Graph 1 and Graph 2 respectively, we
conduct experiments on 4 random networks. In all 4 random
networks, we set the same parameters αt = (t +1)−0.6,βt =
(t + 1)−0.2/10,γt = 20(t + 1)−0.3,cµ = 10,µ = 0.9, and all
local estimates start from 0. Given the random nature of
the considered networks, we average the network average
distance to a set of medians, i.e., N−1

√
∑

N
n=1 dist2(xn,Θ)

over 100 network instances for each of 4 experiments, and
present the experiments results in Fig. 3.

The simulation results in Fig. 3 demonstrate our theoretical
findings that each local estimate converges to the set of
medians sublinearly. The results validates the advantage of
DMED over previous works that rely on connected networks,
in that if a large proportion of links drop out at each time
instance the DMED still converges to the set of medians
sublinearly. From Fig. 3 we also observe that better con-
nectivity and lower dropout probabilities could benefit the
convergence speed of DMED. This emprical finding about
convergence rate characteristics is not formally investigated
in our analysis, while the intuition behind it is that better
connectivity (measured by the second eigenvalue of the
Laplacian) and lower dropout probabilities tend to speed up
consensus type processes.

VI. CONCLUSION

In this paper, we have studied the problem of dynamic
median consensus over random networks that are required
to connected only on average. We have considered a multi-
agent networked setup in which each agent makes local
observations, corrupted by decaying bias and white noise,
of a distinct value. The agents’ objective is to estimate

the median of the local values. We presented DMED, a
consensus+innovations type algorithm with clipped innova-
tions to address this problem. Under the DMED algorithm,
the agents’ local iterates converge almost surely to the set
of medians at a sublinear rate. Finally, we validate the
performance of our algorithm through numerical simulations.
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